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Abstract

In this paper, we explore the fundamental limits of sensor network
lifetime that all algorithms can possibly achieve. Specifically, under
the assumptions that nodes are deployed as a Poisson point process
with density λ in a square region with side length ` and each sensor
can cover a unit-area disk, we first derive the necessary and sufficient
condition of the node density in order to maintain complete k-coverage
with probability approaching 1. With this result, we obtain that if
λ = log `2 + (k + 2) log log `2 + c(`), c(`) → −∞, as ` → +∞, the
sensor network lifetime (for maintaining complete coverage) is upper
bounded by kT with probability approaching 1 as ` → +∞, where T
is the lifetime of each sensor. Second, we derive, given a fixed node
density in a finite (but reasonably large) region, the upper bounds of
lifetime when only α-portion of the region is required to be covered at
any time. We also carry out simulations to validate the derived results.
Simulation results indicate that the derived upper bounds apply not
only to networks of large sizes and homogeneous nodal distributions
but also to small-size networks with clustering nodal distributions.

1 Introduction

Driven by advances in MEMS micro-sensors, wireless networking, and em-
bedded processing, ad-hoc networks of sensors have become increasingly
available for commercial and military applications such as environmental
monitoring (e.g., traffic, habitat, and security), industrial sensing and di-
agnostics (e.g., factory and appliances), monitoring critical infrastructures
(e.g., power grids, water distribution and waste disposal), and information
collecting for battlefield awareness [1, 9, 13, 14].
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Sensor nodes in such a network usually have limited on-board processing
and wireless communication capabilities, and are equipped with batteries
with limited power. Moreover, it is impractical or infeasible to replenish
energy via replacing batteries on these sensors in most applications. As a
result, it is well perceived that a sensor network should be deployed with
reasonable density (up to 20 nodes/m3 [19]) in order to prolong the network
lifetime.

In a high-density network with energy-constrained sensors, it is neither
necessary nor desirable to have all nodes operate simultaneously in the active
mode. Density control — the function that controls the density of working
sensors at a desirable level — becomes an important issue [24]. Specifically,
density control ensures only a subset of sensor nodes operate in the active
mode, while meeting the following two requirements: (i) coverage: the region
that can be monitored is not smaller than the region that can be monitored
by a full set of sensors; and (ii) connectivity: the sensor network remains
connected so that the information collected by sensor nodes can be relayed
back to data sinks or controllers. In addition, to prolong network lifetime,
it is desirable that nodes wake up on a rotational basis and at any time only
a minimum set of sensors wakes up to maintain coverage and connectivity.
Several authors have proposed several algorithms for this purpose [25, 21,
26, 11, 22].

In this paper, instead of proposing another algorithm for selecting the set
of working sensor nodes, we explore the fundamental limit of sensor network
lifetime that all algorithms can possibly achieve. The derivation is based on
the theory of coverage processes [12] and made under the assumptions that
the locations of the deployed sensors form a Poisson point process in a square
region and that sensor nodes only fail because of power depletion (but not
of malicious destruction). First, we prove that a necessary and sufficient
condition of complete k-coverage of a square region with side length ` (in the
almost surely sense) is the density of the nodes λ = log `2+(k+1) log log `2+
c(`) where c(`) → +∞ as ` → ∞. And consequently, given the density
λ = log `2 + (k + 2) log log `2 + c(`) and c(`) → −∞, the lifetime upper
bound is kT with probability approaching 1 as ` → +∞, where T is a single
sensor lifetime. Second, we derive, given a certain density in a finite (but
still large) region, the upper bounds of the lifetime under the scenario that
only α-portion of the region is required to be covered. In this scenario, we
derive two upper bounds: one holds universally for any possible algorithm,
and the other is targeted for algorithms that attempt to completely cover
the region initially and gradually reduce the coverage ratio, until it drops
below a certain threshold α.

2



We also carry out a simulation study to validate the derived upper
bounds of network lifetime and to study to what extent they can be ap-
plied to networks in which the assumptions do not hold. Simulation results
indicate that the derived upper bounds apply not only to sensor networks of
large sizes and with homogeneous nodal distributions, but also to networks
of small sizes and with non-homogeneous (e.g., clustering) nodal distribu-
tions, although in the latter cases the derived upper bounds may not be
tight.

With our derivation and simulation results, we will be able to answer
several important questions, e.g., given the lifetime T of a single sensor
node, how many sensor nodes (or the sensor density) have to be deployed in
a region, in order to continuously monitor the region for a period of k · T .
We also observe that although it is, in general, desirable to deploy a sensor
network of high density to achieve a large lifetime per unit of nodal density,
the increase in the lifetime per unit of nodal density becomes marginal when
the density exceeds certain threshold. The overhead incurred in maintain-
ing coverage in a distributed manner dominates when the sensor density
becomes high.

Several research efforts have been made to derive the upper bounds of
network lifetime in wireless ad hoc networks and sensor networks [3, 4, 5].
We will give a detailed summary of existing work in Section 6. Our work
is different from existing works in two aspects. First, we consider as the
network lifetime the time interval during which at least α-portion of the
region can be continuously monitored. Second, the lifetime upper bounds
derived in this paper are independent of power-saving schemes used.

The rest of the paper is organized as follows. In Section 2, we state the
assumptions we make on the system model, define what we mean by network
lifetime in sensor networks. Then we present our derivation in Section 3 and
4. Following that, we carry out simulations in Section 5 to validate the
derived results. Finally we summarize the related work in Section 6 and
conclude the paper in Section 7.

2 Preliminary

To facilitate the derivation, in this section we state the assumptions we make
on the system model, and define the network lifetime in sensor networks.
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2.1 Assumptions on the System Model

We assume the region R to be monitored is a square region with side length
`. We further assume torus convention (a.k.a. the toroidal model [16])
described in [12], page 23, i.e., each disk that protrudes one side of the
region R enters R again from the opposite side (Fig. 1). This eliminates
consideration of boundary effects. Each sensor node can detect an event of
interest within a distance of r, and this distance is termed as the sensing
range. The disk centered at a sensor node and with a radius of r is termed
as the coverage disk of this node. Without loss of generality, we assume that
each sensor node has a sensing range of r = 1√

π
and thus each sensor node

can cover a disk of unit area. We assume ` >> r. We assume that each
sensor has the same lifetime of T . This assumption is generally made when
to analyze the network lifetime, for example, in [5].

