
Courant Computer Science Report #14

June 1979

Automatic Storage Optimization

Janet FabrI

Courant Institute of

Mathematical Sciences

Computer Science Department

I

New York University

Report No. NSO-14 prepared under Grant No.
NSF-MCS 76-00116 from the National Science Foundation



COURANT COMPUTER SCIENCE PUBLICATIONS

COURANT COMPUTER SCIENCE NOTES

AlOl ABRAHAMS, P. The PL/I Programming Language, 1979, 151 p.

C66 COCKE, J. & SCHWARTZ, J. Progrojmting Languages & Their Compilers

D86 DAVIS, M. Computability , 1974, 248 p.

M72 MANACHER, G. ESPL: A Low-Level Language in the Style oj Algol, 1971, 496 p

MSI MULLISH, H. s GOLDSTEIN, M. A SETLB Primer, 1973, 201 p.

591 SCHWARTZ, J. On Programming: An Interim Report on the SETL Project.
Generalities; The SETL Language & Examples of Its Use,

1975, 675 p.

GYVE—A Programming Language for Proteoticn and Control in a
Ccncurrent Processing Environment, 1978, 668 p.

S99 SHAW,

SlOO SHAW, P.

W78 WHITEHEAD,

", Vol. 2, 1979, 600 p.

Jr. Combinatorial Algorithms, 1973, 104 p.

1



COURANT INSTITUTE OF MATHEMATICAL SCIENCES

Computer Science NSO-14

AUTOMATIC STORAGE OPTIMIZATION

Janet Fabri

1979

Report No. NSO-14 prepared under
Contract Number NSF-MCS 76-00116 with
the National Science Foundation





CONTENTS

PREFACE

1. INTRODUCTION 1

1.1 Motivation 1

1.2 Optimization Techniques & Compiler Structure 2

1.3 Towards a Storage-Optimizing Compiler 4

1.4 An Empirical Investigation 6

1.5 Definition of Terms 7

1.6 Structure of the Dissertation 10

2. HIGHLIGHTS OF STORAGE OPTIMIZATION 13

2.1 Data Overlay 13

2.2 The Relevance of Range Analysis 15

2.3 Renaming Transformations 16

2.4 Code-Modifying Transformations 19

3. Automatic Data Overlay 23

3.1 An Exact Overlay Algorithm 23

3.2 A Shipbuilding Problem 27

3.3 A Coloring Problem & Yershov's Heuristic 28

3.4 A Renaming Problem 29

3.5 Heuristics for Automatic Data Overlay 30

3.6 A Bounded Approximation Algorithm 32

3.7 Design Implications 35

4. The Renaming Transformations 36

4.1 Background 37

4.2 Socrates' Renaming Implementations 39

4.3 A Canonical Renaming Transformation 40

4.4 Renaming Transformation Examples 44

5. Basic Code-Modifying Transformations 47

5.1 Background 47

5.2 Goal-Directed Code Modification 48

5.3 Safety and Profitability Constraints 54

5.4 Socrates' Implementation 59



6. Other Transformations and Techniques 6 2

6.1 Data Fragmentation 6 2

6.2 Data Spill 62

6.3 Redundant Code Elimination • 64

6.4 Loop Fusion and Rank Reduction 65

6.5 Instruction Block Overlay 67

6.6 Interprocedural Overlay 67

7. Project Description 69

7.1 An Overview of Socrates 69

7.2 The Storage Optimization Language 70

7.3 Program Analysis in Socrates 74

8. Experimental Results 82

8.1 Socrates' Results 82

8.2 Testing the Overlay Heuristics 84

9. Conclusions and Future Directions 86

Bibliography ^q

Appendices

I. Program Listing

II. Sample Program Runs

III. Experimental Test Runs

* Courant Institute Library has Appendices.
iv



PREFACE

I would like to express my deep appreciation to

Professor Robert Dewar for his supportive counsel and wise

guidance during this dissertation effort, and for patiently

reading through several versions of this document. I would

also like to thank Professor Jacob Schwartz for his sage

advice. Most stimulating to this work were a number of

(separate) technical discussions that were held with

Professor Martin Golumbic, Dr. Alan Hoffman, Gregory Chaitin

and John Cocke, for which I am very grateful. Furthermore,

this work would not have been at all possible without the

cooperation and practical support provided to me by my

management at IBM; in particular, I am indebted to my

immediate manager. Dr. Robert Wilkov, for this support

and for the constructive suggestions he provided to expedite

my efforts. Finally, I thank the people close to me for

their patience and support.





1. INTRODUCTION

1.1 Motivation

Program optimization theory is the study of techniques

for improving the execution characteristics of automatically

compiled programs. As others (CS70, AhHU77) have observed,

the term optimization is misleading; program improvement is

more apt. There is, after all, no such thing as an absolutely

optimum program. In one environment it is object execution

time that is critical; in another, object program size; in a

third, compiler execution time. Different hardware architec-

tures favor different optimizations. Even operating system

considerations, such as input/output design and storage

management design, can affect optimization trade-offs.

Most studies of optimization techniques for higher

level languages have focused on improving execution time

of generated programs, often at the expense of increased

storage. When storage optimization has been addressed, it

is usually in conjunction with time optimization, such as in

instruction-reducing code transformations. In Section 1.3,

two existing storage-optimizing compilers are discussed.

The rising popularity of minicomputers and microprocessors

suggests that the time has come to take a closer look at

the problem of automatic storage optimization. Because lack

of space has always been a problem in the small machine environ-

ment, the proliferation of small machines implies the increasing

importance of the problem. Although the decreasing cost of

memory may mitigate this trend, a variant of Murphy's law

ensures that program size will always increase faster than

the available storage; in short, programmers will always write

programs that don't fit.

Even without the advent of the small computer, such an

investigation would be warranted from a language point of view.

Today, almost all programming languages include the notion



of storage in the concept of a variable, and most compilers

maintain a one-to-one mapping between variables and storage.

This means that, in a tight storage situation, the programmer

must overlap storage by deliberately using a single variable

for more than one purpose, to the detriment of the clarity

and reliability of the program. A desirable goal would be a

language in which variables had no storage connotation, but

where the processor performed all storage allocation deci-

sions, guaranteeing only the integrity of the variable. This

is an important goal, since, unlike the case of time

optimization, where the scope of a coding trick is relatively

local, a storage-optimizing coding trick often obscures the

entire program.

Storage optimization is also applicable in virtual

storage systems where a decrease in program size may result

in a smaller page requirement for the object program, with

consequent improvement in program execution time. The related

question of organizing procedures of a given size so as to

minimize interpage transitions has been treated by

Kernighan (KerVO, Ker71).

Another related question arises when a computer with

multiple memory classes is considered. Each class has a

maximum size and a unit access cost. Without even consider=

ing storage minimization, the choice of storage area for

each variable will affect the program execution time. This

problem has been elegantly solved by Warren (Wa78)

.

1.2 Optimization Techniques and Compiler Structure

Compiler optimization techniques, together with the

rest of compiler technology, have evolved from a collection

of largely ad hoc techniques into a body of systematic theory

and practice.

The FORTRAN H compiler (LowM69) was one of the earliest

systematic implementations of an optimizing compiler. Intro-

ducing the notion of back-dominance, the compiler was able to

perform redundant expression elimination and code motion,

among other optimizing transformations,

2



The invention of the interval concept by John Cocke

(C71) laid the groundwork for most of the ensuring research

in systematic program optimization. Using the graph-theoretic

notion of an interval, Cocke and Allen demonstrated a proce-

dure (A171,Al74,AlC72b,AlC76) that analyzes the data flow

relationships in a program and generates information useful

for systematic code transformations such as redundant expres-

sion elimination, constant progagation, and code motion

(Kenl,C70)

.

Kildall (Ki73) introduced a theoretic model for data flow

analysis problems using lattice algebra. In most cases, a

simple, general iterative algorithm can be shown to converge.

Kam, Oilman, Hecht and others (KaU76 ,HeU75) have extended

these results. In addition, node listing techniques have

been used (e.g., Ken75). Fast and simple algorithms for data

flow analysis are now known (GrW76,U73).

Today, program optimization is heavily investigated in

a number of directions, such as interprocedure optimization

(B77) ,
graph grammars (KenZ) , symbolic evaluation (Rle77)

,

data type determination (1^74) , reduction in strength (PSchw77),

and data structure choice (Schw75), among many others. Refer-

ence (He77) is a good textbook on the subject of data flow

analysis and its uses. Other books that include information

on program optimization are (AhHu77 ,CS70 , Scha73 ,WJWHG75)

.

The standard optimizing compiler performs a syntactic

and semantic analysis of the program, producing an internal

form on which optimization can take place. This internal form

includes one or more program flow graphs, together with node-

specific information on the use and definition of the

program's data. A data flow analysis phase determines, via

interval analysis or an iterative method, information such as

the following: (1) the set of expressions available at each

node; (2) the set of variables live at each node; (3) defini-

tion-use chains; (4) use-definition chains. Using this

information, code-improving transformations (AlC72a) , such

as redundant expression elimination and constant propagation,

are applied in subsequent phases. Machine-dependent optimiza-

tion may be performed during the final code generation phase.



1.3 Towards a Storage-Optimizing Compiler

Live information is of the greatest importance for

storage optimization. If a variable is not live in a portion

of the program, its storage can be used by another variable

that is live there. Live value analysis is thus an indispens-

able function of a storage-optimizing compiler.

Additional data flow information is needed if the compiler

performs storage-optimizing code transformations. As we will

demonstrate in the next chapter, such program transformations

can improve data overlay possibilities. Available expression

inform.ation, definition-use and use-definition chains are

needed.

Two existing compilers — Alpha and Bliss — have taken

limited but quite different approaches to storage optimization.

In the Alpha compiler (Y71) , Yershov tackled the problem of

automatic data overlay determination. From the information

collected by a live value analysis, the Alpha compiler builds

a conflict graph (see Section 1.5), and uses a combined color-

ing and packing heuristic to determine sets of overlaying

variables. Yershov' s overlay heuristic will be discussed in

detail in Section 3.2. The Alpha compiler, however, did not

address storage-optimizing code transformation.

In the Bliss compiler (WJWHG75) , attention is focused on

optimizing instruction storage and temporary storage, but

overlay of aggregate variables is not addressed. Data flow

analysis is performed in an early phase. In the next phase,

three basic functions are performed in order to prepare for

the production of shortened code sequences: (1) the "general

shape" of the object code is determined; (2) the "cost" of

each linear program segment is estimated; (3) code is reordered

heuristically so that a minimal number of registers are

required. The assignment of temporary variables to storage

(or registers) is performed in three subsequent phases by

ranking the temporaries via a figure of merit, and assigning

them in ranked order to shared locations. (The Bliss interpre-

ters did not use the conflict graph to simplify the

representation of live variable conflicts.) A final phase

^ 4



generates the code and performs peephole optinization

.

In this work we are interested in a compiler that

performs both automatic data overlay determination and

storage-optimizing code transformation. For such a compiler,

the follov;ing structure is proposed:

PARSE &

RESOLVE

XF0RI>4

RANGE
ANALYSIS

DATA FLOW
ANALYSIS

GENERATE

RENAME

After preliminary processing, a range analysis proce-

dure (Harr75) is used to determine variable subreferences

and their disjointness and covering properties. The use of

range analysis is discussed in Section 2.2. A generalized

array data flow analysis procedure, similar to the one

implemented in the current effort (see Section 7.4) is

performed next. Automatic overlay procedures, including the

ones implemented in the current effort, are discussed in

detail in Chapter 3.



Renaming transformations improve overlay opportunities

by inserting new variables into the program to assume some,

but not all, of the critical live conflicts. A canonical

renaming transformation is introduced in Chapter 4 of this

dissertation. Other code transformations eliminate conflicts

between a particular pair of variables either before or after

overlay determination, as described in Chapter 5. Examples

of these transformations are given in Chapter 2, and implemen-

tations of these algorithms have been included in the current

effort.

1.4 An Empirical Investigation

A major deficiency in the development of optimizing

compilers has been the lack of empirical data on the way

programming languages are actually used in production programs.

Optimizing transformations are often selected or discarded

for a particular compiler based on the compiler designer's

feelings about what programs are like and which transforma-

tions seem appealing.

A significant departure from this trend is Knuth ' s study

(Kn71) , v;hich gathered information on the frequency of use

of various FORTRAN facilities, as well as on the reducibility

of programs. Unfortunately, this study postdates the develop-

ment of several of the widely used optimizing compilers.

In order to gather information on storage optimization,

an empirical investigation has been undertaken, using a tool

built for this purpose called SOCRATES (the Storage Optimiza-

tion Code Reorganization And Transformation Experimental System)

to study the amenability of typical programs to various storage

optimization techniques. SOCRATES has been implemented as

part of this effort, and several moderate-sized programs have

been analyzed. SOCRATES is described in Chapter 7, and the

experimental results are given in Chapter 8.



1.5 Definition of Terms

In this work, we will be referring to a number of terms

which are summarized below:

FG will denote the flow graph of a program P. FG is a

pair (ND, ED), where:

ND is the set of nodes of rhe program. These may be

single operations, single statements, basic blocks,

procedure blocks, or whatever unit has been determined

to be fundamental for the storage analysis.

ED is the set of edges (I, J) in the program flow graph,

for I and J in ND

.

A path is a sequence of edges <<E(i)>> such that the

tail of edge E(i) is equal to the head of edge E(i + 1)

.

A depth-first post-order of ND will be referred to

extensively in this paper. A depth-first search is an

efficient search of a graph which produces a node ordering

that has many useful properties (Ta72 ,Ta74 ,HeU75) . We will

exploit these in SOCRATES.

VARS will denote the set of variables in the program.

For each variable V in VARS, |v| or SIZE(V) will denote the

declared size of V. For any subset SV of VARS, the size of

SV,
I SV I

, is the sum of the sizes of the elements of SV

.

Clearly, |VARS| is an upper bound on the program's data storage

requirement.

A subreference S of an aggregate variable V is defined

to be a specific set of scalar elements of V. REFS will denote

the set of references in the program. Each reference R in

REFS is a pair (V,S), where V is the variable and S is a

subreference of V. By convention, if S is null, the reference

is to the entire variable V.

