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ABSTRACT

This paper gives a brief description of dataflow
programming and of the condilion handling constructs
uscd in cxisting dataflow languages. It is argued that
cxisling mecchanisms are deficient both in tcrms of
flexibility and performance. A construct that provides
for increased flexibility and improved performance is
presented. The construct described here is called a
supervisor and has thrce component parts called (a) the
input acceptance test, (b) the condition handler and (c)
the output acceplance test. The basic dataflow model is
cxpanded to include condition arcs and tokens. The
construct presented here is a part of a more
comprehensive scheme for condition handling in dataflow
modcls [Langan 88).

AN INTRODUCTION TO DATAFLOW

The incrcased use of computers, the decrease in
their cost, and the application of computers 10 more
complex problems, has led to languages and architectures
designed to take advantage of increased processing
power.  Languages have evolved that allow the
programmer (o identify computations that can be
exccuted in  asynchronous fashion (e.g., Ada and
Modula-2). Such parallel processing languages allow for
a clear slatement of algorithms that require parallel
cxccution.

The languages mentioned above all have one aspect
in common,; they are control flow bascd languages which
asswne multiple loci of execution. Another approach for
the description of parallel computations is dataflow. The
cssential characteristics of basic dataflow are:

(1) A dataflow graph is collection of nodes,
cach providing a side effcct frec function,
connected by dirccted arcs. The arcs are the
data paths along which the data tokens flow
from node to node.

(2) A node exccutes (or fircs), consuming ils
input tokens, only if the input it requires is
available and if adequate space is available for
any oulput tokens.
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(3) All communication including input
values, output values and
synchronization signals is via tokens.

N1 + N2 -

Figure 1: A Dataflow Graph

Figure 1 shows a dataflow graph called G that
compultes (a+b)*(a-b). The computations for + and - can
be performed as soon as tokens holding values for a and
b, appear on the input arcs to the nodes labeled N1 and
N2. The + and - may be executed in parallel.

Dataflow languages differ from other paralicl
processing languages in that their exccution is data
driven as opposcd 1o being driven by control flow.
Many descriptions of dataflow have appeared in the
literature of the past twenty years. [Karp 1966, Dennis
1975, Landry 1981, Vecen 1986), define different
datallow models. These modcls differ with respect o
the atomic operations available, the use of arcs, and the
rules conceming the firing of nodes. As a result, a
"standard” dataflow model docs not exist; however, most
of the models proposcd are basically similar. These
models assume that nodcs represent deterministic side-
effect free computations. An excellent overview of both
proposed models and architectures may be found in
[Arvind 1986, Srini 1986, Veen 1986].
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DEFINITION OF A CONDITION

A condition is an event that is dcemed notcworthy.
An event, at the hardware level, might be the existence
of a designated state alter a given instruction (c.g.,
overflow after multiplication) or it might refer to an
attempt to make an invalid memory reference (e.g., range
crror on an array rcference). At the programming level,
an evenl might refer to a particular sct of values for a
specificd set of variables during exccution.  Conditions
may include states predefined by the system, language
support cnvironment, or the user of the programming
language.

The cxistence of a notcworthy cvent may be
independent of its detection. The act of checking to
determine if a condition has occurrcd or that the
condition exists, is referred to as condition_detection.
The signaling of the fact that a condition exists is called
posting the condition. A condition handler is a
collection of responses that are taken if a condition is
detected. A condition handler may include the
resumption, termination or modification of the execution
cnvironment of the associated code.

The major problems with conditions concern
dctection, flow of control, association of condition
handlers with code, and the transfer of condition
notification through environments.

EXISTING DATAFLOW LANGUAGES

Proposals for condition handling in dataflow differ
substantially. Three major efforts at creating a new high
level dataflow language have becn VAL [Ackerman
1979], 1Id [Arvind 1978] and Lucid [Wadge 1985]. In
VAL the problem of handling conditions is dealt with by
cxtending each token type to include condition values
(c.g., OVERFLOW [Integer] or ZERO_DIVIDE [Real]).
The semantics of each operator is extended to iaclude
the various condition valucs that might be received (e.g.,
POSITIVE_OVERFLOW + X
POSITIVE_OVERFLOW  if- 0 < X, X
POSITIVE_OVERFLOW or X
POSITIVE_UNDERFLOW, othcrwise UNKNOWN).

Plouffe [Plouffc 1980] proposcs a mcchanism for
cxception handling and recovery in applicative systems
and demonstrates his proposal in terms of 1. Plouffc’s
mechanism differs from the VAL approach in that he
crcates a type specifically for conditions. This
"condition" type permits more flexibility for condition
handling. For example, the user could definc new types
of conditions, whereas with VAL the uscr is limited to
predefined condition valucs. Ploulfe’s crror type allows
for a "composite” type of condition through the
concatenation of error notifications.