We assume the deployed sensor nodes in the square region R form a
(homogeneous) Poisson point process with density λ. There are several ways
of defining a Poisson point process, one of which is stated below. First, for
any subset A of the region R, the distribution of the number of nodes in the
set is Poisson with mean λ||A||, where ||A|| is the area of A. Second, given
that the number of nodes in such a set A is m, the node locations in A are
m mutually independent random variables, each uniformly distributed over
A. It is well known that n nodes whose locations are mutually independent
random variables, each with uniform distribution in R, are essentially a
Poisson point process with density λ = n/`2 if R is large ([12], page 39).

As analytically proved in [26], if the radio transmission range is at least
twice as large as the sensing range, network coverage implies connectivity.
That is, as long as the set of working nodes completely covers the monitored
region, the network is connected. We make this assumption so as to facilitate
derivation. As tabulated in Tables 1–2, this assumption holds for most
commercially available sensor devices. A study on the network lifetime when
the above assumption does not hold (and hence one has to consider both
coverage and connectivity in selecting the working set) is a subject of future
investigation.

2.2 Definition of Sensor Network Lifetime

We define the α-lifetime as the entire interval in which at least α portion
of the region R is covered by at least one sensor node, where α is a tunable
parameter.

A discussion on how the α-lifetime defined above compares against the
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Figure 1: The toroidal model. The model can be interpreted by considering
R as simply one member of a lattice of squares and assuming that all nodes
are repeated in precisely the same relative positions in all squares).

lifetime defined in [5] and [24] is in order. Blough and Santi [5] defined the
lifetime of sensor networks as min{t1, t2, t3}, where t1 is the time it takes for
the cardinality of the largest connected components to drop below c1 · n(t),
where n(t) is the number of alive nodes at time t, t2 is the time it takes for
n(t) to drop below c2 ·n(0), and t3 is the time it takes for the area covered to
drop below c3 ·`2. Here 0 ≤ c1, c2, c3 ≤ 1. If we set c1 = 0, c2 = 0 and c3 = α,
then the network lifetime is exactly the same as the α-lifetime defined in this
paper. Under the assumption that the radio range is at least twice as large as
the sensing range (and thus network coverage implies connectivity), it makes
sense to ignore the connectivity requirement imposed by t1 and set c1 = 0.
The requirement imposed by t2 is not really necessary in sensor networks,
since one is usually concerned with how many sensors remain alive but with
whether or not the remaining sensors can perform certain functions such as
monitoring and relaying information back to data sinks.

Ye et al. [24] defined the lifetime as the time it takes for the coverage
(defined as the ratio of the area covered by working nodes to the total
area) to drop below, and never exceed again a pre-determined threshold.
Due to the network dynamics, the coverage may occasionally drop below a
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threshold and come back again. They take into account of the time interval
when the coverage temporarily drops below the threshold in the network
lifetime, while we do not.

3 Asymptotic Upper Bound of 1-Lifetime

In this section, we investigate the asymptotic lower bound on the density λ
required to guarantee full coverage (α = 1) for time kT as the monitored
region ` → +∞. This result can also be interpreted as the asymptotic
1-lifetime upper bound given the density λ of the sensor nodes. For com-
pleteness of the paper, we succinctly summarize several results of coverage
processes [12] that pertain to our derivation in Appendix A.

The problem of deriving the upper bound of the asymptotic 1-lifetime is
highly related to the k-coverage problem, where by k-coverage we mean every
point in the monitored region is covered by at least k nodes. Let the coverage
number denote the maximum value of k such that the sensor network has
k-coverage in the monitored region. It is obvious that the coverage number
k times the lifetime T of a single sensor gives a strict upper bound of the
sensor network 1-lifetime.

Let the k-vacancy Vk denote the area that is covered by at most k − 1
nodes. We need to determine the required density λ such that P (Vk > 0) →
0 as ` → +∞. Let χk(x) denote the indication function of whether a point
x is covered by at most k − 1 sensor nodes, i.e.,

χk(x) =




1, if at most k − 1 nodes cover
the point x,

0, otherwise.
(1)

The fact that a point x is covered by at most k−1 sensor nodes indicates that
there are at most k− 1 sensor nodes within the unit-area disk centered at x
(recall that each sensor can cover a unit-area disk centered at itself). Under
the assumption that the deployed sensors form a Poisson point process, we
have

P (χk(x) = 1) = e−λ

(
k−1∑
i=0

λi

i!

)
. (2)

Now the random variable Vk can be expressed as

Vk =
∫

R
χk(x)dx. (3)
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To calculate its expectation, we use Fubini’s theorem [17] and exchange the
order of integral and expectation, i.e.,

E(Vk) =
∫

R
E(χk(x))dx

=
∫

R
P (χk(x) = 1) dx

= ||R||P (χk(x) = 1)

= `2e−λ

(
k−1∑
i=0

λi

i!

)
, (4)

where the third equality results from the fact that P (χk(x) = 1) is a constant
for all x.

In order to ensure complete coverage for the duration of kT , each point
should be covered by at least k nodes, which implies Vk = 0. As nodes form
a Poisson point process in the region R, it cannot be guaranteed that this
always occurs with a finite density λ, no matter how large λ is. However,
with λ → +∞ as ` → +∞ we can ensure this occurs almost surely, i.e.
P (Vk = 0) → 1 as ` → +∞. This ensures complete k-coverage almost
surely (see Remark 3 after the proof of the theorem below).

In what follows, we establish a tight bound on the density λ that ensures
asymptotic complete k-coverage.

Theorem 1 Let λ = log `2 + (k + 1) log log `2 + c(`). If c(`) → +∞ as
` → +∞, then P (Vk > 0) → 0. If c(`) ≤ C < +∞, then P (Vk > 0) ≥ ε as
` → +∞, where ε = 1/(1 + 4eC(k + 1)!).

Proof. First we prove if c(`) → +∞ as ` → +∞, P (Vk > 0) → 0. Clearly
if the value of λ increases, P (Vk > 0) will decrease. Hence we assume that
c(`) = o(log `2).

Define a crossing to be either an intersection point of the boundaries of
two disks or an intersection point of the boundary of a disk and the boundary
of region R. A crossing is said to be k-covered if it is an interior point of at
least k disks. By Theorem 4 in [22], region R is completely k-covered if there
exist crossing points and every crossing point is k-covered. Equivalently, if R
is not completely k-covered and there exist crossings, some of the crossings
are not k-covered.