If SI and S2 are both nonnull, but the intersection of

SI and S2 is null, then (V,S1) and (V,S2) are said to be

disjoint. If (V,S1) and (V,S2) are not disjoint, they are

said to be conjoint. A set of subreferences Sl,...,Sk is said

to cover a reference R if every scalar element of R is in at

least one subreference Si, i=l,...,k. Each Si is called a

subreference of R. Every reference (V,S) is a subreference of V.

7



For each node I in ND, let USES (I) be the set of refer-

ences used at node I

.

For each node I in ND , let DBFS (I) be the set of refer-

ences redefined at node I, If a reference is redefined at

that node, every value in the specified subreference is altered.

For each node I in ND, let MODS (I) be the set of

references modified (or redefined) at node I. If a reference

is modified at that node, some, but not necessarily all, of

the values in the specified subreference are altered.

A reference (V,S) is said to be live at a node I if there

is a DEFS-clear path in FG from node I to any node J at

which (V,S), or some conjoint reference (V,S'), is in USES(J).

A variable V is said to be live at node I if any of its

subreferences are live. The set of variables live at node I

is denoted by LV(I).

A variable V is said to be active at node I if it is

in LV(I), or if any of its subreferences are in DEFS(I), MODS (I),

or USES (I). The set of variables active at node I is denoted

by ACT(I). Intuitively speaking, ACT(I) is the set of vari-

ables which must have storage reserved at node I. LS denotes

the set of active sets ACT(I), over I in ND

.

A loop is a subset of nodes in FG v/ith a single entry

and a single exit, which contains a back edge from the last

node (in depth-first post-order) to the first node, and may

contain other back edges. A variable V is said to be active

at loop L if it is active at some node of L.

The set of nodes or loops at which a variable IV is active

is denoted by LNACT(IV) . The set of nodes or loops at which

a variable IV is used is denoted by LNUSES(IV). The set of

nodes or loops at which a variable IV is modified (or

redefined) is denoted by LNMODS(IV).

A modification of a reference R within a loop L is said

to propagate backwards into a definiton of R if every element

of R is defined before any use in L. Such a propagation will

result in R being dead (i.e., not live) on entry to loop L.



A modification of a reference R within a loop L is said

to propagate forwards into a definition of R if every element

of R is defined in L. Such a propagation will result in R

being available on exit from loop L.

We define MAXLIVE to be the maximum over the elements

ACT(I) of LS of |act(I)|. Intuitively speaking, MAXLIVE is

the maximum storage needed at any particular node. It is a

lower bound for the program's overlay storage requirement.

The array conflict graph CG is defined: the nodes of CG

are the elements of VARS . An edge (X,Y) is in CG if there

is some node I in ND such that X is in ACT (I) and Y is in

ACT (I). Each node has associated with it a weight, corres-

ponding to the size of the variable. A clique is a subset of

the graph in which every node is connected to every other node

in the subset.

The conflict graph is central to automatic storage

optimization. An edge connects a pair of nodes if and only

if the variables are active simultaneously and may therefore

not share storage. The size of any subgraph of the conflict

graph is defined to be the sum of the weights of the nodes.

If the cliques of the conflict graph are examined, a clique

whose size is the largest is called a "maximum clique",

and its size is called the "maximum clique size". Since, by

definition, no pair of variables in the maximum clique may

share storage, the maximum clique size is a lower bound on

the storage overlay requirement.

More precisely, let CS denote the set of cliques in CG

,

and define MAXCLIQ as the maximum value of |c| over the elements

C of CS. Note that MAXCLIQ may exceed MAXLIVE. For example,

if X and Y are active simultaneously, Y and Z are active

simultaneously, and X and Z are active simultaneously, but

X, Y, Z are never active simultaneously, MAXLIVE < flAXCLIQ,

and separate storage locations must be reserved for each

variable. It is shown in Chapter 4 that the program can always

be transformed so that MAXLIVE is reduced to MAXCLIQ.



In Chapter 3, the definitions of a coloring map and of

the chromatic number CHR(CG) are generalized for array con-

flict graphs in such a way that a coloring of the conflict

graph corresponds to a storage layout and CHR(CG) corres-

ponds to the minimum-size storage layout.

1.6 Structure of the Paper

The aim of this paper is to delineate some fundamental

issues in the desing of a storage optimizing compiler that

performs automatic data overlay determination and storage-

optimizing code transformation. In Chapter 2, highlights of

the subject are provided by means of examples that illustrate

means of achieving storage savings.

Automatic data overlay, the subject of Chapter 3, is the

central problem of storage optimization; all subsequent

techniques are aimed at improving the opportunities for auto-

matic data overlay. This problem is stated formally, and an

exact (but exponential) algorithm for its solution is presented.

The overlay problem is considered in relation to several

NP-complete problems. Past work on overlay heuristics is

surveyed, and the family of heuristics that has been imple-

mented in SOCRATES is presented. An upper bound for the

extended chromatic number has been demonstrated by A. Hoffman,

and the polynomial-time algorithm that realizes that bound is

presented, together with a proof of the bound. This result

is significant for storage optimization because program trans-

formations can be aimed at lowering this upper bound as well

as the lower bound I4AXCLIQ.

Program transformations that reduce the conflict graph's

maximum clique size usually improve the results of an overlay

heuristic. Two transformations are presented in Chapter 4

that reduce the maximum clique size to the program's maximum

active set size by introducing new variables into the program

to assume some, but not all, of the critical live variable

conflicts. These are generalized to a single, canonical trans-

formation which transforms a program so that the maximum clique

10



size is always reduced to the maximum active set size. This

result is significant because it provides a systematic basis

for the automation of an ad hoc programming technique. In

particular, this algorithm is important for register optimi-

zation, since it determines where "move-register" operations

are to be profitably inserted to reduce the number of required

registers. This transformation can also be used to break up

other cliques in the conflict graph.

In Chapter 5, basic code-modifying transformations are

considered. The code modification problem is formulated as

a generalization of an NP-complete register optimization

problem. A goal-directed SOCFIATES procedure that determines

what program nodes should be split, copied or moved in order

to eliminate edges in the conflict graph is presented. If

the conflict graph or the overlay results are used to select

nodes, the potentially combinatorial size of the storage-

minimizing code transformation problem is reduced to more

manageable proportions. Redundancy equations that express

safety constraints for redundant code insertion and code motion

are also presented in Chapter 5, and profitability tests are

described

.

In Chapter 6, transformations and techniques that have not

been eliminated in SOCRATES are described. Loop fusion, rank

reduction, redundant code elimination and data spill are

illustrated by example and data fragmentation, instruction block

overlay and interprocedural overlay are discussed. The trans-

formations of Chapters 5 and 6 are also relevant to register

optimization

.

In Chapter 7, the SOCRATES effort is described, and the

Storage Optimization Language (SOL) specified. In SOCRATES, the

redundancy equations for live value analysis and available

value analysis have been generalized for arrays and array sub-

references, and this is included with the program analysis phase

description in Section 7.4. The SOCRATES implementation also

includes versions of the overlay heuristics described in

Chapter 3, the renaming transformations described in Chapter 4,

and the code modification transformations described in Chapter 5

11



In Chapter 8, the empirical data gathered by SOCRATES

to date is summarized. In Chapter 9 the conclusions of this

study are reviewed, and directions for further study are

indicated

.

Throughout this dissertation, algorithms are specified

in SETL/2 (De78) . SOCRATES itself has been programmed in

PL/1, and a listing of this program, together with sample

program runs, are given in the Appendix.

12



2. HIGHLIGHTS OF STORAGE OPTIMIZATION

Before beginning our study of automatic storage optimi

zation techniques, it is instructive to consider the manual

techniques used by the programmer to achieve storage economy.

From such a catalog, it will be possible to identify those

techniques suitable for automation.

Many languages have a facility like the FORTRAN EQUIVALENCE

statement that permits the programmer to specify the overlay of

static or program data. In languages where this facility is limited

or nonexistent, the programmer can overlay data by reusing vari-

able names. In either case, the resulting program is difficult

to read, difficult to modify and often unreliable. These

techniques are also applicable to automatic variables local to

a given block (e.g., in ALGOL or PL/1) . Data overlay is

discussed with example in Section 2.1, and the relevance of

range analysis to data overlay is discussed in Section 2.2.'

Renaming techniques can be used to modify the program so

that more overlay opportunities materialize. Examples of

these transformations are given in Section 2.3.

In {AlC72a) , Cocke and Allen present a catalog of optimiz-

ing transformations. Some of these transformations and their

generalizations can be used to enhance the opportunities for

data overlay. Examples are given in Section 2.4.

Other techniques, which are usually more costly in

execution time, are discussed in Chapter 6.

2.1 Data Overlay

The following PL/1 program segment illustrates an oppor-

tunity for data overlay.

DCL A(50,2),B(50,2),C(50),D(50),E(50,2),G(50,2);

GET LIST (B,C)

;

A = B / C;

D = A(*,l)**2 + B{*,2)**2;

E = B(*,l)**2 + D;

G = SQRT(E)

;

PUT LIST (E,G) ;

13



If the arrays declared above were to be arranged sequentially

in storage, they would occupy 500 units. However, a storage-

conscious programmer (using overlay defining) , or a storage-

conscious compiler, might try to overlay storage in some

manner. For example, it might be observed that A and E are

never around at the same time, and neither are C, D and G.

Thus, the following overlay of storage is possible:

A(IOO)



2.2 The Relevance of Range Analysis

Range analysis techniques can be used to refine informa-

tion on the live properties of variables. Consider the

following example:

DCL A(20)

;

(1) DO I = 1 TO 20;

A{I) = ...

END;

DO WHILE (SW)

;

(2) DO J = 1 TO 20;
- ... A(J) ...

(3) END;

(4) DO K = 1 TO 20 BY 2;

A(K) = ...
END;

DO L = 2 TO 20 BY 2;

A(L) = ...
END;

(5) END;

In the absence of range analysis, A would have to be

assumed live, and have storage reserved for it, between

lines 1 and 5. However, a range analysis procedure could

discover that the loop on line 4 assigns to the odd-numbered

elements of A and the succeeding loop assigns to the even-

numbered elements of A, so that A is dead between lines 3

and 4 where it can share storage with a variable that is

live only in that interval

.

This example illustrates the desirability of a general-

ized live value analysis procedure that recognizes portions

of an array (i.e., in this case, the odd-indexed elements,

the even-indexed elements) , and their interrelationships (the

two portions are mutually disjoint and cover all of A)

.

15



In Section 1.5, a "subreference" was defined in order to

express the notion of such a portion of an array.

Generalized available value analysis produces refined

information for storage-optimizing code modification, and is

also facilitated by range analysis.

It is noteworthy that the element-by-element modifica-

tions in the first, third and fourth loops result in a

definition of the entire array in the first loop, and of

each subreference in the other loops. This concept was

captured in the notion of propagation (see Section 1.5).

2.3 Renaming Transformations

In this and succeeding sections, examples of code trans-

formations will be presented, using a subset of the SOL language,

This language, which is specified in Section 7.3, expresses the

characteristics of a language that are essential for storage

optimization. Each statement may be thought of as corresponding

to a program statement, and the syntax is PL/1-like. For the

purpose of these examples, the options appearing in the state-

ment are: the USE option, describing the variables used in the

statement; the SET option, describing the variables redefined

in the statement; and the GOTO option, describing the successor

statements, used only when the physically succeeding statement

is not the only successor. The DEF statement describes the

sizes of the variables in this subset.

2.3.1 Unsharing

Sometimes, the programmer's use of a single variable for

several purposes interferes with storage overlay. Consider the

following program:

DEF A(200) ,B(100) ,C(200) ,D(150) ,E{50) ;

SET(A,B) ;

SET{C) USE(A,B)

SET(D) USE(B,C)

SET(A) USE(C,D)

SET(E) USE(A,C)

USE(A,E) ;

16



The best storage utilization for this program is the following

A(200)
B(IOO)

E(50)
C(200) D(150)

Total: 650

The only storage sharing possible is between B and E.

However, 50 units of storage can be saved if variable A is

"unshared"

.

DEF A(200), Al(200), B(IOO), C(200), D(150), E(50);

SET(A,B) ;

SET(C) USE(A,B);

SET (D) USE (B,C)

;

SET(Al) USE (CD) ;

SET(E) USE(A1,C);

USE(A1,E)

;

The following storage assignment is now possible:

A(200) B(IOO)

D(150)

//

Al(200)
C(200) E(50)

Total: 600

A new variable, Al , can be used in statement 4, because

A is dead on entry to statement 4. If A and Al are assigned

different storage locations, D can overlay A, resulting in

the storage utilization pictured above. An unsharing trans-

formation has been performed on the program, improving the

opportunities for storage overlay.
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2.3.2 Repositioning

Repositioning is a technique that will be familiar to

any assembly-language programmer who has ever tried to fit

a program into tight storage. It involves moving data from

one variable (or register) to displace another whose current

value is not needed so as to make room for a third variable's

value. Consider the following example:

DEF A(20) , B(20) , C(30)

;

SET (A,B)

;

USE (A,B) GOTO (3, 4)

;

SET(C) USE (A) GOTO (5)

;

SET(C) USE(B);

USE(C)

;

For the above program, no storage overlay is possible, and 70

units of storage are required. This situation can be improved

by moving B into A before statement 4 and using A instead of B

in statement 4. The resulting program is as follows:

DEF A(20) , B(20) , C(30)

;

1: SET(A,B)

;

2: USE(A,B) GOTO (3, 4a)

;

3: SET(C) USE (A) G0T0(5);

4a: SET (A) USE (B) ; /*

4: SET(C) USE (A) ;

5: USE(C);

B V

Now, C and B can share storage,

ment is as follows:

The resulting storage assign-

A(20)
B(20) ///

C(30)

Total: 50

In Chapter 4, repositioning and unsharing will be formu-

lated as a single, renaming problem. A canonical renaming

transformation will be presented, and it will be shown that

this transformation always reduces the maximum clique set

size to the maximum active set size.
18



2.4 Code-Modifying Transformations

In the area of time optimization, certain code transfor-

mations have been found to improve object execution time.

Many of these transformations, their inverses, or their

generalizations, are also applicable to storage optimization,

because they expose new opportunities for data overlay.

In some cases, these transformations coincide with techniques

used by storage-optimizing programmers. Some examples are

given below.