In Lucid conditions are also trcated as a separale
data type, but the various operators provided have an
extended scmantics to allow for the use of condition
tokens. Unlike the two approaches described above, the
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condition tokens do not carry with them any information
that would convey the original cause of the condition
and hence condition handling is made more dilficult.

The three linguistic mechanisms proposed for
the textual dataflow languages VAL, 1d [PloufTfe 1980)
and Lucid demonstrate certain similarilies; in particular,
all three do the following:

(1) cxtend the basic opecrators to
include the facility to produce an output
even if a condition should occur,

(2) extend functionality to deal with
condition values,

(3) allow conditions to [low through the
graph until a point is rcached where
some action may be taken.

The proposals differ, however, in terms of how
they treat the association of condition handlers. Ploulfe
demonstrales how condition handlers can be associated
with expressions in Id. He shows how they can be used
to implement either a forward (i.e., use current state to
respond to the condition) or backward (i.e., restore a
"correct" carlier stale) error recovery scheme. By
contrast, the VAL and Lucid proposals do not address
this problem.

All three approaches have several shortcorings.
Each was designcd especially for textual dataflow
languages: While thcir solutions are applicable to graphic
dataflow languages, the behavioral properties they exhibit
are not cntirely satisfactory. In particular, a condition at
one point in the exccution must flow through the graph
taking additional time and allowing uscless computations
o be performed.

THE PROBLEM

Dataflow languages and modcls have been used
by rescarchers for a wide varicly of tasks such as for
complex wcather simulation problems [Dcnnis 1984],
and for signal processing in real time systems [Hartimo
1986]. If dataflow is to cmerge as a viable lool for
general use, it must be augmented to include provisions
for resource sharing and condition handling.

Responding to conditions in an asynchronous
execution environment is dilficult due to the complexity
of state information for such computations and duc to
the totally indcpendent (potentially distributed) nature of
the execution itsclf. Similarly, the task of attempting to
dcbug programs writlen (o cxccule in such an
environment is difficult because the problems might be
related to timing of the execution. Condition handling
and decbugging are related problems. As a partial
solution to this problem an extension to the datallow
model is presented here,

The semantics of the enhanced model are
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presented using an extended graphical dataflow language
for an opcrational definition. The operational definition
identifics the dataflow sysicm support  required to
provide the scmantics of the cnhanced model.

EXTENSIONS FOR CONDITION HANDLING

The major extension presented hcre includes the
addition of "conditions” to the model. This addition
includes condition tokens, condition arcs, system and
user posted conditions, and association of condition
detection and handling with any node.

Each node has associated with il the name of the
opcration to be performed and a firing rule that
identifics:

(1) inputs required for the firing to begin,

(2) output arcs that are supposed o receive a
token as a result of the firing,

(3) if desired, a limit on execution time.

Implicitly, those outputs not listed by (2) would be
considered as optional for the given firing. In the above
list, item (1) constitutes an input specification, (2)
dcfines the output specification, and (3) is the associated
exccution specification. A node’s firing rule is checked
whenever there is the possibility that the node may fire.
This includes the arrival of input tokens or the
completion of a given execulion (i.e., due to qucued
input tokens the node may have the inputs that it
requires to fire again). The output portion of the firing
rule is checked after the execution to confirn proper
behavior.

The nodes in this dataflow model differ from nodes
as uscd in other dataflow modcls in the following ways:

(1) The firing rules will include an output
specification  identifying required and optional
oulputs.

(2) In addition to the output values produced as
a result of a node firing, a node may
communicate information via the posting of a
condition. Condition tokens and their role in a
dataflow model are discussed in the next
scclion.

(3) Node exccution may be terminated if it is
determined that the computation is not needed.
This may be done if the ime limit is exceeded
or if a procedure wide decision to terminate has
been made.
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CONDITIONS

Each of the functions available to a programmer
must have its semantics adequately described for proper
use of the function. The semantics of the operation to be
performed must be described in terms of the inputs used
and the outputs produccd. A portion of the scmantic
description of a function must include those conditions
that may be posted. For each condition that may be
posted, there must be a clear statement of its meaning,

FUNCTION POSTED CONDITIONS

The conditions that may be posted as a result of
using a given function arc called function posted
conditions. Thesc conditions are thosc detected and
posted by the entity uscd to provide the node's
functionality. This might be cither an alomic operation
or a dalaflow procedurc. A dataflow procedure is a
dataflow graph where the arrival of the input tokens is
synchronized and the dcparture of output tokens is
synchronized. An atomic operation is one that is
indivisible with respect to the dataflow model (e.g., an
operation provided by the hardware or by a scquentially
executed picce of code). The term “atomic function”
may have a connotation implying a low level operation.
This certainly nced not be the case.