With λ → +∞ as ` → +∞ and πr2 = 1, we can write

P (Vk > 0) = p1 + p2 + p3, (5)
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where

p1 ≡ P (no disk is centered within R)
= exp(−λ`2) → 0, (6)

p2 ≡ P (at least one disk is centered within R, but
none of the disks intersects any other disk and
none of the disks intersect the boundary of R)

≤ P (at least one disk is centered within R)
×P (a given disk intersects no other disks)

= (1− exp(−λ`2))× exp(−λπ(2r)2)
≤ exp(−4λ) → 0, (7)

and

p3 ≡ P (R is not completely k-covered, at least
one disk is centered within R, and at least
two disks intersect each other or at least
one disk intersects the boundary of R). (8)

Therefore

P (Vk > 0) → p3 as ` → +∞. (9)

Next we derive an upper bound of p3.
If R is not completed k-covered, if one or more disks are centered within

R, and if there exist crossings in R, then at least one of the disks has two or
more un-k-covered crossings on its boundary. Let Mk denote the number of
crossings that are not k-covered. Then we have

p3 ≤ P (Mk ≥ 2) ≤ E(Mk)/2. (10)

We first consider crossings created by two disks intersecting each other.
The expected number, D, of nodes in region R is λ`2. If any two nodes
are within a distance of 2r from each other, their coverage disks intersect.
Hence, the expected number of crossings created by a given node is 2λπ(2r)2.
Since each crossing is counted twice, the expected value of the total number,
N1, of crossings created by two disks intersecting each other is given by

E(N1) = λ`2 · λπ(2r)2 = 4λ2`2. (11)

Now we consider crossings created by a disk intersecting the boundary of
region R. If a node is within a distance of r to the boundary of region R,
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at most two crossings will be created, except when the node is located on
the corner of region R (e.g., Region 3 in Fig. 1). In that case, at most 4
crossings will be created. Hence the expected value of the total number, N2,
of crossings created by a disk intersecting the boundary of region R is given
by

E(N2) ≤ 8λ`r. (12)

Recall that the probability that a given crossing is not k-covered is e−λ
∑k−1

i=0 λi/i!
(Eq. (2)). By Eqs. (11) and (12), we have

E(Mk) = (E(N1) + E(N2)) · e−λ
k−1∑
i=0

λi

i!

≤ (4λ2`2 + 8λ`r)e−λ
k−1∑
i=0

λi

i!

= 4λ2`2(1 + o(1)) · e−λ
k−1∑
i=0

λi

i!
. (13)

Since λ → +∞ as ` → +∞, by Eqs. (10) and (13) we have

p3 ≤ 2λ2`2(1 + o(1))e−λ
k−1∑
i=0

λi

i!

= 2`2e−λ λk+1

(k − 1)!
(1 + o(1)). (14)

If λ = log `2 + (k + 1) log log `2 + c(`), then λ1 ≡ λ − log `2 = (k +
1) log log `2 + c(`). By the reasoning at the beginning of the proof, we can
assume c(`) = o(log `2) as ` → +∞, and hence λ1 = o(log `2). This gives
λk+1 = (log `2)k+1(1 + o(1)), and hence

p3 ≤ 2λk+1

(log `2)k+1ec(`)(k − 1)!
(1 + o(1))

=
2(1 + o(1))
ec(`)(k − 1)!

. (15)

Since c(`) → +∞ as ` → +∞, p3 → 0 as ` → +∞. The first part is proved.
Now we prove that if c(`) ≤ C for some finite C as ` → +∞, P (Vk >

0) ≥ ε for ε = 1/(1 + 4eC(k + 1)!). By the Cauchy-Schwartz inequality, we
have

E(Vk) = E(VkI(Vk > 0))

9



≤ (
E(V 2

k )E(I2(Vk > 0))
)1/2

=
(
E(V 2

k )P (Vk > 0)
)1/2

, (16)

and

P (Vk > 0) ≥ (EVk)2

E(V 2
k )

. (17)

Eq. (4) gives the expression of E(Vk). We now derive the bound of E(V 2
k ).

By definition, we have

E(V 2
k ) = E

(∫ ∫
R2

χk(x1)χk(x2)dx1dx2

)

=
∫ ∫

R2

E (χk(x1)χk(x2)) dx1dx2

≡ I1 + I2, (18)

where

I1 ≡
∫ ∫

R2∩{|x1−x2|>2r}
E (χk(x1)χk(x2)) dx1dx2

I2 ≡
∫ ∫

R2∩{|x1−x2|≤2r}
E (χk(x1)χk(x2)) dx1dx2.

For |x1 − x2| > 2r,χk(x1) and χk(x2) are independent, and E(χk(x)) =
e−λ

∑k−1
i=0 λi/i! for all x. Hence,

I1 ≡
∫ ∫

R2∩{|x1−x2|>2r}
E (χk(x1)χk(x2)) dx1dx2

=
∫ ∫

R2∩{|x1−x2|>2r}
Eχk(x1)Eχk(x2)dx1dx2

≤
∫ ∫

R2

Eχk(x1)Eχk(x2)dx1dx2

=

(
`2e−λ

k−1∑
i=0

λi

i!

)2

= (E(Vk))2 . (19)

What is left is the derivation of I2. Let B1 and B2 denote the unit-area
disks centered at x1 and x2, respectively. If |x1 − x2| = x ≤ 2r and x1 and
x2 are given, then

E (χk(x1)χk(x2))
= P (Both B1 and B2 contain less than k nodes)
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≤ P (B1 contains less than k nodes, B2 −B1

contains less than k nodes)
= P (B1 contains less than k nodes)×

P (B2 −B1 contains less than k nodes) (20)

The last equality results from the fact that B1 and B2−B1 are disjoint and
thus the number of nodes that are located in them are independent (under
the Poisson point process assumption).

P (B1 contains less than k nodes) = e−λ
k−1∑
i=0

λi

i!
. (21)

Let B(u) denote the intersection area of the two unit-area disks whose cen-
ters are 2u apart. Then,

B(u) = 4
∫ 1

u
(1− y2)1/2dy = π − 4

∫ u

0
(1− y2)1/2dy (22)

Now the second term of Eq. (22) can be expressed as∫ u

0
(1− y2)1/2dy = (u/2){u−1 arcsin u + (1− u2)1/2}

≥ (u/2) arcsin 1 = (π/4)u, (23)

since u−1 arcsin u + (1 − u2)1/2 is decreasing on (0,1). Hence the area of
B2 −B1 is

||B2 −B1|| = r2(π −B(x/(2r)))
≥ r2 · 4(π/4) · x/(2r) = x/(2r).

Therefore,

P (B2 −B1 contains less than k nodes)

= e−λ||B2−B1||
k−1∑
i=0

(λ||B2 −B1||)i
i!