2.4.1 Redundant Code Insertion

There are circumstances when storage can be saved by

recalculating a set of values, instead of using the storage

to hold the values between nonadjacent uses. The following

example illustrates this point:

DEF A(30), B(50), C(120), D(IOO), E(80), G(50), H(IOO);

SET(A,B)

;

SET(C) USE(A,B)

SET(D) USE(A,C)

SET(E) USE(A,B)

USE(D,E)

;

SET(H) USE (C,A)

;

SET(G) USE (C,A)

;

USE (G,H)

;

The following storage layout is best for this program:

A(30) B(50) D(IOO) C(120) E(80)

//////
//////

G(50) H(IOO) /////////////////////
/////////////////////

Total: 380

By recalculating C and using a renamed variable for the

result, we get the following program:
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DEF A(30),B(50),C(120),C1(120),D(100),E(80),G{50),H(100)

SET(A,B) ;

1: SET(C) USE(A,B);

SET(D) USE (A,C)

;

SET(E) USE(A,B) ;

USE(D,E)

;

SET(Cl) USE(A,B)

SET(H) USE (CI, A)

SET(G) USE (CI, A)

USE(G,H)

;

Now, the following assigninent is possible, saving 70 units of

object storage, at the expense of instruction storage and

program execution time.

/* this is a copy of statement 1 */

A(30)



The following storage assignment is the best that can

be done for this program as it stands:

A(IOO)



DEF A(IOO) , B(IOO)

;

SET(A,B)

;

SET (SUMA, SUMS)

;

LP: DO USE (I) SET (I) TEST;

SET(SUMB) USE (SUMB,I,B)

;

END LP;

USE (SUMA, SUMB)

;

This program requires 202 units, and no overlay is possible.

However, if the loop and the first two nodes are split, the code

can be reordered so that the storage requirement can be cut

in half:

DEF A(IOO) , B(IOO) ;

SET (A)

;

SET (SUMA)

;

LP: DO USE (I) SET (I) TEST;

SET (SUMA) USE (SUr4A,I,A) ;

END LP;

USE (SUMA)

;

SET (B)

;

LPl: DO USE (II) SET (II) TEST;

SET (SUMB) USE (SUMB, II, B)

;

END LPl;

USE (SUMB)

;

Now A can share storage with B, as can SUMA with SUMB

and I with II. The data storage savings must be offset, of

course, against the increased instruction storage. Splitting

will be discussed in Chapter 5 of this paper. In Chapter 6,

this example will be used to illustrate the further improve-

ment in storage utilization that is possible if a rank reduction

transformation is performed.

Thus, we have seen several examples of code transformations

that enhance the opportunities for automatic overlay of data.

These transformations and others will be discussed in Chapters

4-6 of this paper.
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3. AUTOMATIC DATA OVERLAY

In Section 2,1, an example of data overlay was presented,

and it was observed that the key to automatic data overlay

is the determination of each program variable's active sets.

In this chapter, we shall consider the relationship of auto-

matic data overlay to other known problems, and explore

various approaches to a heuristic for the problem.

In Section 3.1, the data overlay problem is formulated

as an extended coloring problem, and an exponential algorithm

for finding a minimum solution is presented. Array data

overlay for a straight line program is equivalent to the

Shipbuilding Problem, and scalar data overlay for a general

program is equivalent to the Graph Coloring problem, as well

to a Renaming Problem. All three of these problems are

NP-complete. In the succeeding three sections, these formu-

lations are discussed.

In Section 3.5, the SOCRATES family of automatic data

overlay algorithms is described. In Section 3.6, an approxi-

mation algorithm for automatic data overlay due to A. Hoffman

is presented, together with his proof that the algorithm

always realizes a bounded result. This result is important

because it extends the known bound for scalar coloring, and

because it provides a target for storage-optimizing code

transformation

.

In Section 3.7 further considerations in heuristic design

are discussed.

3.1 An Exact Overlay Algorithm

The definitions of coloring and chromatic number can be

extended so that a coloring corresponds to a storage layout

and the chromatic number corresponds to the minimum size of a

storage layout. For each node IV of an array conflict graph,

a coloring COL maps IV into a pair of integers

COL: IV -> (A,S)
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where S =
I

IV
|

, and the following condition holds:

If (IV,IV1) is in CG then either:

(i) COL(IV) (1) + C0L(IV)(2) < C0L(IV1)(1); or

(ii) COL(IVl) (1)+ COL(IVl) (2)< COL(IV) (1)

Thus, the color of an array is an interval along the positive

integer axis whose size is the array size, and the colors of

conflicting variables do not overlap.

For a particular coloring COL, the value of the coloring,

ROOM, is defined as:

MAX /<< COL(IV) (1) + COL(IV) (2) |
IV IN VARS >>

The extended chromatic number CHR of an array conflict

graph is defined as the minimum value of ROOM over all possible

colorings COL.

To find CHR for a particular conflict gragh, all valid

layouts of unequal size must be explored. In the following

algorithm, all possible orderings of VARS are examined, and,

for each ordering, all possible positions at the left end of

a preceding variable, or at the rightmost current storage

position, are examined for each variable in turn. This generates

all layouts, up to size equality. The algorithm is as follows:

24



ROOM := 1;



IF DIFF <

THEN NUSPC(M) (2) := NUSPC(M)(2) - SEG;
NUSPC(M+1) :- NEXT (NUSPC (M) , -DIFF)
IF NEXT (NUSPC (#NUSPC+1) ) >= ROOM

THEN RETURN;
END IF DIFF;

(FOR K := I. . .J + DEL)
INMEMS(K,V); END FOR K;

EXPLORE (IV+1, NUSPC, NUMEMS)

;

END TRY;

PROC INMEMS(I,X)

;

(NUSPC (I), X) IN NUMEMS;
END INMEMS;

Each enumerated layout (duplicates are possible) is

examined to see whether it is minimum. However, in actuality,

since a running minimum ROOM is maintained in the program,

layouts are not enumerated once their length exceeds the

current value of ROOM, in the interest of efficiency. Also,

once ROOM = MAXCLIQ, the algorithm terminates, since no

shorter layout is possible.

EXPLORE tries to overlay the IVth variable V at the left

end of each of the segments I in the current layout SPC by

verifying that V does not conflict with any of the current

variables that would be overlaid if V were positioned there.

Each variable's boundary defines a new segment. For every valid

positioning of V, TRY is invoked to produce a new copy of

SPC and MEMS, and a recursive invocation of EXPLORE examines

all possible positionings of the (IV + l)st variable.

GENPERM generates successive permutations of the first

N integers, so that EXPLORE can be attempted for all permuta-

tions of variable orderings . Chapter 1 of reference (Ev)

contains several such algorithms. It may be noted that the

execution time of the overlay algorithm can be reduced further

if, in TRY, when the IVth variable is rejected, information

is transmitted to GENPERM to bypass all permutations with the

current prefix.
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3.2 A Shipbuilding Problem

Consider the automatic overlay problem when the program

is, or is approximated by, a straight-line sequence of instruc-

tions. At each statement I, let CRE(I) denote the set of

variables "created" at statement I; that is, those variables

that are active at statement I, but not at any statement

J < I. At each statement I, let REL(I) denote the set of

variables released at statement I; that is, those variables

that are active at statement I, but not at any statement

K > I. Consider object storage to be modeled as an interval

along the integer axis.

A compiler progressing along the program, statement-by-

statement, in execution order, can perform data overlay as

follows: At each statement I, the variables in CRE(I) are

assigned storage locations. Then, each variable in REL(I)

can relinquish its current storage location, so the program

simulates the freeing of the storage. The process is

repeated for each statement. The problem is to assign the

locations in such a fasion that the overall amount of

storage required is minimized. This view of automatic data

overlay is equivalent to the Shipbuilding Problem.*

In the Shipbuilding Problem, ships arrive and depart

at specified times for servicing at a pier. Each ship's size

is specified, and the problem is to minimize the maximum amount

of pier space needed at any point in time. Thus, the ships

correspond to program variables, the pier to data storage,

the set of ships arriving at time I to CRE(I), the set of

ships leaving at time I to REL(I), and the size of a ship

to |v| . This problem has been shown to be NP-complete in work

by A. Hoffman,** E. Johnson,** L. Stockmeyer , ** and

* See reference (Go79) , Chapter 9.
** IBM Research, Yorktown Heights, Unpublished results communi-

cated in private conversation.
***Courant Institute of Mathematical Sciences, New York Univ.
t See reference (Go79), Chapter 9.
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CHR is equal to the minimum over all directed acyclic

orientations of CG of the length of the longest path.

A backtracking heuristic that exploits this theorem has

been developed.

If SOCRATES produces evidence that the active patterns

of program variables are close to single intervals, then the

design of a Shipbuilding approximation algorithm should be

addressed. We shall discuss this further in Section 3.6.

3.3 A Coloring Problem and Yershov's Heuristic

Yershov (Y71) has approached the problem of overlay deter-

mination as an extended graph coloring problem, using the

conflict graph, as defined in Section 2.4.

Yershov observes that if all variables had the same size,

the problem of overlay determination would be exactly equiva-

lent to a scalar graph-coloring problem, and the effort would

reduce to finding an effective coloring heuristic. Since

variables of differing sizes are involved, a secondary heuristic

which performs something of a packing function, must be

integrated with the coloring heuristic.

In order to justify a combined approach, Yershov postulates

a "Principle of Uniformity" that asserts that most programs

have a uniform set of data variables — hundreds of scalars, say,

but less than 100 arrays, and arrays that occur in small groups

of approximately equal size. His approach is then to overlay

variables of the same weight as much as possible, using the

coloring heuristic, and then "pack" bigger arrays with smaller

ones. The assumption is that it doesn't pay to cross array

boundaries in the overlay process.

His approach has a number of shortcomings. Yershov's

particular coloring heuristic can be arbitrarily bad for many

conflict graphs. In fact, Garey and Johnson (GaJV6) have

shown that any coloring heuristic can produce arbitrarily poor

results on some graphs, so unless program conflict graphs have

special properties that make them conducive to a particular

heuristic, a coloring approach is not fruitful.
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Another drawback is that, if the Principle of Uniformity

does not apply, storage utilization can be quite poor. Overlay

can take place only at the boundary of an overlaying variable,

wasting available storage. For example, the following overlay

structure could not be produced by Yershov's heuristic:

A(20)
j



The view of renaming in this paper is at the opposite

pole to Logrippo's view. Where Logrippo identifies the

name of a variable and its storage, the present approach

separates the storage from the variable. In Chapter 4, the

canonical renaming transformation will introduce new vari-

ables instead of merging nonconf licting ones.

3.5 Heuristics for Automatic Data Overlay

John Cocke* has proposed an approach to conflict graph

coloring, based on a backtracking algorithm devised by Ashok

Chandra* and adapted by Gregory Chaitin* for register allo-

cation. The heuristic is so good for scalar conflict graphs

that backtracking to recolor nodes is almost never needed,

and MAXCLIQ colors are almost always sufficient. This suggests

that the chromatic number of a scalar conflict graph is

usually MAXCLIQ, and that conflict graphs may have other

properties that make them amenable to this heuristic.

Using MAXCLIQ as a starting value for NCOLS , the number

of available colors, the original algorithm used a figure of

merit to select nodes to be colored that varied directly as

the number of uncolored neighbors and indirectly as the

number of available colors. If, for any node, the number

of available colors ever reached zero, NCOLS was increased

by one

.

This approach to coloring can be generalized in a number

of ways for the extended coloring problem. In SOCRATES, the

following method has been used, producing a family of approxi-

mation algorithms:

Let ROOM, the overlay storage requirement determined by

the heuristic, be initialized to | VARS | . A storage segment

is a pair (A,S), where A is the address of the leftmost

location of the segment and S is the segment size. The over-

lay algorithm proceeds by selecting for each variable X in

turn, a storage segment (A,S) out of AVSTO(X) in a sequence

determined by SUMAV(X) and DGREE(X), where AVSTO(X), SUMAV(X)

and DGREE(X), are defined as follows:

* IBM Research, Yorktown Heights, unpublished work communicated
privately. 30



AVSTO(X) := <<(A,S)
|
A=1...R00M AND S> = |x|

AND FORALL(X,Y) IN CG
|

(LOC(Y) +
I

Y|<= A) OR

(LOC(Y) >= A+S) AND

NOT EXISTS (A',S') IN AVSTO(X)

I

(A* <= A AND A'+ S' >= A+S) >>;

SUMAV(X) :=(+/<< S
I

(A,S) IN AVSTO(X)>>) -
| X |

;

DGREE(X) :=+/<< |Y|
|

(X,Y) IN CG AND LOC(Y) = >>;

The algorithm assigns X to the leftmost portion of the

leftmost element of AVSTO(X), and LOC(X) is set to A.

Observe the following:

(a) The smaller SUMAV(X) is, the less freedom of choice

there is for a location for X, and, therefore, the more

urgent it is to assign X next.

(b) The larger DGREE(X) is, the more the total sum of

conflicts involving X there are, and, hence, the more

likely it is that by assigning X next, a greater quantity

of overlay opportunities will materialize for the remain-

ing unassigned variables.

The overlay algorithm begins by initializing AVSTO(IV)

to (1,|VARS|) for all variables IV; that is, a one-element

available storage list AVSTO(IV) is created for each IV.

SUMAV(IV) and DGREE(IV) are initialized for each variable,

in accordance with the above formulas

.

The main loop is repeated until all variables have been

assigned. First, SUMAV(IV) and DGREE(IV) are examined for

each variable, seeking IMF, the index of a variable chosen

according to one of the following possible sequencing rules:

Ascending Available Storage

Let IMF be the index of the variable with the smallest

SUI4AV(IV); if there is more than one variable with

SUMAVdV) equal to the smallest SUMAV (IV) , let IMF be

the index of the one with the largest DGREE(IV).
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Descending Degree

Let IMF be the index of the variable with the largest

DGREE(IV); if there is more than one variable with

DGREE(IV) equal to the largest DGREE(IV), let IMF be

the index of the one with the smallest SUMAV(IV).

Descending Figure of Merit

Let IMF be the index of the variable with the largest

DGREE(IV) / SUMAV(IV)

.

Descending Weighted Figure of Merit

Let IMF be the index of the variable with the largest

DGREE(IV) **W1 / SUMAV(IV) **W2, where Wl and W2 are

some given weights.