Conditions that are detected and posted by the
dataflow system are called system posted conditions.
For any node, the sct of conditions that may be postcd
as a result of its execution is the union of the function
posted and systcm posted conditions.

SYSTEM POSTED CONDITIONS

In the case of a timing constraint specificd as a part
of the firing rule, the underlying system provides for
the watchdog capability to monitor the clapsed time and
to terminate the exccution of the node. This capability
permits the datafllow sysiem to impose some resource
usage constraints. If the node's execution is terminated
duc to the specificd time limit being cxcecded, this
condition is postcd to the program via a condition token
placed on the node’s condition arc.  This condition is a
system posted condition (TIMED QUT) and would cairy
with it adequate information for dcbugging purposcs.
The TIMED OUT condition is posted if a node excceds
the minimum of (a) the user specified time limit and (b)
a system wide time limit. The user need not specily
any time limit in the firing rule in which case only the
system limit is enforced.

If the firing rule includes an output specification,
then the system can mechanically verify that the output
specification has been met.  The system condition
INADEQUATE QUTPUTS, is used to indicate that an
output that had been .explicitly identificd as bcing
required, was not produced.
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Output spccilication verification requircs system
support  and time. This overhead is optional in the
sense that the defaunlt output specification for any firing
rulc is that all outputs arc optional. The above system
posted conditions reflect only those that arc related to
the behavior of a single node. Other conditions related
to the behavior of an cntire dataflow procedure as an
cntity can be defined if the model is further extended to
include a procedure wide supervisor (sec abstract entitled
"Condition Handlers for Dataflow Procedures”).

CONDITION TOKENS AND CONDITION ARCS

The condition token is wused in the posting
procedure to carry the information concerning the
condition from the point of posting to thé point of
condition handling. The token itself needs to convey in
some fashion which conditions are being posted.

The maximum "size” of a condition token is known
since the system posted and function posted conditions
for a given node can be determined statically, This
limits the size of the composite list of condition names
that may be generated. To simplifly graphs showing
dataflow programs the condition arc emanating from cach
node in the graph is always displayed as the rightmost
output arc from a node.

For debugging purposes, it may be desirable to have
information in each condition token that identifies the
node that posted the condition. The system itself should
support an additional field in the condition token to
identify the node. The unique name for each node may
be user supplied or may be generated by the system. The
name for the node that posted the condition is, however,
known only within the dataflow procedure that contains
it. An example of this scheme may be scen in viewing
Figures 2a and 2b.

Function f l

A Progrem
i |
v \
other internal other internal
nodes nodes

Dataflow Procedure |
Node: V
Function f

Tmpor tant |

Node : V—
I Function g

Figure 2a: Dataflow Program  Figure 2b: Dataflow
Procedure
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In Figurc 2b the name attached to any condition token
posted from the node called "Important Node” is simply
"Important Node". If, subscquently, a condition is
postcd from Function [, then the condition token within
"A Program” (Figure 2a) from the node called "Datallow
Procedure Node" is called "Dataflow Proccdure Node”,
This simple approach has a conceplual advantage as well
as an implementation advantage. At the conceplual
level, we are assurcd that a desirable lcvel of
information hiding is being supported.  As procedure
boundaries arc crossed, the identfication of the node that
may have actually detected the "original condition” is
lost. As an implementation issuc, this approach is
desirable  because it guarantees  that  the  node
identifications being attached by the sysiem are of a
limited length. (Such might not be the case if [ull
context names were being gencrated).

The naming of the node that posts a condition
is of no importance in the case of a condition handler
associated with a single node. The importance of this
facility is more clcarly scen when procedure condition
handlers are presentced.

STATE INFORMATION WITH A CONDITION

In posting a given condition, il is- oflen
advantageous to include additional data pertaining to the
precise nature of the condition or the environment within
which it was detected (i.e., state information). A precisc
description of this additional information must
accompany the description of the condition itsclf, so that
a programmer writing a condition handler can properly
use the extra information to respond to the condition,
This specification is also important (0 an implementor
of the model if the approach used rcquires a type
specification for each token. The use of additional
information does not include the name of the node that
posted the condition as that would be provided by the
system support.  The information contained in a
condition token includes:

(1) Source Node Identification (System Supplicd)

(2) List of :
(A) Condition Name
(B) Additional information associated with the
specific condition.