≤ e−λx/(2r)
k−1∑
i=0

(λx/(2r))i

i!
, (24)

since e−x
∑k−1

i=0 xi/i! is decreasing on [0,+∞).
By Eqs. (20), (21) and (24), we can express I2 as

I2 ≡
∫ ∫

R2∩{|x1−x2|≤2r}
E{χk(x1)χk(x2)}dx1dx2
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≤
∫

R

dx1

∫ 2r

0

(
e−λ

k−1∑
i=0

λi

i!

)

·
(

e−λx/(2r)
k−1∑
i=0

(λx/(2r))i

i!

)
2πxdx

= `2

(
e−λ

k−1∑
i=0

λi

i!

)(∫ 1

0

e−λu
k−1∑
i=0

(λu)i

i!
8udu

)
, (25)

where the last equality is obtained by changing variable u = x/(2r). The
third factor in Eq. (25) can be further simplified as follows.

∫ 1

0
e−λu

k−1∑
i=0

(λu)i

i!
· 8udu

≤
∫ +∞

0
e−λu

k−1∑
i=0

(λu)i

i!
· 8udu

=
∫ +∞

0
e−λu

k−1∑
i=0

λiui+1

i!
· 8du

=
k−1∑
i=0

λ−2Γ(i + 2)
i!

· 8

= λ−2
k−1∑
i=0

(i + 1) · 8

= 4k(k + 1)λ−2. (26)

Hence we have

I2 ≤ 4k(k + 1)λ−2`2

(
e−λ

k−1∑
i=0

λi

i!

)
. (27)

Combining Eqs. (17), (18), (19) and (27), we have

P (Vk > 0)

=
E(Vk)2

E(V 2
k )

≥ (EVk)
2

(EVk)
2 + 4k(k + 1)λ−2`2

(
e−λ

∑k−1
i=0

λi

i!

)
≡ 1

1 + β
, (28)
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where

β ≡
4k(k + 1)λ−2`2

(
e−λ

∑k−1
i=0

λi

i!

)
(EVk)2

=
4k(k + 1)λ−2`2

(
e−λ

∑k−1
i=0

λi

i!

)
(
`2e−λ

∑k−1
i=0

λi

i!

)2

=
4k(k + 1)λ−2

`2e−λ
∑k−1

i=0
λi

i!

≤ 4k(k + 1)
`2e−λλk+1/(k − 1)!

.

Let λ1 ≡ λ− log `2 = (k + 1) log log `2 + c(`). By the assumption c(`) ≤ C,
with sufficiently large `, we have λ1 > 0, and

β ≤ 4ec(`)(log `2)k+1(k + 1)!
(log `2 + λ1)k+1

≤ 4eC(k + 1)!. (29)

It then follows from Eqs. (28) and (29) that

P (Vk > 0) ≥ (EVk)2

E(V 2
k )

≥ 1
1 + 4eC(k + 1)!

. (30)

This completes the proof. �

Remark 1 If we let c(`) → −∞, and λ = log `2 + (k + 1) log log `2 + c(`),
we can conclude P (Vk > 0) → 1 as ` → +∞.

Remark 2 If we let −(k + 1) log log `2 ≤ c(`) ≤ C, then P (Vk > 0) ≥
1/(1+4eC (k +1)!) is true for any finite `, since the second part of the proof
does not require any asymptotic property in this case.

Remark 3 The terms “complete k-coverage” and “Vk = 0” have been
used interchangeably, as it has been proved (for the case of k = 1) in [12]
that the probability of their difference goes to 0 if the region is open and the
coverage shape (e.g., the disk in the paper) is closed. It has also been stated
in [12] that the same conclusion holds for any regular region and shape.
(The interested reader is referred to the discussions following Theorem 3.3
in [12]). The proof can also be extended to the case of any finite k.

The following corollary is an obvious consequence of Theorem 1 and
Remark 1.
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Corollary 1 If λ = log `2 + (k + 2) log log `2 + c(`), and c(`) → −∞ as
` → +∞, then the upper bound of the 1-lifetime is kT with probability ap-
proaching 1, where T is the lifetime of each sensor.

It is interesting to observe from Corollary 1 that the node density re-
quired to achieve a 1-lifetime of kT is not equal to k times the required
density for asymptotic coverage. As a matter of fact, the former is much
smaller than the latter. This is because with a larger node density, one
can make better use of coverage areas of sensor nodes. This trend will be
confirmed again in the following sections.

In many cases, it may not be necessary to require P (Vk > 0) → 0.
One way of relaxing the requirement is to derive the density requirement
for E(Vk) → 0 as ` → +∞. We give a tight lower bound for this in the
following theorem.

Theorem 2 Let λ = log `2 + (k − 1) log log `2 + c(`). If c(`) → +∞ as
` → +∞, then E(Vk) → 0; if c(`) ≤ C < +∞, then E(Vk) ≥ e−C/(k − 1)!
as ` → +∞.

Proof. Since E(Vk) decreases as λ increases, we can assume c(`) = o(log log `2)
in the first case (` → +∞) and c(`) = C in the second case (c(`) ≤ C).
Thus in both cases we have λ → +∞ as ` → +∞ and λi = o(λi+1). Let
λ1 ≡ λ − log `2 = (k − 1) log log `2 + c(`). When ` is sufficiently large, we
have λ1 > 0 and λ1 = o(log `2). Therefore,

E(Vk) = `2 exp(−λ)

(
k−1∑
i=0

λi

i!

)

= `2 exp(−λ)

(
λ(k−1)

(k − 1)!
(1 + o(1))

)

= `2 exp(−λ1 − log`2)

(
λ(k−1)

(k − 1)!
(1 + o(1))

)

= exp(−λ1)

(
λ(k−1)

(k − 1)!
(1 + o(1))

)

= exp(−((k − 1) log log `2 + c(`)))(
(log `2)k−1(1 + o(1))

(k − 1)!
(1 + o(1))

)

= exp(−c(`))
(

1 + o(1)
(k − 1)!

)
. (31)

If c(`) → +∞ as ` → +∞, we have E(Vk) → 0 since k is finite. If c(`) ≤
C < +∞ as ` → +∞, we have E(Vk) ≥ e−C/(k − 1)! as ` → +∞. �.
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Remark If we let c(`) → −∞, we have E(Vk) → +∞ as ` → +∞.

4 Upper Bound of α-Lifetime in Finite Regions

The asymptotic upper bound of the 1-lifetime derived in Section 3 gives the
required node density in order to achieve complete coverage as the mon-
itored area grows to infinity (` → ∞). However in practice one may be
more interested in knowing how many nodes should be deployed (or, equiv-
alently, what is the node density) in order to achieve the α-lifetime in a finite
region. Results derived in Section 3 cannot be directly applied to answer
this question, as they are derived for complete coverage for infinitely large
regions.