At the end of the search, variable IMF has been selected

for assignment. This is performed on a first-fit basis; that

is, the variable is assigned storage from the leftmost

portion of its leftmost AVSTO list element. The assigned AVSTO

element is deleted from the AVSTO list of all conflicting

variables. (These lists are maintained in such a way that

the segment is ignored if its size drops below the size of

the variable during this process.) IMF's available storage

list is freed, and NN, the number of variables remaining to

be assigned is decremented by 1.

In Section 8.1, we report on tests that were performed

using the SOCRATES overlay procedures to evaluate some of

these heuristics (Ascending Available Storage, Descending

Degree and Descending Figure of Merit) , as well as the

algorithm described in the next section.

3.6 A Bounded Approximation Algorithm

In this section, we consider the question of an upper

bound for the extended chromatic number. We present an algo-

rithm and proof, due to A. Hoffman, that demonstrates such a

bound

.

* Unpublished result communicated during discussions.
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In the scalar case. Brooks (Hara) has demonstrated an

upper bound of 1 + MAXD for the chromatic number, where MAXD

is the maximum of DEGR(V), the degree of a node V, over all

nodes of the graph. This result was sharpened by Szekeres

and Wilf (SzVJi68), by replacing MAXD with: the maximum

over all subgraphs G' of the graph of:

MIN / << DEGR(V)
I

V IN G' >>

Their proof does not generalize for the extended coloring

problem. However, an alternate proof, due to A. Hoffman, is

applicable in both cases. Define the NVARS by NVARS symmetric

array TERM as follows:

IF I = J

THEN TERri(I,J) :=
|
V ( I )

|
;

ELSE IF (I, J) IN CG(2)

THEN TER-M(I,J) := |V(I)| + |V(J)| - 1

ELSE TERM (I, J) := 0;

For each row I, define:

ROWSUM(I) := (+ / <<TERM(I,J)
I
J = l. . .NVARS>>)

Theorem. An upper bound for the extended chromatic

number CHR is given by the maximum over all principal sub-

matrices T of TERM of the minimum sum of any row in T; i.e.,

CRITRSUM := (t4AX /

<<MIN /

<<ROWSUM(I)
I

I IN T >>

I

ISSUBMAT(T,TERM) >>

Proof: Consider the following algorithm:

Step 1. Build a list of variables to be assigned as

follows; with K initially equal to NVARS

-

(a) Find the row I in TERM with the smallest rowsum.

(b) Insert V(I) in the Kth slot of the assignment list,

and decrement K by 1

.
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(c) Delete row I and column I from TERM.

(d) Repeat above steps NVARS times.

Step 2. Assign storage in assignment list order,

choosing any available (nonconf licting) storage

segment for each variable.

We shall show by induction on NVARS that the storage

required is bounded by CRITRSUM. For NVARS = 1, the claim

is true. Assume it is true for NVARS < k.

The inductive assumption implies that all the variables

assigned storage in Step 2, except the last, fit into a

storage segment whose size is less than or equal to CRITRSUM.

Suppose that there is no room for V(I), the kth variable in

the assignment list. Let V ( J (1 ) ) , . . . , V ( J (P) ) denote the

variables conflicting with V(I), in increasing assigned

storage order. Suppose that there are Q "gaps" in the

storage, where S(l) denotes the size of the 1-th gap.

If V(I) does not fit, we must have the following inequalities:

|V(I) I
>= S(l) +1

|V(I)
I

>= S(2) + 1

That is,

|V(I)
1

>= S(Q) +1

Q * (|V(I)| - 1) + |V(J(1))| + ••• + |V(J(P))| >=

S(l) + ••• + S(Q) + |V(J(1))| + ••• + |v(J(P))i

Therefore, since Q <= P+1

,

ROWSUM(I) - 1 >= CRITRSUM

This is a contradiction of the definition of CRITRSUM.

This result is significant for the extended coloring problem,

because now heuristics can be aimed at transforming a program

so as to reduce MAXCLIQ and/or CRITRSUM.

The above algorithm, with a first-fit assignment strategy,

has been added to the SOCRATES overlay algorithms, and experi-

mental results on its effectiveness are reported in Section 8.1.
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3.7 Design Implications

The result of Garey and Johnson (GaJ76) ensures that

the algorithms in the preceding sections will produce sub-

optimum results on some graphs. One purpose of the SOCRATES

study is to see whether array conflict graphs have properties

that make them amenable to one of these heuristics. The

hypothesis is that programs do not generate pathological

conflict graphs very often.

SOCRATES is also investigating the active interval

distributions so that evidence can be compiled on the probable

efficacy of a heuristic that performs particularly well on

shipbuilding graphs. It should be observed that shipbuilding

graphs have a distinctive structure: they consist of a

succession of mutually overlapping cliques ACT ( I ) , with the

property that, if some variable V is not in the intersection

of ACT(I - 1) and ACT ( I ) , then it is not in any ACT(J), J ^ I.

We conjecture that this structure can be exploited to produce

an effective approximation algorithm for the Shipbuilding

problem. (It is not known whether the Garey-Johnson result

holds for the Shipbuilding problem.)

In the following chapters, storage-optimizing transforma-

tions will be described. These can be applied to reduce

MAXCLIQ and/or CRITRSUM. The question of whether these

transformations actually improve the results of some overlay

heuristic is problematical, since there is no guarantee that

reducing the upper bound and/or the lower bound will reduce

the chromatic number, let alone the overlay algorithm result.

Pragmatically speaking, this lack of a guarantee is not

critical for a storage-optimizing compiler, since the results

of the overlay heuristic beofre and after the transformation

can be compared by the compiler. In many instances, the

conflicts between a troublesome pair of variables can be

eliminated by another transformation, so that the overlay

results can be improved heuristically

.

35



4 , THE RENAMING TRANSFORMATIONS

Renaming transformations modify the program by introduc-

ing new variables to assume some of the conflicts of old

variables, so that cliques in the conflict graph are broken.

These transformations are applicable when MAXLIVE < MAXCLIQ.

In this chapter, it will be demonstrated that MAXCLIQ can

always be reduced to MAXLIVE by a compound renaming transfor-

mation. Renaming transformations can also be used to break up

cliques that contribute to CRITRSUM.

This result is significant for register optimization as

well as storage optimization. Register optimization corres-

ponds to a scalar conflict graph coloring problem. The

canonical renaming transformation will reduce a scalar conflict

graph's maximum clique to the scalar MAXLIVE, which is the

maximum number of registers needed at any particular node of

the program; the algorithm will determine exactly where in the

program the "move-register" operations needed to effect this

reduction should be inserted.

In the preceding section, we pointed out that it is an

open question whether reducing MAXCLIQ will guarantee overlay

result improvement, although, if a counterexample should be

demonstrated in the future, a poor overlay result can often

be improved heuristically by storage-optimizing code transfor-

mation. Examples of programs where renaming improves storage

utilization are plentiful, and neither imagination nor

empirical evidence has yet produced a counterexample. Thus,

it appears that renaming transformations will be an important

part of a storage-optimizing compiler.

In Section 2.3, examples of unsharing and repositioning

were given. In Section 4.1, these transformations are intro-

duced, and in Section 4.2 they are specified in detail and

their implementation in SOCRATES is described. The canonical

renaming transformation is specified in Section 4.3, and

examples of its application are presented in Section 4.4.
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4.1 Background

4.1.1 Unsharing

Suppose X is a variable in some clique C, |c| = MAXCLIQ,

and suppose X is active at nodes Jl,...,Jk of ND. Consider

the nodes LNACT(X) = << Jl , . . . , Jk>> . Unsharing effects a

partitioning of these nodes into one or more disjoint subsets

under the equivalence relation:

Jm .eq. Jn iff Jm IN SUCCS (Jn) OR Jn IN SUCCS (Jm)

Each equivalence class identifies another "name" of X.

Unsharing consists of discovering these "p names of X", and

renaming X accordingly. In effect, the programmer has used

one variable for p purposes, in a possibly misguided attempt

to save storage. By applying the unsharing transformation,

more overlay possibilities are introduced so that the overlay

heuristic can yield better results.

4.1.2 Repositioning

Repositioning is applicable when the aggregation of

different intervariable conflicts at several nodes has

produced a greater intervariable conflict. For example,

if X conflicts with Y at one node, and with Z at another,

and if Y and Z conflict at a third node, then X, Y and Z

are mutually conflicting variables, although the entire

conflict is not active at a single node. As another

example, if the following active sets are present:

<<A,B,C,F>>, <<B,D,E,G>>, <<A, D,F> > , < <A, C , E ,F>

>

the following clique will be formed:

<<A,B,C,D,E,F>>

In both examples, a large clique is formed from smaller

ones, and, as a result, MAXCLIQ may exceed MAXLIVE

.

Suppose that (X,Y) are a pair of variables that both

belong to some clique C in CS, where |c| = MAXCLIQ, and

MAXCLIQ > I4AXLIVE. Assume, without loss of generality,

that |x| <= |y|. Define the following sets:
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BOTH

NBOTH

INEDGS

OUEDGS

= LNACT(X) * LNACT(Y);

= LNACT(X) - LNACT(Y);

= <<(M,N) IN FG(P)
I

M IN NBOTH AND N IN BOTH>>;

= <<(M,N) IN FG(P) |M in BOTH AND N IN NBOTH>>;

If NBOTH is nonempty, the repositioning transformation

applies. A new variable, X_Y, is introduced, with | X_Y |
= |X|.

The program is modified as follows:

Step 1. FORALL N IN BOTH(X,Y):

Replace every reference to X by a reference to X_Y

.

Step 2. FORALL(M,N) IN INEDGS(X,Y):

Insert a node between M and N consisting of the

statement: X_Y := X;

Step 3: FORALL (M,N) IN OUEDGS (X,Y):

Insert a node between M and N consisting of the

statement: X := X Y;

For example, consider this program segment from Sec-

tion 2.3.2:

DEF A(20) , B(20) , C(30) ;

SET(A,B)

;

USE(A,B) GOTO (3,4),

•

SET(C) USE (A) GOTO (5);

SET(C) USE(B) ;

USE (C) ;

For this program, the conflict graph is a triangle with

vertices A, B and C, and with MAXCLIQ = 70, and MAXLIVE = 50.

If repositioning is applied for the pair (B,C), the following

sets are built:

BOTH



DEF A(20), B(20), C(30), B_C(20);

SET(A,B)

;

USE(A,B) GOTO(3,4a)

;

SET(C) USE (A) GOTO (5)

;

SET(B_C) USE(B); /* B_C

SET(C) USE(B_C) ;

USE(C) ;

Now, the conflict graph consists of the edges (A,B) , (A,C)

,

(B_C,B) , and (B_C,C). These are also the cliques, and

MAXCLIQ has been reduced to MAXLIVE . Observe that B_C can

be overlaid on A and B can be overlaid on C.

4,2 SOCRATES Renaming Implementations

As will be demonstrated, a single transformation can

effect both unsharing and repositioning. However, in the

initial design stages of SOCRATES this was undiscovered, so

separate procedures were implemented. Each procedure '

receives as argument VSETMSK, a set of variables to be renamed

that is usually, but not necessarily, the maximum clique set.

Thus, SOCRATES can be used to deliver information on the

possible utility of eliminating noncritical edges from the

conflict graph (i.e., edges not in a maximum clique set)

.

SOCRATES may also yield data on whether reducing MAXCLIQ ever

yields worse overlay results.

4.2.1 Unsharing

As already observed, the problem of finding the "right

number of names" for a variable V is an equivalence class

computation suitable for a "UNION-FIND" algorithm. The

SOCRATES unsharing implementation is a straightforward PL/1

transcription of the UNION-FIND algorithm presented in (AhHU74)

Chapter 4 . 7, page 132. This algorithm executes o (n) UNION and

FIND instructions in almost linear time.
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For every variable V in VSETMSK, the unsharing procedure

computes the naming equivalence classes of V as follows:

Each node at which V is active is initialized to a unique name.

Tlion, iterating in inverse depth-first order over the nodes I

at which V is active, the following steps are executed:

(1) Node I's current name, NAMEI, is found via FIND;

(2) Each of the successors J of I are examined, and, if V is

active at J, NAMU.T, the current name at J, is found via FIND,

and UNION is invoked to merge the equivalence classes of

NAMrn and NAMi:,J . At the end of the inverse depth-first itera-

tion, the number of names is ascertained in the REPORT procedure,

and, if the number of names is greater than 1, each refer-

ence node's name is reported.

4.2.2 Repositioning

Each distinct pair (IX, lY) of variables in VSETMSK is

examined. BOTH(IX,IY) and NBOTH(IX,IY) are calculated in

accordance with the formulas of Section 4.1.2, and, if they

are not empty, the pair (I7-,IZ1) is examined, where, if flX |

;= |IY

then IZ = IX and IZl = lY, otherwise IZ= lY and IZl = IX.

INIiDGSdZ, TZl) and OUEDGS ( IZ , IZl) are calculated, as defined

in 4.1. GOODPRT reports the success of the repositioning

transformation for variables IZ and IZl, printing out the

substitutions for the BOTH set, and the insertions for INEDGS

and OUEDGS.

4.3 A Canonical Renaming Transformation

In this section wo shall prove that, if riAXCLIQ > MAXLIVE,

then repeated applications of the repositioning transformation,

defined in the preceding section, will eventually reduce MAXCLIQ.

Suppose C is a clique such that \c\ = MAXCLIQ > MAXLIVE.

Define the following sots:

ANYACTND = + / ^ - LNACT(X) * LNACT(Y)
|

X IN C AND Y IN C AND X NOT = Y > >

;

ALLACT = <<X IN C|(FORALL I IN ANYACTND) X IN ACT ( I ) > >

;

SOMACT = C - ALLACT;
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Note that 1 - IfSOMACT •'= j|C;

Suppose that SO.MACT = -"- Y ( 1 ),..., Y (k )-- , whf.re

|Y(1)| "= |Y(i)|, i- ^- :^.,...,k. VI'- define the following nota-

tion:

Z ( J J -7(1)
X(i-H) == X(i)_Y{i + l)

That is, X(i+1) is the renamed variable obtained at the

ith application of repositioning. We make the follov/ing

modification in the definition of reposition i nq for the

purpose of this renaming transformation:

At the ith application of repositioning, if a node I

of. the form:

/A I) :=X(i-l)
is in BOTH(X(i), Y(i + 1)), then, instead of the

substitution of X(i + 1) for X(i) which ordinarily

would have been performed, insert, instead, a node of

the form:

X(i + 1) := X(i)

immediately after node I. Similarly, if a node I of

the form

X(i - 1) := X(i)

is in BOTH(X(i) ,Y(i-t-l) ) , then, instead of the

substitution of X(i + 1) for X(i) v/hich ordinarily v/ould

have been performed, insert, instead, a node of the form:

X(i) := X(i + 1)

immediately before node I. Then the following inductive

claims hold at the ith application of repositioning:

Claim 1. The semantics of the program is unaffected

(up to interrupts)

.

Clearly, the movement of data between old and nev/ variables

preserves the values necessary to retain the seraantics of

the prog ram

-

Claim 2. lAA'ALlVE is not increased.

Consider each step in turn:
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step 1. FORALL N IN BOTH (X (i ), Y (i+1 )), | ACT (N) | is

unaffected by the substitution.

Step 2. FORALL(M,N) IN INEDGS (X (i ) , Y (i + l ) ) , let I

denote the inserted node:

ACT(I) - ACT(ri) * ACT(N) + <<X(i +l)>>

|ACT(I)| =|ACT(M) * ACT(N)| + |X(i+l)|

|ACT(I)| <- (MAXLIVE - |Y(i+l)|) + |x(l)|

I

ACT (I)
I

<= MAXLIVE

Step 3. FORALL (M,N) IN OUEDGS (X ( i ) , Y (i + l ) ) , let I

denote the inserted node:

Proof similar to step 2.

Claim 3. No conflict graph contains a clique that

includes more than two renamed variables X(j-l) and X(j).

At each original program node, only one X(j) can be active,

At the inserted nodes, the renaming transformation has

been defined in such a way that only a pair of renamed

variables (X(j-l), X(j)) are active at any node.

Claim 4. After the ith repositioning, the only possible

cliques of size MAXCLIQ are maximum-sized cliques other

than C in the original graph or a clique containing X(i+1)

Let CG(i) denote the conflict graph after the ith appli-

cation of repositioning. In the transition from CG(i-l)

to CG(i), cliques without X(i) are unaffected, and cliques

in CG(i-l) with X(i) but without Y(i+1) are unaffected in

size. Thus, the only possible cliques of size MAXCLIQ

in CG(i) correspond either to maximum-sized cliques other

than C in the original graph or to cliques in CG(i-l)

containing both X(i) and Y(i+1). The latter correspond

to cliques in CG(i) containing X(i+1).

We now state the following lemma.
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Lemma. Suppose again that C is the only clique in the

program of size MAXCLIQ, MAXCLIQ > MAXLTVE, and suppose

that SOMACT - <<Y(1) ,.. .,Y(k) >>, where |Y(1)1 <= |Y(i)|,

i = 2,..,,k. Suppose that the renaming transformation is

applied as above, using at most (k-2) repositioning applica-

tions. Then, the size of the maximum clique in CG(k-2) is

strictly less than MAXCLIQ.

Proof: Suppose this were not so. Then, by Claim 4 above,

there would be a clique in CG(k-2) containing X(k-l) and Y(k).

But this would mean that, in the original program, there was

some node at which Y (1) , . . . , Y (k) were all active, contradict-

ing the definition of SOMACT

.

We thus have the following theorem.

Theorem. If MAXCLIQ > MAXLIVE , then MAXCLIQ can be reduced

to MAXLIVE by repeated applications of the repositioning trans-

formation .

Proof: If C is the only clique whose size exceeds MAXCLIQ,

then Lemma 2 can be applied repeatedly as long as MAXCLIQ >

MAXLIVE; eventually MAXCLIQ must be reduced to MAXLIVE. If

there is more than one such clique, then the process can be

applied to each clique in turn.

Note that this transformation can also be applied to

break up other cliques in the conflict graph. The transfor-

mation is applicable to any clique C as long as #SOMACT(C) > 1

In particular, CRITRSUM can be reduced by this technique.
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4.4 Renaming Transformation Examples

In order to illustrate the renaming algorithm, let us

consider a few more examples

.

Code Active Sets

DEF A(25) ,B(20) ,C(35) ,D(40)

;

1: SET (A,D)

;

<<A,D>>

2: SET(B) USE (A) GOTO ( 3 , 5 , 7 )

;

<<A,B,D>>

3: SET(C) USE(A,B) GOTO ( 4 , 7

)

<<A,B,C>>

4: SET(D) USE(A,C) G0T0(7); <<A,C,D>>

5: SET(D) USE(A,B); <<A,B,D>>

6: SET(C) USE(A,D); <<A,C,D>>

7: USE(D);

The clique set is:

<< <<A, B, C, D>> >>

SOMACT = <<B,C,D>>

Since MAXCLIQ > MAXLIVE , we apply the renaming transforma-

tion for (B,C)

:

BOTH = <<3>>

NBOTH = <<2,5>>

INEDGS = << (2,3) >>

OUEDGS = << >>

Code Active Sets

DEF A(25) ,B(20) ,B_C(20) ,C(35),D(40);

SET(A,D) ; <<A,D>>

SET(B) USE(A) GOTO(3a,5,7)

;

<<A,B,D>>

B_C := B; <<B,B_C,A>>

SET(C) USE(A,B_C) GOTO(4,7); <<A,B_C,C>>

SET(D) USE(A,C;

SET(D) USE(A,B)

SET(C) USE(A,D)

USE(A,D)

;

<<A,C,D>:

<<A,B,D>:

<<A,D>>

The clique set is:

<< <<A,B,D>>, <<A,C,D>>, <<A,B,B C>>, <<A,B C,C>>



Now, MAXCLIQ == riAXLIVE, and no further transformations

are necessary.

Now consider the following program:

Code Active Sets

DEF A(25),B(30),C(35),D(20),E(10);

SET(A,B,C) GOTO(2,3,4); <<A,B,C>>

SET(D) USE(A,B) G0T0(5); <<A,B,D>>

SET(D) USE(A,C) G0T0(5); <<A,C,D>>

SET{D) USE(B,C); <<B,C,D>>

SET(E) USE(D); <<E,D>>

Clique set;

<< <<A,B,C,D>>, <<D,E>> >>

SOMACT = <<D,A,B,C>>

BOTH(D,A) = <<2,3>>

NBOTH = <<4,5>>

INEDGS = << >>

OUEDGS = <<(2,5), (3,5)>>

Transformed Code Active Sets

DEF A(25) ,B(30) ,C(35) ,D(20) ,D A ( 20 ) ; E ( 10 )

;

1: SET(A,B,C) GOTO ( 2 , 3

,



Transformed Code Active Sets

DEF A(25) ,B(30) ,C(35) ,D(20)

,

D_A(20), D_A_B(20), E(10);

SET(A,B,C) GOTO(2,3,4)

;

<<A,B,C>>

SET(D_A_B) USE(A,B); <<A, B , D_A_B>>
D_A = D_A_B; < < D_A , D_A_B >

>

D = D_A GOTO (5); <<D,D_A>>
SET(D_A) USE{A,C); <<A,C,D_A>>
D = D_A GOTO(i); <<D,D_A>>

SET(D) USE(B,C); <<B,C,D>>

SET(E) USE(D); <<E,D>>

Clique set:

<< <<A,&,C>>, <<D,E>>, <<D,D A>>,

<<A,B,D_A_B>>, <<D_A, D_A_B>>,

<<B,C,D>>, <<A,C,D A>>
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5, BASIC CODE-MODIFYING TRANSFORMATIONS

Attention now turns to transformations that split, move

or replicate the nodes of a program graph for the purpose of

eliminating all active conflicts between a pair of variables,

thus permitting the variables to share storage. The relation-

ship of the code modification problem to the NP-complete

register-minimizing code ordering problem is discussed. An

overview of the approach taken in SOCRATES is described.

The safety and profitability constraints for hoisting, sink-

ing and copying are given, together with a description of

the SOCRATES' implementation.

5.1 Background

Suppose we have a linear code segment to which some

subset of variables is local. Let CRE(I) and REL(I) be the

set of variables created and released at node I, as defined

in Section 3.2. Let TEMP (I), the intersection of CRE(I) and

REL(I), denote node I's temporary variables. Let SUEX(I)

denote the amount of storage in use on exit from node I, and

MSIN(I) denote the minimum amount of storage needed during

node I. Then the following formulas hold for each node I in

the linear code segment:

(i) SUEX(O) = SO,

SUEX(I) = SUEXd - 1) + |CRE(I)| - |REL(I)|

(ii) MSIN(I) = MAX (SUEXd - 1), SUEX(I)) +
|

TEMP ( I )
|

The code reordering problem is that of finding a "legal

reordering" of the nodes that minimizes MAX(MSIN(I)) without

changing the semantics of any assignments. If this problem

is restricted to scalar or equal-sized variables, it is equiv^

lent to the problem of minimizing the number of registers

needed to compute a sequence of scalar assignment statements

with possible common subexpressions, a problem which Sethi
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has shown to be NP-complete (Se75)

.

We conjecture that the register optimization problem,

extended to permit redundant computations as well as reordered

ones, is still NP-complete. This question, however, is

outside the scope of the current research.

Aho, Johnson & Ullman (AhJU76) , have found the "dag"

useful to define the notion of a "legal order". For our

purposes, let the nodes of a dag dg correspond to the nodes

of the program segment. An edge (I, J) exists if and only

if node I uses a value defined in node J or I is an input

(output) statement that must precede the input (output)

statement J. A legal ordering of the nodes corresponds to

a topological sort of the nodes of DG . Aho, Johnson and Ullman

have studied heuristics for the scalar reordering problem.

5.2 Goal-Directed Code Modification

The exponential nature of the code modification problem

can be reduced to manageable proportions if a particular pair

of variables is chosen for conflict elimination. The pair

may be selected in one of several ways:

(1) If the conflict graph's MAXCLIQ, the lower bound

for the overlaid storage requirement, is too big, then

code modification can be attempted for each pair of

variables in the maximum clique set.

(2) If the overlay heuristic has yielded a suboptimal

storage utilization, then the overlay results can be

examined to pinpoint a pair of variables whose overlay

will produce an immediate improvement.

(3) The varfible whose rowsum is CRITRSUM (see Section 3.6)

can be examined, together with all its adjacent nodes,

for means of reducing the upper bound CRITRSUM.

Three types of active conflicts can occur between a given

pair of variables at any particular node:

(1) both variables live;

(2) one variable live, subreference of other used, defined

or modified;

(3) subreference of each used, defined or modified.
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A type (1) conflict is eliminated by the removal of all

other conflicts. A type (3) conflict is eliminated by split-

ting the node into tv/o nodes v/ith a type (2) conflict. As

the examples in Section 2 illustrated, type (2) conflicts

can often be eliminated by code motion or code replication.

Since arrays are usually assigned values in loops,

SOCRATES investigates the move or copy of loops as v/ell as

statements. Loops are defined as a basic construct in the

Storage Optimization Language (see Section 7.3). In v;hat

follows, the term unit will be used to denote a loop or

single statement.

The examples in Section 2 illustrated code modification

of straight-line segments. Let us consider some of the

problems that arise when more complex control flow is taken

into account.

5.2.1 Hoisting and Sinking

When forked control structures are addressed, code

transformations like hoisting and sinking (AlC72a) become

appropriate. In the follov/ing example, the relative optimality

of HOIST or SINK depends on the relative sizes of B, C and G:

SINK:

SET(A,B,C) ;

USE(TEST) GOTO (THEN, ELSE )

;

THEN:

SET(G) USE(A);

SET(D) USE(A,C); /* this is the moving node */

SEG(H) USE(D,G) GOTO (END);

ELSE:

SET(G) USE(B);

SET(D) USE(A,C); /* this is the moving node */

SET(H) USE(D,G);

END: USE(G,H)

;

49



HOISE:

SET(A,B,C)

;

SET(D) USE(A,C); /* this is the moving node */

USE(TEST) GOTO (THEN, ELSE )

;

THEN:

SET(G) USE(A);

SET(H) USE(D,G) GOTO (END) ;

ELSE:

SET(G) USE (B)

;

SET(H) USE(D,G) ;

END: USE(G,H)

;

If we assume that the last uses of B and X are as shown

in the code segments, and if we ignore for the moment the

cost of instruction space, then, with the following declara-

tion, SINK is better:

DEF A(IOO), B(IOO), C(20), D(40), G(10), H(10);

HOIST:

A(IOO) B(IOO)

H(10) ////////////////////// G( 10 )//////////

C(20) D(40;

Total: 260

A(IOO)

H(10) ////////

(100) C(20; G(10)

D(40) ///////////////////////

Total: 230

With the following declaration, HOIST is better:

DEFA(IOO), B(20), C(IOO), D(40), G(50), H(10);

HOIST:

A(IOO)



SINK:

A(ioo; C(IOO) D(40) G(50) '

///////////// H (10) /////////! B(20) ///////////

Total: 290

With the following declaration, both are equally good:

DEF A(20), B(20), C(20), D(IOO), G(IOO), H(IOO);

HOIST or SINK:

D(IOO)



DEF A(100),B(50),C(100),D(200),E(100),G(50),H(80),K(100);

SET (A,B,C)

;

SET(D) USE(A,B);

SET(K) USE(A,C);

6: SET(H) USE(C,D,K);

3: SET(E) USE(A,D);

SET(G) USE(B,K,E);

USE(G,H) ;

For this transformation to take place, node 3 must be

moved down one node, and node 6 must then be moved up two

nodes. It should be noted in this regard that there may be

instances of a reordering that cannot be achieved by compound-

ing of move transformations because intermediate transforma-

tions do not meet the profitability criterion.

Groups of statements can be moved or copied by using

dominance trees and strongly connected regions to define the

grouping. This was not included in the initial SOCRATES

implementation, but is a candidate for future effort.

5.2.3 Multisource Transformations

Another difficulty that is side-stepped in SOCRATES, but

should be addressed in future work, concerns the movement or

replication of several units at a single target unit. The

question of how the units should be inserted to achieve a

semantically correct transformation is pertinent.