In this section, we consider the α-lifetime in a finite region with a finite
density of sensor nodes, where 0 < α < 1 and usually α is close to 1. We
derive two bounds: (i) an upper bound of α-lifetime for a special family of
algorithms in which the entire region is completely covered initially, and the
coverage ratio is gradually reduced until it drops below a certain threshold
α; and (ii) an upper bound of α-lifetime that applies to algorithms that
maintain the coverage ratio of α from the beginning of network deployment.
The second bound applies to any algorithm.

4.1 Upper Bound of α-Lifetime for a Special Family of Al-
gorithms

We first derive the upper bound of α-lifetime for the family of algorithms
that intend to completely cover the region initially and gradually reduce the
coverage ratio, until it drops below a certain threshold α.

We can divide the entire region R into several sub-regions R0, R1, · · · , Rn,
where all points in Ri are exactly covered by i sensor nodes (Fig. 2). Thus
Vk =

∑k−1
i=0 ||Ri|| and 1 − Vk/`

2 is the portion of the region in which each
point is covered by at least k nodes. We can also divide the network lifetime
into rounds with the duration of each round set to T . In each round, a
minimum set of nodes which are not chosen in previous rounds and have
maximum coverage is chosen to operate. Thus after k rounds, the maximum
possible coverage ratio is at most 1 − Vk+1/`

2. Clearly, if α > 1 − Vk+1/`
2,

the sensor network can not provide coverage ratio α any more. Thus the
upper bound of α-lifetime is

L(λ, α) = max{k : α ≤ 1− Vk/`
2} · T. (32)
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Figure 2: The entire region R can be divided into different sub-regions:
R0, R1, · · · , Rn, where all points in Ri are exactly covered by i nodes.

As Vk’s are random variables whose distributions are difficult, if not
impossible, to obtain. For analysis tractability, we use E(Vk) to approximate
Vk and hence the resulting α-lifetime can be regarded as the average α-
lifetime:

G(λ, α) = max{k : α ≤ 1− F (k, λ)} · T, (33)

where

F (k, λ) = E(Vk)/`2 = exp(−λ)

(
k−1∑
i=0

λi

i!

)
. (34)

As a matter of fact, G(λ, α) is not the expectation of L(λ, α). However,
we prove in the following theorem that it suffices to approximate Vk with
E(Vk) in regions of large area.

Theorem 3 As ` → +∞ and n/`2 → λ, Vk/`
2 → F (k, λ) almost surely,

where F (k, λ) is defined in Eq. (34).

Proof. Refer to Appendix B for the proof.

Numerical examples Figure 3 depicts the average α-lifetime G(λ, α)
and the average α-lifetime per unit density G(λ, α)/λ versus the minimum
density λ required to achieve the average α-lifetime of kT under the cases
of α = 0.95 and 0.99, where we let T = 1. The average α-lifetime per unit
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density increases as the node density λ increases. This coincides with our
earlier observation in the asymptotic case that a higher density of sensors
leads to better utilization of coverage areas.

4.2 Upper Bound of Lifetime for All Algorithms

Several sensor network applications do not require that full coverage be
maintained. Instead it is sufficient to maintain the coverage ratio above a
certain threshold α throughout the network lifetime. In this case, energy
can be saved by maintaining α-coverage since the network is initialized. In
this section, we derive the upper bound of the network lifetime in this case.
Note that this upper bound can be applied to all algorithms that maintain
α-coverage. For analysis tractability, again we use E(Vk) to approximate
Vk. The following theorem establishes the upper bound of the lifetime.

Theorem 4 Let γi , 1 − E(Vi)/l2 and βi , γi − γi+1. Then the upper
bound of α-lifetime for a sensor network with density λ is⌊

min
k:α>γk

H(k, α) ,
∑k−1

i=1 iβi

α− γk

⌋
· T, (35)

where bxc is the maximum integer that is less than or equal to x.

Proof. We still divide the entire region R into different sub-regions R0, R1, · · · ,
where all points in Ri are exactly covered by i nodes. By definition, γk rep-
resents the portion of region R that is covered by at least k nodes and βk

represents the portion of region R that is covered by exactly k nodes. Thus
βk = ||Rk||/||R||.

For each k such that γk < α, in each round of time T , the working nodes
must cover α portion of the region R, among which at least α− γk portion
must come from R1∪· · ·∪Rk−1 since ∪i≥kRi can provide at most γk coverage
(and R0 is not covered by any node). On the other hand, for each i < k,
the total coverage contribution of region Ri throughout the lifetime is at
most iβi (since it can provide βi portion of coverage for i rounds). Hence,
the total amount of coverage R1, R2, · · · , Rk−1 can contribute throughout
the lifetime over all rounds is

∑k−1
i=1 iβi. Therefore, the maximum lifetime is

upper bounded by ⌊∑k−1
i=1 iβi

α− γk

⌋
· T. (36)

Since this is true for every k such that α > γk, the α-lifetime is upper
bounded by Eq. (35). �
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Figure 4: In each round, α−γ3 portion of the region must come from region
R2 and R1 to ensure α-coverage. The total lifetime “contribution” R1 and
R2 can make over all rounds is β1 + 2β2. Hence the α-lifetime is upper
bounded by (β1 + 2β2)/(α − γ3).

As an example, as shown in Figure 4, in each round, α−γ3 portion of the
region must come from region R2 and R1 to ensure α-coverage since α > γ3.
The total lifetime “contribution” R1 and R2 can make over all rounds is
β1 + 2β2. Hence the α-lifetime is upper bounded by (β1 + 2β2)/(α − γ3).

Recall in the proof of Theorem 4, in each round we divide the entire
region into two sub-regions. In the first sub-region, each point is covered by
at least k nodes and in the second sub-region, each point is covered by at
most k − 1 nodes. The proof of Theorem 4 only considers the limit implied
by the second sub-region. In what follows, we prove that the first sub-region
can always provide γk portion coverage for at least bH(k, α)c rounds for the
k that minimizes H(k, α).

Theorem 5 Let k = arg mini:α>γi H(i, α), then

k ≥ H(k, α).

Proof. To facilitate the proof, we first give several nice properties of H(k, α)
in the next lemma.

Lemma 1 For all k such that α > γk, H(k, α) given in Eq. (35) has the
following properties:

(i) If H(k, α) > k, H(k, α) monotonically decreases as k increases;
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(ii) If H(k, α) < k, H(k, α) monotonically increases as k increases;

(iii) If H(k, α) = k, then H(k, α) = H(k + 1, α);

(iv) If H(k, α) > k, then H(k + 1, α) > k;

(v) If H(k, α) = k, then H(k + 1, α) = k;

(vi) If H(k, α) < k, then H(k + 1, α) < k.

Proof. Refer to Appendix C.
Now since k = arg mini:α>γi H(i, α), if H(k, α) > k, by property (i) in

Lemma 1, H(k, α) > H(k + 1, α). Since γk+1 < γk < α, this contradicts our
assumption that k = arg mini:α>γi H(i, α). So H(k, α) ≤ k. �

The above theorem can be used to prove that the lifetime upper bound
given in Theorem 4 is tight. This is given in the next Corollary.

Corollary 2 The upper bound in Theorem 4 is tight if we can arbitrarily
select the region(s) to be covered to provide exactly α-coverage in each round.

Proof. In each round, we select all the regions that are covered by at least
k nodes (which is γk portion of the region R). In addition, we select α− γk

portion in the regions that are covered by less than k nodes. Then in each
round α-coverage is achieved and at least bH(k, α)c rounds can be supported
because H(k, α) ≤ k. �

Let Ho(λ, α) , bmink:α≥γk
H(k, α)c, where H(k, α) is given in Eq. (35).

Lemma 1 also suggests a quick method for finding Ho, which is given in the
following Corollary.

Corollary 3 (i) Ho(λ, α) = maxα>γk
{k : H(k, α) ≥ k},

(ii) Ho(λ, α) = minα>γk
{k : H(k, α) < k} − 1.

Proof. (i) By Lemma 1 (i), (v) and (vi), j ≡ max{k : H(k, α) ≥ k} exists
and is unique. We consider two cases: H(j, α) = j and H(j, α) > j.

If H(j, α) = j, by the definition of j, H(k, α) < k for any k > j. By
Lemma 1 (ii), (iii), and induction on k, H(k, α) ≥ H(j, α) for all k > j.
For any k < j such that α > γk, we claim that H(k, α) > k. Otherwise
H(k, α) ≤ k. By Lemma 1 (v), (vi), and induction on all m ≥ k, H(m +
1, α) ≤ m. Thus H(j, α) < j and this contradicts the definition of j. Since
H(k, α) > k for any k < j such that α > γk, by Lemma 1 (i) and induction,
H(k, α) > H(j, α). Thus, H(j, α) = j is the minimum of H(k, α) for all k
such that α > γk.
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If H(j, α) > j, by the definition of j, H(k, α) < k for all k > j. By
Lemma 1 (ii) and induction on k, H(k, α) > H(j + 1, α) for all k > j + 1.
For any k ≤ j such that α > γk, we claim that H(k, α) > k. Otherwise,
H(k, α) ≤ k. By Lemma 1 (v), (vi) and induction on all m ≥ k, H(m +
1, α) ≤ m. Hence H(j, α) < j and contradicts the definition of j again. So
we can see that H(j+1, α) is the minimum of H(k, α) for all k such that α >
γk. In addition since H(j, α) > j, by Lemma 1 (iv), H(j +1, α) > j. By the
definition of j, H(j+1, α) < j+1. As a result, Ho(λ, α) = bH(j+1, α)c = j.

The proof for (ii) is similar, and is thus omitted. �

Numerical examples Figure 5 gives the upper bound of the lifetime de-
rived in Section 4.1 and that in this subsection, and their respective lifetime
per unit of density. As compared with the upper bound of the lifetime de-
rived in Section 4.1, the “universal” upper bound of the lifetime increases
by 15% for 99%-coverage and over 20% for 95%-coverage. The upper bound
of the lifetime per unit density increases as the density increases in general,
and slightly decreases at certain density values. This is because the upper
bound of the lifetime does not change for the slight increase in the node den-
sity λ. It is not surprising to observe that the lifetime per unit density can
be more than 1 in some cases, because less than 100%-coverage is required
in each round.

Another interesting finding is that although it is, in general, desirable
to deploy sensors with high density to achieve a large lifetime per unit of
nodal density, the increase in the lifetime per unit of nodal density levels
off when the density exceeds certain threshold. The overhead incurred in
maintaining coverage in a distributed manner dominates when the sensor
density becomes very high.

5 Simulation Study

In this section, we carry out several sets of simulations to validate the theo-
retical lifetime upper bound. Since it is difficult, if not impossible, to simu-
late 1-lifetime for the infinite dimension case, our simulation study focuses
on validating the upper bound of α-lifetime in a reasonably large area.

5.1 Simulation Methodology

We use N independently and randomly distributed disks with uniform dis-
tribution to approximate a Poisson point process. In a square region with
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1000×1000 pixels, we randomly generate N disks, each with radius r. The
centers of the N disks are independently and randomly distributed in the
square region with uniform distribution. Then for each pixel we count the
number of disks that cover it. We term this as the coverage number of each
pixel. For each value of α, we calculate Vi as the number of pixels that have
coverage number less than i. With the simulated value of Vi, we calculate
the upper bound of the lifetime for the special class of algorithms using
Eq. (32), and that for all algorithms using Eq. (35). These upper bounds
thus calculated correspond to the theoretical upper bounds of the lifetime
in Section 4.1 and in Section 4.2 respectively. The lifetime of a single sensor
T is set to 1. The network density is evaluated as

Nπr2

1000000
.

All the results reported below are averages of 50 simulation runs.
Note that decreasing the disk radius with the side length of the square

area fixed has the same effect of increasing the side length of the square
area with the disk radius fixed. For each value of α we vary the disk radii
over different runs (but keep the radii of all disks constant in each run)
to investigate how the area size of the region affects the upper bound of
the lifetime. For each value of α and disk radius, we vary the number of
sensors to change the node density. As the same trend has been observed
for different values of α, in what follows we only report results for α = 0.95.