We observe that there are several special cases whose

treatment is straightforward, and postulate that the problem

may have a general solution. One such instance occurs v/hen

the target unit is a successor of all the source units, and

all units are in the same strongly connected region (or not

in a strongly connected region at all) ; then bit variables

can be set in the code at the source units, one per source

unit, to record the progress of the flow of control during

execution, and tests at the target units can preface the

inserted unit so that the appropriate (moved or copied) unit

52



/* BIT = 1 */

is executed. This is illustrated by the following example

SET(A,B,C,D,E,F)

;

USE(A,B,C) G0T0(L1,L2);

LI: SET(A,B) USE (C,D)

;

SET(G) USE(E,D) G0T0(L3);

L2: SET(B,A) USE (C,F)

;

SET(G) USE (E,F)

;

L3: USE(A,B,C);

USE(G) SET(H);

USE (H)

;

Transformed code might be the following:

SET(A,B,C,D,E,F)

;

USE(A,B,C) G0T0(L1,L2);

LI: SET(A,B) USE(C,D)

SET(BIT) G0T0(L3)

L2: SET(B,A) USE(C,F)

SET (BIT)

;

/* BIT = */

L3: USE(A,B,C ,BIT) GOTO (LBITl , LeiT2 ) ;

LBITl: SET(G) USE(E,D) G0T0(LBIT3);

LBIT2: SET(G) USE(E,F);

LBIT3: USE(G) SET (H) ;

USE(H) ;

This idea can be generalized for other control configura-

tions, using arrays or lists of bits. Future study should

investigate the extent of such generalizations.

Multisource hoists are valid only if defined values

of each moved unit are either disjoint or redundant. SOCRATES

permits multisource sinks or copies to a unit, but when a

multisource hoist to a unit is attempted, the user is advised

to split, reorder and regroup his nodes. Extending SOCRATES

to recognize redundant expressions is left for future effort

(see Section 6.3).
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5.2.3 Cascading Transformations

Redundant expression insertion can involve a cascade

of copies if the values used in the source node are dead at

the target node with a different set of reaching computa-

tions. This situation introduces complexities into the

redundant expression insertion process. For the purpose

of simplicity, such cascading was not addressed in SOCRATES,

and is a primary candidate for follow-on activity.

5.3 Safety and Profitability Constraints

In this section, we describe the redundancy equations

that SOCRATES solves in order to ensure the safety of a

transformation, and the tests that SOCRATES performs in order

to determine the profitability of the transformation. Since

hoisting, sinking and copying are so similar in these respects,

they are described together. We are interested in sufficient

conditions, and leave for future study the discovery of

necessary and sufficient conditions.

We will be using the following definitions:

Define GEN to be the set of "rdef pairs" (R,N),

where N is a program node, and R is in MODS(N)

.

Define PAVIN (alternatively, PAVOUT) to be the set

of triples (R,N,M), where (R,N) is an element of GEN,

and the reference R calculated at node N is possibly

available on entry to (alternatively, on exit from)

node M. In Chapter 7, a method for calculating these

sets will be presented.

Define DRILL to be the set of triples (R,N,M) , where

(R,N) is an element of GEN, and the reference R

calculated at node N is definitely killed at node M.

Define CJUSES(I) (or CJMODS(I)) to be, respectively,

the set of references, or conjoints of references, used

(or modified) at node I.
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To describe concisely the conditions governing hoisting,

sinking and copying, we introduce four predicates —
lUSEVALSEQd, J) , OUSEVALSEQ ( I , J) , IMODVALSEQ ( I , J) and

OMODVALSEQ (I, J) . The I-predicates describe conditions

prevailing on entrance to unit I, the 0-predicates describe

conditions prevailing on exit from unit I . The USE-predicates

relate to variables used in unit J, the MOD-predicates relate

to variables modified or defined in unit J. Specifically,

the definitions are as follows:

lUSEVALSEQ (I , J) is true if, for every reference R

in CJUSES(J), PAVIN(J) <<R>> = PAVIN (K) <<R>>;

OUSEVALSEQ (I, J) is true if, for every reference R

in CJUSES(J), PAVOUT(J) <<R>> = PAVOUT(I) <<R>>;

IMODVALSEQ (I , J) is true if, for every reference R

in CJMODS(J), R is not in ACT(I), or:

PAVIN(I) <<R>> = (PAVIN(I) ~ DKILL(J) + GEN(J))<<R>>

OMODVALSEQ (I , J) is true, if, for every reference R

in CJMODS(J), R is not in ACT ( I ) , or:

PAVOUT(I) <<R>> = (PAVOUT(I) - DRILL ( J) +GEN ( J)

)

<<R>>

The safety conditions for copying are as follows:

(COPY-1) : The copy of a node J past a node I which

it currently precedes is safe if the following

conditions are met:

(a.l) No reference (or conjoint of a reference)

used in J is modified in I.

(a. 2) No reference (or conjoint of a reference)

modified in J is modified in I.

(b) There is no branch into I that augments the

set of possibly available values: that is,

OUSEVALSEQ (I , J) and OMODVALSEQ ( I , J) must hold.

(COPY-2) : A node can be copied past itself only if its

uses and modifications are nonoverlapping

.

(COPY-3) : A node I can be copied after a node J which

it ultimately (or immediately) precedes, if it can be

copied after each node along every path connecting I and J.
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The following equations express these conditions:

SAFEl(I) := <<J IN ND, J NOT = I
|

CJMODS(I) * CJMODS(J) = NL AND

CJMODS(I) * CJUSES{J) = NL >>+

<<I
I

CJMODS(I) * CJUSES(I) = NL >>;

SAFE2(I) := <<J IN ND
|

OUSEVALSEQ (I, J) AND

OMODVALSEQd, J) ) ) >>;

INSTSAFE(I) := SAFEl(I) * SAFE2(I);

COPYSAFE(I) :- << I
|
CJMODS(I) * CJUSES(I) = NL >

+ INSTSAFE(I) *

( */<<COPYSAFE (J)
I
J IN PREDS(I)>>);

The safety conditions for sinking are as follows:

(SINK-1) : The conditions for sinking a node J past a

node I which it currently precedes are as follows:

(a.l) No reference (or conjoint of a reference)

used in J is modifed in I.

(a. 2) No reference (or conjoint of a reference)

modified in J is modified in I.

(a. 3) No reference (or conjoint of a reference)

used in I is modified in J.

(b) There is no branch into I that augments the

set of possibly available values; that is,

OUSEVALSEQ (I, J) and O.IODVALSEQ (I , J ) hold.

(SINK-2) A node can be moved past itself.

(SINK-3) A node I can be sunk after a node J which it

ultimately (or immediately) precedes, if it can be sunk

after each node along every path connecting I and J.

The following equations express the safety conditions

for sinking:

56



SAFE3(I) := << J IN SAFEl ( I) | CJUSES ( I ) * CJMODS ( J) =NL>

>

+ << I >>;

MVDNSAFE(I) := SAFE3(I) * SAFE2(I);

SINKSAFE(I) :=<<!>>+ MVDNSAFE ( I )
*

{ */ <<SINKSAFE(J) |J IN PREDS(I) >>);

For hoisting, condition (l.b) must be altered as follows:

(b') lUSEVALSEQd, J) and IMODVALSEQ ( I , J) must hold.

The following equations describe safety conditions

for hoisting:

SAFE4(I) := <<J IN ND 1 lUSEVALSEQ ( I , J) AND IMODVALSEQ (I , J) ))>>

;

MVUPSAFE(I) := SAFES (I) * SAFE4(I);

HSTSAFE(I) := << I >> + MVUPSAFE(I) *

( */ <<HSTSAFE(J)
I
J IN SUCCS(I)>>);

Turning our attention to profitability, we observe that

for replication or sinking of a node J, the profitability tests

are the same. Every node K on a path connecting J to the

target must be examined to see whether its active set size is

increased beyond MAXLIVE, by the variables used in the moving

node

.

In computing the new active set at node K, SETl, the set

of variables used in J that are not active at K, must be added

to the old active set, and SET2, the set of variables redefined

in J must be removed from the old active set. The profitability

test is expressed as follows:

|ACT(K) + SETl - SET 2
I

<= MAXLIVE

For hoisting of a node J, the profitability test is

analogous at every intermediate node K., SETS, the set of

variables modified in J that are not active at K must be
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added, and SET4, the set of variables used in J that were

active at K only because of the use at J must be removed.

The profitability test is expressed as follows:

|ACT(K) + SET3 - SET4 I
<= MAXLIVE

For a practical implementation of this test, an incremental

data flow analysis procedure which analyzes the effect of a

small modification to the flow graph would be extremely

desirable. In SOCRATES, SET2 and SET4 are approximated

by <<Y>>, where Y is the variable being killed by the

transformation. This results in an underestimate when other

variables are also killed, and an overestimate when Y is not

killed throughout the region, both of which may occur.

For an example of a profitable transformation, consider

the following example reproduced from Section 2:

DEE A(30),B(60),C(120),D(100),E(80),G(50),H(100)

SET (B,A) ;

SET(C) USE(A,B)

SET(D) USE(A,C)

SET(E) USE(A,B)

USE(D,E)

;

SET(H) USE(C,A) ;

SET{G) USE (C,A) ;

USE(G,H)

;

The safety sets are as follows:

SAFEl = << 10001001, 11011001, 11110111, 11110111,
11111111, 11111110, 11111110, 11111111 >>

SAFE2 = << 11010000, 11110110, 11110110, 11111110,
11111110, 11111110, 11111111, 11111111 >>

SAFE3 = << 10001001, 01011001, 00110111, 01110111,
11001111, 00111110, 00111110, 11111001 >>

SAFE4 = << 10000000, 11010000, 11110110, 11110110,
11111110, 11111110, 11111110, 11111111 >>



INSTSAFE = << 10000000, 11010000, 1110110, 11110110,
11111110, 11111110, 11111110,11111111 >>

MVUPSAFE = << 10000000, 01010000, 00110110, 01110110,
11001110, 00111110, 00111110, 11111001>>

MVDNSAFE = << 10000000, 01010000, 00110110, 01110110,
11001110, 00111110, 00111110, 11111001 >>

COPYSAFE - << 10000000, 11000000, 11100000, 11110000,
11111000, 11111100, 11111110, 11111111 >>

SINKSAFE = << 10000000, 01000000, 00100000, 00110000,
00001000, 00001100, 00001110, 00001001 >>

HSTSAFE = << 10000000, 01010000, 00110110, 00010110,
00001110, 00111110, 00111110, 11111111 >>

If conflict elimination between C and E is attempted,

a downward move of statement 2 to statement 5 is profitable

because only B's live extent is increased, while C's live

extent is decreased, and B is smaller than C. The sink of

statement 2 to statement 5 is not permissible, because C is

used in statement 3, but the copy of statement 2 after

statement 5 is permissible.

5.4 SOCRATES Implementation

In the SOCRATES procedure XFORT^, the SAFEi vectors,

i - 1,...4, are calculated directly for each node in the

program, and the COPYSAFE, SINKSAFE and HSTSAFE sets are

computed iteratively. Basic transformations

are then attempted for each pair of variables in VSETMSK,

the procedure parameter. For each such pair IV, IVl , the

set of loops and nodes at which they conflict are examined

to determine the type of conflict. If any type 3 conflict

is found, the loops or nodes to be split are reported, and

no further transformations are attempted. If no type 3

conflict is found, procedure 3RKC0NFLS is invoked twice

to break the type 2 conflicts.

BRKCONFLS has three parameters: IX; lY; and TRYiMSK,

the set of nodes at which lY is live and IX is used or

modified. The following SETL code describes BRKCONFLS:
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BRKCONFLS: PROC (IX, lY, TRYMSK)

;

HSTTARGS := NL;

(FORALL I IN TRYMSK)

AVAIL := <<N IN PAVIN(I)(2)
i

(EXISTS IR IN MODS(N) |IY = VAR(IR))>>;

OK := FALSE;

TSTPROFDNd, AVAIL, OK) ;

(FORALL J IN AVAIL VJHILE OK)

OK := FALSE;

IF J IN SINKSAFE(I)

THEN OK := TRUE;

CONTINUE FORALL J;;

END IF;

IF J IN COPYSAFE(I)

THEN OK := TRUE;

ENDIF;

END FORALL J;

IF NOT OK

THEN

IF AVAIL * HSTTARGS = NL

THEN HSTTARGS := HSTTARGS + AVAIL;

TRYHOIST(I,AVAIL,OK)

;

ENDIF;

IF OK

THEN I FROM TRYMSK; ENDIF;

END FORALL I;

END BRKCONFLS;

TSTPROFDN: PROC ( I , AVAIL , OK)

;

OK := FALSE;

(FORALL J IN ND
I

J > MIN (AVAIL) AND J <= I)

IF lY IN ACT (J)

THEN TESTVAL := MAXLIVE * | lY
|

;

ELSE TESTVAL := MAXLIVE;

NEWLIVE := <<+: DEREF (USES (N) ) | N IN AVAIL*PAVIN ( J) ( 2 ) >> ;

IF
I

ACT (J) + NEWLIVE I
> TESTVAL

THEN RETURN;

;

END FORALL J;
OK := TRUE;
END TSTPROFDN; 60



TRYHOIST: PROC (I , AVAIL ,0K)

;

OK := FALSE;

(FORALL J IN AVAIL)

IF NOT I IN HSTSAFE(J) THEN RETURN;

END FORALL J;

NEWLIVE := <<+: DEREF (MODS ( I) ) >>

;

(FORALL J IN ND|J > MIN (AVAIL) AND J <- I)

IF lY IN ACT (J)

THEN TESTVAL := MAXLIVE -
| lY

|

;

ELSE TESTVAL := MAXLIVE;

IF
I

ACT (J) + NEWLIVE] > TESTVAL

THEN RETURN;

END FORALL J;

OK := TRUE;

END TRYHOIST;
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6. OTHER TRANSFORTIATIONS AND TECHNIQUES

A number of other techniques are applicable to this

problem, although they were not explored in SOCRATES. With

most of these techniques, the question of balancing the cost

in execution time against the profit in execution space

becomes critical. Some of these other techniques are discussed

below:

6.1 Data Fragmentation

Data fragmentation is a technique that can enhance storage

optimization. Often the storage layout produced by the overlay

heuristic can be improved by selecting a particular variable

to be fragmented and stored in several, nonadjacent storage

segments. Since the live value analysis can determine sub-

references that become dead at nodes where other subreferences

of the same variable are still live, these may also serve as

a guide for data fragmentation. Improvement in storage utili-

zation may result. The object code that accesses this array

must be cognizant of the number and extent of such fragments,

and there is, therefore, a cost in object code execution time

as well as code space.

This is an interesting area for future research.