5.2 Simulation Results

Figure 6 shows the theoretical and simulated upper bound of the network
lifetime. In particular, Fig. 6 (a) shows the upper bound of the lifetime
for a special class of algorithms, derived in Section 4.1, while Fig. 6 (b)
shows the upper bound of the lifetime for all algorithms, derived in Section
4.2. When the disk radius decreases (which is equivalent to increasing the
side length of the area but keeping the disk radius fixed), the simulated
upper bounds become closer to the theoretical upper bounds. This is exactly
what Theorem 3 states: when the size of the monitored region increases,
Vk will asymptotically converge to E(Vk), and thus we can use E(Vk) to
approximate Vk for large sensor networks. In addition, Fig. 6 also suggests
that even when the monitored region is small, the theoretical upper bound
is still an upper bound, although it may not be tight.
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Clustering Sensor Distribution As sensors may not be uniformly dis-
tributed in reality, in this set of simulations we study if the theoretical
upper bound of network lifetime still serves as an upper bound in the case
of clustering nodal distribution. We randomly place sensor nodes using the
following clustering method: we first generate K clusters with centers ran-
domly distributed in the 1000×1000 square area R. The radius of each
cluster is rc. Then in each cluster, we randomly generate S sensors. The
radius of the coverage area of each sensor is still r. With this configuration,
the overall sensor density is evaluated as

K · S · πr2

1000000
.

As we conjecture that with a fixed overall density, the sensor density within
each cluster (which is defined as S·πr2

πr2
c

) will affect the lifetime upper bound,
we fix the overall density by fixing r, rc, and K · S, but vary S to evaluate
the upper bound of the lifetime. We evaluate three different values of S: 10,
30, 100, while fixing r = 3 and rc = 30.

Figure 7 (a) and (b) show, respectively, both simulation results and
theoretical results (derived in Section 4.1 and in Section 4.2) of the upper
bounds of 95%-lifetime under the clustering node distribution. The topmost
curve is the theoretical result (under the uniform nodal distribution), while
the second curve, which is almost indistinguishable from the topmost curve,
is the simulation result under the uniform nodal distribution. The bottom
three curves are simulation results under the clustering node distribution
with respect to different values of S. As the node density within each cluster
increases (but the average density over the whole area R is kept the same),
the upper bound of α-lifetime decreases.

6 Related Work

Several researchers [23, 6, 20, 24, 25, 21, 26, 11, 22] have addressed various
methods of minimizing energy consumption and prolonging network lifetime
in sensor networks. For example, GAF [23] conserves energy by dividing a
region into rectangular grids, ensuring that the maximum distance between
any pair of nodes in adjacent grids is within the transmission range of each
other, and electing a leader in each grid to stay awake and relay packets
(while putting all the other nodes into sleep). The leader election scheme in
each grid takes into account of battery usage at each node.

SPAN [6], on the other hand, decides if a node should be working or
sleeping based on connectivity among its neighbors.
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Slijepcevic et al. [20] address the problem of finding the maximal num-
ber of covers in a sensor network, where a cover is defined as a set of nodes
that can completely cover the monitored area. They prove the NP com-
pleteness of this problem, and provide a centralized heuristic solution which
approaches the upper bound of the solution under most cases.

Ye et al. [24, 25] present PEAS, a distributed, probing-based density
control algorithm for robust sensing coverage. In this work, a subset of
nodes operate in the active mode to maintain coverage while others are put
into sleep. It ensures no two active nodes are in the proximity of each other
but does not preserve complete coverage.

Tian et al. [21] devise an algorithm that ensures complete coverage using
the concept of “sponsored area.” Whenever a sensor node receives a packet
from one of its working neighbors, it calculates its sponsored area (defined
as the maximal sector covered by the neighbor). If the union of all the
sponsored areas of a sensor node covers the coverage disk of the node, the
node turns itself off.

Zhang and Hou [26] analyze the relationship between complete coverage
and connectivity, develop some optimal conditions of maintaining coverage,
and devise a localized method to maintain coverage and connectivity based
on the optimal conditions.

Wang et al. [22] analyze the relationship between k-coverage and j-
connectivity, prove a sufficient condition for satisfying k-coverage and pro-
pose an algorithm (combined with SPAN [6]) to maintaining coverage and
connectivity based on the sufficient condition.

Gupta et al. [11] devise both a centralized and a distributed algorithm
to find a subset of nodes that ensure both coverage and connectivity. The
centralized algorithm guarantees that the size of the formed subset is within
O(log n) factor of the optimal size, where n is the network size.

Although all the above methods are targeted for prolonging the network
lifetime, most of them do not perform any analysis on the network lifetime.
Recently, research efforts have also been made to analyze the upper bound of
the lifetime for ad hoc and/or sensor networks [3, 4, 5, 7]. Bhardwaj et al. [3,
4] study the upper bound of the lifetime of data gathering sensor networks.
They assume the data source is randomly distributed in a region with a
certain p.d.f function and the data sink is located at a fixed point. They
calculate the minimum power required to transmit a bit from the source to
the sink and then compute the upper bound of the network lifetime based
on the minimum power consumption. In [4] they do not consider network
topology or the effect of data aggregation of data streams. In [3] they extend
the work in [4] by taking into account of these factors and deriving the
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upper bound of the network lifetime for networks with arbitrarily complex
capabilities. However, their model only considers the power consumption
when sensor nodes sense active events, process, transmit and/or receive
data, but not when sensor nodes are monitoring but sense no active events.
As shown in the empirical study in [19, 10], energy is consumed not only
by active communications, but also by wireless devices in the idle and/or
sensing state. As a matter of fact, the energy consumed by wireless devices
in the idle and/or monitoring state is only a little less than that in the
transmitting or receiving states. Thus it makes more sense to derive the
network lifetime under the scenario that only a minimum set of sensors are
turned on, while the other sensors operate in the low-power mode (or sleep
mode).

Blough and Santi [5] study the upper bound of the network lifetime for
cell-based energy conservation techniques. While the bound derived does
consider energy consumption both in the transmitting/receiving state and
in the idle state, it is restricted to the GAF scheme proposed in [23]. In
contrast, the lifetime derived in this paper is independent of power-saving
schemes used.

Coleri et al. [7] investigate the lifetime of networked sensor nodes where
sensors are organized in a tree-based multi-hop networks. They analyze the
lifetime of nodes in four different groups based on their distances to the
data sink using the finite automata technique. However, their analysis is
primarily on the lifetime of individual nodes instead of that of the network.

7 Conclusions

In this paper we have investigated the upper bound of α-lifetime for large
scale sensor networks. We first derive the asymptotic node density required
to ensure full coverage for the duration of k times the lifetime of a single
sensor (in the almost surely sense) in large sensor networks, as the network
size approaches infinity. Then we derive the upper bound of α-lifetime in
a finite region with a finite density of nodes. In particular, we derive two
bounds: (i) an upper bound of α-lifetime for a special family of algorithms
in which the entire region is completely covered initially, and the coverage
ratio is gradually reduced until it drops below a certain threshold α; and (ii)
an upper bound of α-lifetime that applies to algorithms that maintain the
coverage ratio of α from the beginning of network deployment. We carry out
several sets of simulations to validate the derived results. The simulation
results indicate that the derived upper bounds of the network lifetime apply

28



not only to extremely large areas, but also to small areas and areas in which
sensor nodes are clustered (rather than uniformly distributed as assumed in
the derivation), although the derived upper bounds for the latter two cases
may not be tight.