6.2 Data Spill

Data spill is an alternative to redundant code insertion.

It is often preferable in register optimization, where the

cost of register spill may not be prohibitive, but usually

less desirable in storage optimization, where the cost of

dumping a variable onto auxiliary storage between uses, and

restoring into a renamed variable, may be very high. Consider

the following example:
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DEF A(30),B(60),C(120),D(100),E(80),G(50),H(100)

SET(C) USE(A,B)

SET(D) USE(A,C)

SET(E) USE(A,B)

USE{D,E)

;

SET(H) USE (C,A)

;

SET(G) USE (C,A)

;

USE(G,H)

;

The following storage layout is best for this program:

A(30)



This saves 80 words of object storage, at the expense

of instruction storage and program execution time.

Data spill can be combined with redundant code insertion

when several recomputable variables require a common input

variable that can be spilled.

Cost considerations are critical for automation of the

data spill technique.

6.3 Redundant Code Elimination

Consider the following example

DEF A(30),B(60),C(20),CC(20),D(10),DD(10),E(80),EE(80);

1: SET(C) USE(A,B) ;

SET(D) USE(B,C) ;

SET(E) USE(C,D);

USE (D,E)

;

SET (CO USE(A,B); /* this is a copy of 1 */

SET(DD) USE (CC)

;

SET(EE) USE(CC,DD);

USE(DD,EE) ;

The following storage layout is best for this program:

A(30)



The following storage layout is best for this program:

A{30)



This was transformed by a loop splitting transformation

into the following form:

DEF A(IOO) , B(IOO)

;

SET (A)

;

SET(SUMA)

;

LP: DO USE (I) SET (I) TEST

;

SET(SUMA) USE(SUMA,I,A)

;

END LP;

USE(SUMA)

;

SET(B) ;

LPl: DO USE (II) SET(Il) TEST;

SET{SUMB) USE (SUMB,I1,B)

;

END LPl;

USE(SUMB)

;

In this example, a further transformation can be effected

via rank reduction and loop fusion. If each (implicit) input

loop is fused with the succeeding computation loop, the rank

of each array can be reduced, resulting in the following

program:

SET (SUMA)

;

LP: DO USE (I) SET (I) TEST;

SET (A)

;

USE (SUMA) SET (SUMA, I, A)

;

END LP;

USE (SUMA)

;

SET(SUMB)

;

LPl: DO USE (II) SET (II) TEST;

SET(B);

USE(SUMB) SET(SUMB,I1,B)

;

END LPl;

USE(SUMB)

;

Only three words of data storage are needed now.

The specification of fusable loops also requires a SOL

extension. The EQUIV statement can specify loop labels that

delimit computationally similar loops.
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6.5 Instruction Block Overlay

The automatic data overlay heuristic can be used to

manage instruction storage as well as data storage. If the

program is segmented into instruction blocks, then each

block B can be treated like a variable, with its size

specified. A common back dominator of the instructions

in B should be chosen as a definition point for B, and all

the instructions in B should be treated as use points

for B.

In packaging the instruction blocks, and selecting

appropriate definition points, the SOCRATES experimenter or

the high-level language programmer using a storage optimizer

must consider the execution cost of alternatives. This

packaging of instructions is part of the work the programmer

performs traditionally in defining a program overlay structure

to a system overlay facility. The other part — determining

block sizes and using them to derive an optimal sharing

pattern — can be done by the storage optimizer.

The automation of instruction packaging using a cost

function is an area for future research.

6. 6 Inter-procedural Overlay

There are two ways in which interprocedural overlay can

proceed:

(1) Macro overlay

The procedure is expanded in macro-like fashion when

the flow graph FG is built. The procedure's local variables

and instructions are treated like renamed variables at each

call. A single conflict graph contains all the conflicts

in the program, and is used by the overlay procedure.

(2) Piecewise overlay

Overlay is performed for each procedure in turn, in

inverse call order. The procedure's local variables and

instructions are overlaid, resulting in a collection of

segments (the more small segments, the better), including
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instruction storage. These segments are treated as "renamed

variables" at each call to the procedure, and hence can be

assigned locally optimal storage at each call.

SOCRATES can be easily extended to permit procedure

definition in a PROC statement.

Again, the question of cost is relevant.
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7. PROJECT DESCRIPTION: SOL AND SOCRATES

In order to provide empirical information about the

storage optimizability of the average program, SOL, a

Storage Optimization Language, has been designed, and

SOCRATES, a Storage Optimization Code Reorganization And

Transformation Experimental ystem, nas been implemented.

The purpose of SOL is to express information about a

program that is essential for automatic storage optimization.

It is intended as an intermediate language that could serve

as a common target for compilers of most languages (e.g.,

FORTRAN, COBOL, BASIC, PL/1, assembly language). SOL could

be input either to an advice-giving program, such as SOCRATES,

which examines and reports storage optimization possibilities,

or to an actual storage optimizer

.

Versions of the algorithms in Chapters 3-5 have been

implemented in SOCRATES so that their applicability to actual

programs can be assessed.

Section 7.1 contains an overview of SOCRATES, and SOL

is specified in Section 7.2. The last section describes the

program analysis phase of SOCRATES, and presents generalized

redundancy equations for live/dead analysis and available

expression analysis of arrays and array subreferences

.

7.1 An Overview of SOCRATES

SOCRATES accepts the Storage Optimization Language as

input that describes a program to be analyzed for its amen-

ability to storage optimization. The SOL input is followed

by a string of SOCRATES commands that indicate the analysis

to be performed.

No transformations are actually performed on the SOL

program. Instead, analyses are performed, as directed by

the commands, and the results of these analyses are printed.
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SOCRATES can be used in an iterative fashion: from the

information printed for the initial SOL program, a new SOL

program can be constructed by the experimenter, reflecting

the suggested transformations, and SOCRATES can be rerun on

this new program. A storage overlay heuristic may be

invoked each time to monitor improvements . The purpose of

SOCRATES is to provide empirical data for the ultimate design

of a practical storage optimizer.

The user defines the flow of his program, and the way

in which the data is used, defined and modified. The user

can also describe certain data relationships which might be

ascertained by range analysis. A special pair of statements

is provided for the bracketing of single-entry, single-exit

loops. The language is primitive enough to describe the

essentials of any language, as long as static data extents

are restricted to a constant. The program can be described

statement by statement, basic block by basic block, or

procedure by procedure, according to the experimenter's

inclination

.

Using these primitives, the experimenter can also describe

blocks of instruction storage (see Section 7.5) and analyze

a multiprocedure program (see Section 7.6). In the future,

it is envisioned that front ends be built for several langauges,

funneling into a common range analysis phase. Other possible

SOCRATES extensions are discussed in Section 9.

7.2 The Storage Optimization Language

Although it is input to SOCRATES, the Storage Optimization

Language has been designed as an intermediate-level language

suitable for input to the storage-optimizing portion of a

compiler. As such, one can assume that a front end process

has parsed the program, gathered and analyzed control and

data flow information, and performed a range analysis. This

range analysis has translated subscripted array references
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into symbolic subref erences , and determined the disjointness

and covering properties of the subreferences . Thus SOCRATES

or a hypothetical optimizer should be given enough informa-

tion to deduce deadness and value availability of variables

and subreferences to a refined degree (see Section 2.2).

For the purposes of this initial study, SOL programs

were coded manually.

7.3.1 SOL Objects — Variables, References and Labels

The primitive objects in SOL are labels of SOL statements,

variables which are to be arranged in storage, and references

to those variables.

An identifier consists of one to eight alphanumeric

characters. Identifiers are used for variables, subreferences

and statement labels. There is no distinction between a

program variable and a program constant in this language,

so identifiers can begin with a digit.

A reference to a variable has one of the following forbs

:

( 1

)

VAR

This is a reference to the entire variable VAR,

where VAR is an identifer.

(2) VAR . SNAME

This is a reference to a subreference SNAME of VAR,

where VAR and SNAME are identifiers.

SOCRATES will analyze the definition/use relationships

of these references in order to produce refined information

about variable activeness and value availability. This analysis

is assisted by information povvided by the SOL user as to the

disjointness of these subreferences and the covering relation-

ships .

In performing storage assignment, an array will be stored

in contiguous storage. That is, there is no attempt to improve

overlay by storing disjoint array subreferences in nonadjacent

storage blocks, although there are cases where storage could

be reduced if this were attempted (see Section 6.1).

Data fragment techniques are best addressed in a

follow-on effort.
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7.3.2 SOL Statements and SOCRATES Commands

SOCRATES accepts as input a batch of one or more storage

optimization problems. Each storage optimization problem

consists of a string of SOL statements, representing the

program to be analyzed, followed by a string of SOCRATES

commands, indicating the analysis to be performed. As in

PL/1, every statement or command must be terminated by a

semicolon ( ; ) , and may be preceded by one or more labels,

each label terminated by a colon (:).

All statements, except the imperative statement, have

a verb at the beginning of the statement. Statements contain

one or more keyword options, whose paramters, when present,

are enclosed in parentheses.

The following is a list of the SOL statements with

brief descriptions

:

Imperative Statement

The imperative statement describes the use and

modification of data and the flow successors of a

single node in the program. The granularity of this

node (single statement, basic block, procedure) is

at the user's discretion. Operational details are

not specified, since they are irrelevant to the

storage optimizer.

Definition Statement

The definition statement (DEF) is used to define

the size of one or more variables, the disjointness

of subreferences of these variables and/or the cover-

ing relationships among subreferences . It corresponds

roughly to a source program declaration.

Loop-Delimiting Statements

The DO and END statements are used to delimit the start

and end of a single-entry loop. Options on the statement

describe the use and modification of data and whether

loop exit testing is performed at the node.
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Propagate Statement

The PROP statement describes the propagation (see

section 2.4) of modifications into definitions at

specified nodes.

These statements are specified in detail in Sections 7.3.3-

7.3.6.

Each SOCRATES command consists of a single keyword,

possibly followed by additional information, terminated

by a semicolon. The commands are:

OVLAY n

The OVLAY command invokes overlay heuristic n

(see Section 3.4).

RENAM var-spec

The RENAM command invokes the unsharing transformation

which determines the "correct number of names" for each

variable specified by var-spec (see Section 4.2.1).

REPOS var-spec

The REPOS command determines the applicability of the

repositioning transformation to break conflicts between

each pair of variables specified by var-spec (see

Section 4.2.2) .

XFORM var-spec

The XFORM command determines which nodes and loops can

be split in order to break use-use, use-set, and set-set

conflicts between pairs of variables in the set specified

by var-spec (see Section 5.3); and which nodes and loops

can be moved or copied in order to break live-use conflicts

between pairs of these variables.

var-spec is one of:

- an empty list, meaning all the variables in MAXCLIQ.

- *, meaning all the variables in the program.

- var-list, specifying the list of variables to be

considered

.
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XEQ

The XEQ command terminates a string of SOCRATES commands.

It may be succeeded by another SOL program.

7.3.3 The Imperative Statement and the Data Flow Options

The imperative statement consists of a string of data

flow options and/or the GOTO option, in any order. The GOTO

option is written:

GOTO( label-list )

The label-list is a string of one or more label identi-

fiers, separated by a comma, or by blanks and an optional

comma. Each label identifier should correspond to the

label of an imperative statement in the program. This option

specifies all the nodes to which control may transfer after

the given node. If the GOTO option is omitted, it is assumed

that control flows only to the imperative statement that

immediately succeeds the given node.

The data flow options are the USE option, the MOD option,

and the SET option.

The USE option is written:

USE ( ref-list )

Ref-list is a string of references, separated by a

comma or by blanks and an optional comma. This option specifies

the variables and/or subreferences that are used at this node.

The MOD option is written:

MOD( ref-list )

Ref-list is a string of references, separated by a comma

or by blanks and an optional comma. This option specifies

the variables and/or subreferences that are modified at this

node.

The SET option is written:

SET( ref-list )

Ref-list is a string of references, separated by blanks

or commas. This option specifies the variables and/or sub-

references that are completely redefined at this node.
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7.3.4 Definition Statement

The definition statement consists of the statement verb

DEF, followed by one or more definition groups, separated by

commas . Each definition group supplies information about one

or more subject references. The following forms are permitted

for a definition group:

var ( size )

var ( size ) relationships

var . subreference relationships

where size is an integer and relationships is one of:

DISJ( subreference-list )

COVER ( subreference-list )

DISJ COVER ( subreference-list )

These options specify, respectively, a set of mutually

disjoint subreferences , a set of subreferences that cover the

subject reference, and a set of mutually disjoint covering

subreferences. Subreference-list is a list of subreference

names, separated by a comma or by a blank and an optional comma

7.3.5 Loop-Delimiting Statements

The DO and END statements are used to delimit a single-

entry loop. The END statement may specify the label of the

DO it is ending, in which case the termination of intermediate

loops is implied. Both statements may contain data flow

options. In addition, either or both statements may contain

a TEST option, indicating that the test for loop exit is

performed at the node. If a DO or an END statement contains

the TEST option, then one of the successors of the bracket

node is the node immediately following the loop's END state-

ment; the other successor of the DO is its physically next

node; the other successor of the END is the DO node. Thus,

four types of loops can be described: no exit, top exit,

bottom exit, and top-and-bottom exit.
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The loop should be a single-entry loop, and there should

be no exits within the loop other than those at the delimiting

statements. No check is made to verify this condition, however,

The END statement also terminates a SOL program.

7.3.6 Propagation Statement

The PROP statement is used to indicate points in the

program where references modified elsewhere in the

program become completely redefined by virtue of a looping

flow of control. The PROP statement is written:

PROP ( ref-list ) option ( label-list )

where ref-list is a list of references, label-list is a list

of labels, and option is one of: UP, DOWN or LOOP.

The UP option specifies that the modification should be

propagated upward into a redefinition at the specified label (s)

for the purpose of live/dead analysis. This implies that

the specified, subreferences are dead on entry to the node

indicated by the label.

The DOWN option specifies that the modification should

be propagated downward into a redefinition at the specified

label (s) for the purpose of available value analysis. This

implies that the specified subreferences have been assigned

values that are available on exit from the node indicated

by the label.

The LOOP option specifies a loop or list of loops for

which both the UP and DOWN options apply — the UP option to

the DO statement and the DOWN option to the statement follow-

ing the END statement.