With our derivation, we are able to determine, given the lifetime T of a
single sensor node, how many sensor nodes have to be deployed in a region,
in order to continuously monitor the region for a period of k · T . Also, we
observe that although it is, in general, desirable to deploy sensors with high
density to achieve a large lifetime per unit of nodal density, the increase in
the lifetime per unit of nodal density becomes marginal when the density
exceeds certain threshold. The overhead incurred in maintaining coverage
in a distributed manner dominates when the sensor density becomes high.

We have identified several research avenues. In particular, we will relax
the assumption that the radio transmission range is at least twice as large
as the sensing range, and derive the upper bound of the network lifetime
by considering jointly coverage and connectivity. Note, however, that the
upper bounds derived in this paper serve as upper bounds (although not as
tight) even when the assumption does not hold.
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A Results of Coverage Processes

For completeness of the paper, we summarize some of the results on asymp-
totic coverage drawn from [12] that pertain to our derivation in Section 3.

Let the vacancy V (`, λ) denote the area that is not covered by any node,
Si the coverage disk of node i, and χ(x) an indication function of whether
a point x is covered by any coverage disk, i.e.,

χ(x) =
{

1, if for all i, x /∈ Si,
0, otherwise.
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When all nodes are randomly placed on the region R, V is a random variable
that can be expressed as

V = V (R) =
∫

R
χ(x)dx. (37)

To calculate the expectation of V , we use Fubini’s theorem and take the
expectation within the integral in Eq. (37). That is,

E(V ) =
∫

R
E(χ(x))dx

= ||R||E(χ(x))dx
= `2 exp(−λ). (38)

We have used interchangeably the terms complete coverage and vacancy
area is 0 throughout the paper. This is supported by the following theorem
(Theorem 3.3 in [12]).

Theorem 6 Let C be a Boolean model in Rk in which covering shapes are
distributed as S. If R is an open subset of Rk, S is a random closed set with
E(||S||) < +∞, and V is the vacancy area, then

P (V = 0;R is not completed covered) = 0.

Although the theorem requires R be an open subset, it can be generalized
to the case that R is closed and regular. The interested reader is referred to
the discussions after the theorem in [12].

B Proof of Theorem 3

Without loss of generality, we assume l is an integer. We can divide the
region R = [0, l] × [0, l] into unit grids: R = ∪0≤i,j≤l−1,D(i, j), where
D(i, j) = [i, i + 1] × [j, j + 1]. Now, let Vk(i, j) = Vk ∩D(i, j). Since each
disk is of radius r = 1/

√
π, if two grids D(i, j) and D(i′, j′) are separated

by at least 2r, then Vk(i, j) and Vk(i′, j′) are independent variables by the
assumption of Poisson point process. Thus we can divide the Vk(i, j)’s into
(finite) m groups I1,I2, · · · ,Im, and Vk’s in each group are independent of
each other. As such, we can write

∑
0≤i,j≤l−1

Vk(i, j) =
∑

(i,j)∈I1

Vk(i, j) + · · ·
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+
∑

(i,j)∈Im

Vk(i, j), (39)

where for each p the variables {Vk(i, j) : (i, j) ∈ Ip} are stochastically inde-
pendent. The number np of elements in each Ip go to +∞ while the number
m of groups is a finite constant as l → +∞, and ∪pIp = [0, l]× [0, l]. By the
strong law of large numbers,

n−1
p

∑
(i,j)∈Ip

Vk(i, j) → F (k, λ) (40)

almost surely as l → +∞ for 1 ≤ p ≤ m. Hence,

lim
l→+∞

Vk

l2

= lim
l→+∞

∑
p

∑
(i,j)∈Ip

Vk(i, j)∑
p np

= lim
l→+∞

∑
p

∑
(i,j)∈Ip

Vk(i, j)

np
· np∑

p np

= lim
l→+∞

∑
p

np∑
p np

· F (k, λ)

= F (k, λ) (41)

almost surely. This completes the proof. �

C Proof of Lemma 1

First we prove (i) H(k, α) monotonically decreases as k increases if H(k, α) >
k. We need to show that H(k, α) > H(k + 1, α). Since we only consider k
such that α > γk,

H(k, α) > H(k + 1, α)

⇔
∑k−1

i=1 iβi

α− γk
>

∑k
i=1 iβi

α− γk+1

⇔ (α− γk+1)(
k−1∑
i=1

iβi) > (α− γk)(
k∑

i=1

iβi)

⇔ (γk − γk+1)(
k−1∑
i=1

iβi) > kβkα− kγkβk

⇔ βk(
k−1∑
i=1

iβi) > kβkα− kγkβk
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⇔
k−1∑
i=1

iβi > k(α− γk)

⇔ H(k, α) > k. (42)

So the first part of the Lemma is proved. In order to prove (ii), we only
need to reverse the inequality directions in the above proof. For (iii), we
only need to change the inequality sign to equality sign in (i). Next we prove
(iv). Since H(k, α) > k, we have

∑k−1
i=1 iβi > k(α− γk). Hence,

H(k + 1, α) =
∑k

i=1 iβi

α− γk+1

=
∑k−1

i=1 iβi + kβk

(α− γk) + βk

>
k(α− γk) + kβk

(α− γk) + βk

= k. (43)

In order to prove (v) and (vi) we only need to change the “>” sign in (iv)
to “=” and “<” sign respectively. �

Table 1: Radio transmission range of Berkeley Motes [15]

Product Transmission Range
MPR300∗ 30m

MPR400CB 150m
MPR410CB 300m
MPR420CB 300m
MPR500CA 150m
MPR510CA 300m
MPR520CA 300m

∗ MPR300 is the second generation sensors, while the rest are the third
generation sensors.
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Table 2: Sensing range of several typical sensors

Product Sensing Range Functions
HMC1002 Detecting disturbance

Magnetometer sensor[8] 5m from Automobiles
Reflective type Detecting targets of

photoelectric sensor [2] 1m virtually any material
Thrubeam type Detecting targets of

photoelectric sensor [2] 10m virtually any material
Pyroelectric infrared Detecting
sensor (RE814S) [18] 30m moving objects

Acoustic sensor Detecting acoustic on
Berkeley Motes ∗ [8] ∼ 1m sound sources

∗ This result is based on our own measurement on Berkeley motes [8].
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