For example, a single-entry, top-exit loop in which an

array is modified one element at a time might cause the

upwards propagation of that modification into a definition

at the DO statement and the downwards propagation of the

modification into a definition at the statement after the

END statement.
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No check is made as to whether the specified references

are actually modified in some node of the loop,

7.4 Program Analysis in SOCRATES

Input to the ANALYZE phase of SOCRATES from previous

phases includes the following tables:

IPROG, the set of nodes in the program, sorted

into depth-first post-order. Information for

each node includes the following:

USES, the set of references used in the nodes;

DEFS, the set of references defined in the nodes;

MODS, the set of references modified in the nodes;

SUCCS, the set of successor nodes;

PREDS, the set of predecessor nodes.

VARS , the set of variables used in the program.

Among the information in VARS is the SIZE of the

variable

.

REFS, the set of references used in the program.

The information for reference IR includes a pointer

to the variable's VARS entry and the subreference

name SNAME, as well as the following sets:

CONJ, the set of references not disjoint with

reference IR.

SUBSETS, the set of references that are

subreferences of reference IR.

COVTAB, the set of covers described in this program.

A cover is a pe-.ir (IR,SET), where IR is a reference

and SET is a set of subreferences that cover IR.

RDMAP, the set of reference definition or modification

pairs. Each entry in this ordered list consists of a

pair (IR,ID), where IR is a pointer to the reference

that is defined in the node whose depth-first post-order

number is ID. This table is used for available value

analysis

.
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GENKIL, node-specific generation and kill vectors for

bit iteration. The following sets are included for

each node I:

CJUSES, the set of references that are used,

or are conjoint with a reference used, at node I

;

CJMODS , the set of references that are defined

or modified, or are conjoint with a reference

defined or modified, at node I;

SSDEFS, the set of references that are defined,

or are a subset of a reference defined, at node I;

KILL, the set of rdefs (RDMAP entries) definitely

killed by a definition at node I.

ANALYZE includes the following procedures:

FINDTOTV — calculates the total unoptimized storage

needed by the program;

BLDLVSET -- calculates the active sets for each node

;

FINDMAXLV — finds MAXLIVE, as well as the set of nodes

whose size is MAXLIVE;

BLDCG — builds the conflict graph;

FINDMAXCLQ -- calculates the set of cliques in the

conflict graph, and computes MAXCLIQ, the size of the

largest clique. This routine also finds MCSETU, the

set of nodes in some clique in the conflict graph whose

size is equal to MAXCLIQ.

BLDLMAPS — computes the following sets for each

variable IV.

LNACT, the set of nodes and loops at which IV

is active;

LNUSES, the set of nodes and loops at which IV

is used;

LNMODS, the set of nodes and loops at which IV

is modified or defined.

BLDAVSETS — computes the set of values possibly avail-

able at each node.



In order to simplify the SOCRATES implementation,

iteration was used in BLDLVSETS and BLDAVSETS . Lattice

properties and the depth-first post-ordering of FG assure

rapid convergence

.

In the following sections, we describe BLDLVSET,

BLDCG, FINDMAXCLQ, and BLDAVSETS in greater detail.

7.4.1 BLDLVSET

BLDLVSET calculates the active sets for each node. Suppose

SSDEFS, CJUSES and SUCCS are as described above. Let

DEDSET(I) denote the set of references definitely dead at

node I. Then the following pair of equations defines DEDSET:

DEDSETl(I) -*:<<( DEDSET (K) + SSDEFS (K) )
- CJUSES (K)

I

K IN SUCCS (I) >>

DEDSET (I) = DEDSETl(I)

+ << R IN REFS
I

( EXISTS K <= NCOVS

I

R = COVTAB(K) (1) AND

(FORALL J IN COVTAB(K) (2)

I

J IN DEDSETl(I) ) ) >>

This equation is computed in an iterative manner. First,

DEDSETl is computed for all nodes until there is no change,

then DEDSET is computed and the process is repeated until

there is no further change in the DEDSETs

.

7.4.2 BLDCG

BLDCG builds the conflict graph CG . The nodes of CG

correspond to the variables in the program. For each IV in

VARS, let ADJAC(IV) denote' the adjacency set of variable IV.

Then we have:

ADJAC(IV) := << IVl IN VARS
|

{ EXISTS I IN ND
|

IV IN ACT (I)

AND IVl IN ACT (I) ) >>;

This is equivalent to:

ADJAC(IV) :={+/<< ACT (I) IN LS
|

IV IN ACT ( I )
>>)

- <<IV>> ;
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7.4.3 FINDMAXCLQ

FINDMAXCLQ calculates the set of cliques in the conflict

graph, using the algorithm of Paull and Unger that is

described in Ewen (Ew)

:

Suppose <<IV, IV=1..NVARS >>, are the nodes of CG.

Let 1=1, and let CS(1) =<<<<! >> >>,

Repeat the following steps until I > NVARS

:

(i) TEMP := NL;

(ii) (FORALL S IN CS (I)

)

TEMP := TEMP + ADJAC ( IV+1) *S + <<IV+1>>;

(iii) TEMPI := TEMP + CS(I);

(iv) CS{I+1) := << S IN TEMPI

I

(FORALL T IN TEMPI

|

( (S = T)

OR (S+T NOT = T) ) ) >>

MAXCLIQ, the size of the largest clique, is found.

This routine also finds MCSETU , the set of nodes in

some clique in the conflict graph whose size is equal

to MAXCLIQ.

7.4.4 BLDAVSETS

The BLDAVSETS procedure computes each node's PAVIN (and

PAVOUT) , the set of values possibly available on entry to

(and on exit from) the node, by iterating forward through

the depth-first post-order, repeatedly until there is no

change in any PAVIN, computing the following bit equation:

PAVOUT (J) := GEN (J) + PAVIN (J) - DRILL (J)

PAVIN (I) := +: << PAVOUT ( J) | J IN PREDS (I ) >>

;

PAVIN (I) is the set of rdefs possibly available on

entry to node I. PAVOUT (J) is the set of rdefs possibly

available on exit from node J. Each rdef is an RDMAP

entry, as defined at the beginning of Section 7.4.
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GEN (J) is the set of rdefs generated at node J, and

DRILL (J) is the set of rdefs that are definitely

killed at node J, as defined at the beginning of

Section 7.4.

The set of rdefs possibly available on entrance to node I

is equal to the union over all the predecessors J of I of the

set of rdefs generated at J union the set of rdefs possibly

available on entrance to J and not definitely killed in J.
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3. EXPERIMENTAL RESULTS

In order to provide an experimental evaluation of the

amenability of the typical program to the storage optimiza-

tion techniques described in this paper, SOCRATES has been

verified against the examples in this work, and run against

three moderate-sized production programs that were hand-

translated into SOL. The sample runs can be found in Appendix

II, and the test runs in Appendix III. In addition, an alter-

nate interface to the SOCRATES overlay heuristics was built,

and over 130 graphs were processed by these heuristics to

develop experimental evidence of their effectiveness. In

this chapter, we report on the results of these efforts,

and evaluate the implications for future work.

Of course, these results are not statistically significant,

but only indicative of what a future expanded study might

discover. Such a future study would accept source language

programs as input, eliminating the manual translation into SOL.

Parser-generator (s) would translate FORTRAN, COBOL, PL/1,

PASCAL or assembly language programs into an intermediate

language suitable for input to a common range analysis phase,

which would generate the SOL program for input to SOCRATES.

8.1 SOCRATES' Results

The three programs tested were called GRPCALL, AVERAGE

and CALC2. The empirical overlay results using the descending

figure of merit overlay algorithm, may be summarized as

follows: GRPCALL AVERAGE CALC2

TOT_STO



Thus, for all three programs, the heuristic produced

an optimum storage layout, with reductions in storage

utilization ranging from 0.02% to 2.71%. Since

MAXLIVE = MAXCLIQ in each case, the renaming transformation

was not applicable.

In all three programs, the deviations from a shipbuild-

ing approximation were relatively few.

VJhen code-modifying transformations were attempted on

these programs, only splitting was applicable.

A word of interpretation may be appropriate. The

smallest of these programs is the PL/1 program AVERAGE,

consisting of a little more than one page of source listing.

Since it is relatively short, its use of storage is

localized, and, in effect, hand-optimized. For such a program,

automatic storage overlay provides little improvement.

A visual inspection of the program, however, indicates

that considerable savings could have been effected by loop

fusion, rank reduction and code reordering.

The FORTRAN program CALC2 is the largest program, and,

as one might expect, the storage savings here are the greatest

Interestingly enough, all the overlaid variables are scalars,

leading one to guess that FORTRAN DO variables are prime

candidates for overlay. (In fact, it is with DO variables

that the FORTRAN programmer most often uses "storage-less

variables" .

)

The PL/1 program GRPCALL involves the summary of statisti-

cal information for a set of data whose extents may become

quite large. As the program is written, all the data is kept

in storage, and various totals and summaries are accumulated

and reported. Visual inspection of the program suggests

that storage-optimizing code transformations such as redundant

code insertion, loop fusion and rank reduction would have

produced considerably improved results by permitting the data

to be read (and reread) from external storage.
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There are classes of programs that are quite likely to

profit from these optimization techniques, but were not

available for SOCRATES' testing. One type is the large,

multimodule program, written by several programmers and

maintained and modified over a long period of time. Another

type is the large, assembly language program for a small

machine

.

The results of this initial study indicate that further

study is warranted.

8.2 Testing the Overlay Heuristics

The three heuristics discussed in Section 3.5 (descend-

ing availability, ascending extended degree and ascending

figure of merit), as well as the Hoffman bounded heuristic,

were run against 131 different graphs. The first chart

below summarizes the number of optim.um results each heuristic

obtained. The second chart summarizes the number of results

within 20% of optimum.

CHART 1. OPTIMUM TOTALS

Test Case



CHART 2. OPTIMAL TOTALS

Test Case



9 . CONCLUSION AND FUTURE DIRECTIONS

In this paper, a delineation of the fundamental issues

of automatic storage optimization has been initiated. A

structure for a storage-optimizing compiler has been proposed,

and original algorithms for overlay determination and storage-

optimizing code transformation have been presented.

Automatic storage overlay has been formulated as an

extended graph coloring problem. An exact overlay algorithm

and a family of heuristic overlay algorithms have been

introduced. A bounded approximation algorithm, due to

A. Hoffman, has been presented.

A canonical renaming algorithm has been demonstrated

that always succeeds in reducing MAXCLIQ to MAXLIVE , and can

be used to break up other cliques in the conflict graph.

Renaming introduces new variables into the program to assume

some, but not all, of the critical live conflicts. Such a

transformation usually improves overlay results.

Another approach to storage-optimizing code transforma-

tion is to eliminate the live conflicts between a particular

pair of variables. A procedure to perform redundant code

insertion and code motion for the elimination of particular

conflicts has been given, together with safety redundancy

equations and profitability tests. Other storage-optimizing

code transformations, as well as data fragmentation, data

spill, instruction block overlay and inter-producedural overlay

have been addressed in survey fashion.

Generalized redundancy equations for array data flow

analysis have been presented and implemented in SOCRATES,

a Storage Optimization, Code Reorganization and Transformation

Experimental System. SOL, a Storage Optimization Language,

has been designed and is used in SOCRATES to express data flow

and control flow properties essential to storage optimization.

Versions of the overlay heuristics, the renaming algorithm, and
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the code transformations have been implemented in SOCRATES,

and experiments involving actual programs have been conducted

on a limited basis.

Preliminary results indicate that automatic overlay and

storage-optimizing code transformation are applicable in

many circumstances. This suggests that the SOCRATES effort

should be extended so that meaningful experimental results

can be attained. These results could determine design trade-

offs in a storage-optimizing pilot compiler.

The results of this work are applicable even to register

optimization. The renaming transformation permits the compiler

to determine where "move-register" operations are necessary

and beneficial. Many of the code transformations discussed

in this paper, such as code motion, redundant code insertion

and elimination and data spill, are potential register-

optimizing code transformations.

Once the SOCRATES study is completed, a pilot storage-

optimizing compiler should be built. Many of the problems

that are open issues in this paper — particularly in the

area of storage-optimizing code transformation — would be

addressed in a pilot compiler effort. The SOCRATES study

should yield information on the value of alternate design

approaches, and should be extended to provide additional

information, if needed, to aid the development of a pilot

compiler

.

There are long-range implications of this study. If a

compiler can perform range analysis, it can compute execution-

time estimates. One can envision, then, a compiler that

optimizes execution time, subject to storage constraints,

and/or storage, subject to execution time constraints.

In such a compiler, the trade-offs among various transformations

might be computed automatically.

The language implications of this study are noteworthy.

The benefits of a storage-less variable have been discussed

in the introduction. Bliss has demonstrated that structured



programming languages simplify the task of program analysis

and storage-optimizing code transformation. It may be that

a nonprocedural language, such as Dataflow (Ko76) , can

have advantages in the small computer environment where storage

must be minimal at both compile time and execution time,

because prorams can be constructed rather than being analyzed

and then transformed. It would be interesting to investigate

whether the task of program construction is, in fact,

simpler and less demanding of computer resources, than the

tasks of analysis and transformation.

A number of open problems remain:

(1) Finding a smaller upper bound on CHR(CG), possibly

in the shipbuilding case.

(2) Disproving or proving the Garey-Johnson result for

the shipbuilding problem.

(3) An improved exact overlay algorithm, together with an

average-value analysis of the algorithm. It may well

be that the average execution time is considerably

less than exponential.

(4) Further work on overlay heuristics, including execution

time analyses and/or experiments

.

(5) A proof that the results of one of the overlay heuristics

do not deteriorate when MAXCLIQ is reduced by renaming

and/or by code modification. Alternatively, another

heuristic for which the property can be demonstrated.

(6) A proof that register-minimizing code transformation

is still NP-complete if redundant calculation is

permitted.

(7) Extension of the code transformation work in this paper:

(a) Investigation of solutions to the problem of

compounding code-modifying transformations so that

successive groups of code can be moved or redund-

antly inserted.

(b) Investigation of conditions under which multi-

source sinks can be performed.



(c) Incorporation of redundant code elimination

techniques into the code modification procedure

so that multi-source hoists can be performed.

(d) Exploration of the cascading transformation

problem so that conditions on code motion and

insertion can be relaxed.

(3) Extension of redundancy equations and SOCRATES procedures

to include transformations in Chapter 6.
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