NODE SUPERVISORS

An input_acceptance test (IAT) is a test that is
applicd to one or more of the inputs to the node in order
o test the acceptability of the values of the input
tokens. An output _acceptance test (QAT) is a test that
is applicd to the outputs produced as the result of the
firing of a node. A node supervisor is a namecd
collection of the inpul accceptance test, the output
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acceptance test and the condition handler (CH), that may
be associated with a specified node. A node supervisor
need not contain all of the components mentioned above.
It may, for example, consist of only an input acceplance
test and a condition handler, The association of a
supervisor with a node forms an extended node.

INPUT ACCEPTANCE TEST

The input acceplance test (IAT) may consist of
scveral sub-components if the rcquirements on
individual inputs are considercd separatcly. The input
acceplance test is a form of condition deleclion. The
choices of action available within a  supervisor are
somewhat limited due to the requirement of
synchronization on outputs from the cxtended node.
After the supervisor detecls an input-value related
condition it may (a) pass a set of input values (possibly
modified) to the node to be fired, or (b) sclect (o bypass
the firing of the node and simply produce the outputs for
the node. In the latter case, the input acccptance test
may also post a condition for the node. In the former
case, a condition may be posted, but only at the time of
termination as all outputs (including the condition) are
synchronized. The input acceptance test is involved in
condition detection, condition handling and in the posting
procedure.

The role of the input acceptance test is graphically
represenicd Figure 3. In this and subsequent figures,
solid lincs represent "data arcs” and the dotted lincs
indicate condition arcs. The single solid lines represent
a single arc while the double lines are used to represent
one or more arcs. The distinction between data and
conditions is made primarily as a convenience to
cmphasize the route of posted condilions. The condition
tokens are otherwise identical (o the data tokens.

: |
\‘l

Input e f |

Acceptance Test

V V——————V—
Merge I Merge

Yv Zv

Figure 3: An Extended Node
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A node supervisor is itsclf a named entity. If
the node N1 in Figure 4a is to have the supervisor "S”
associated with it, then the extended node, ENI, is
graphically represented by the diagram in Figure 4b.

v v
N1: f l ENT: f:s
Y I 4 Y I Hi 4
v Vv v v

Figure 4a : Node Figure 4b : Extended Node

OUTPUT ACCEPTANCE TEST AND CONDITION
IIANDLER

In the case of a single node, the output of the
computation is synchronized, i.e., the outputs and
conditions are available at the same time. For this
reason, the output acceptance test (OAT) and the
condition handler (CH) are somewhat indistinguishable
though they play different roles. Either or both of them
might not be included in a node supervisor. When the
node has finished its computation, the supervisor must
dectermine what course of action is to be taken. Two
options available to either of them include: retrying the
node with cither the same or modified input values, or
producing a set of output values (with or without posting
a condition). Figure 5 uses a state transition diagram to
show the stages of exccution of the extended node.

| . |
» Waiting «

JIAT inhibits Firing Rule

firing Satisfied
-— V
1AT
executes
IAT allows OATACH
node firing produce
—V outputs
» Node
executes

OAT or CH Node terminates
decides to or is terminated
retry V

OATECH

execute

Figure 5 : Execution of Extendcd Node
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A dataflow represcntation of the role of a node
supervisor is shown in Figure 6. Figure 6 includes an
input acceptance test (IAT). If the input accceptance test
dctermines that the node need not be executed, it may
produce output values (labeled as C) with or without
posting a condition (labeled as D). If the node is to be
fired, then it may be necessary to pass information from
the IAT to the QOAT&CH (arc labeled B) in addition to
passing the input tokens (arc labeled E) on to the node.
The cxccution of the function f may lead to the
production of output tokens (arc labeled J) with or
without a condition being posted (arc labeled K).

X
A
V E —
1AT pa—n Merge
—
: ( l
B c :D v
: f
H '_J
H F I J H ¢
: r———————v V—
T OAT & CH
» M }—» '
. A L —
o L_—G H o1
——V. ! V. Q
Merge __1 Merge
1 .
¥ H
Yv Vv

Figure 6 : A Fully Supervised Node

The OAT&CH executes after the node has terminated (or
been tenminated) and determines the course of action (0
take. It may choose to refire the node by passing it a
sct of input tokens (arc labeled F), in which case it may
also need to pass some additional state inflormation back
to itself (arc labeled G), e.g. a rctry count, so that an
infinite loop of retries is avoided. The OAT&CH may
also choose to simply produce the output tokens (arc
labeled H) with or without posting a condition (arc
labeled I).

NAMING CONVENTION FOR NODE
SUPERVISORS

The node supervisor treats the cxecution of the
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function it superviscs in an indivisible fashion. The
supervisor construct allows the programmer a convenicnt
means of delecting conditions related to the input or
output values and responding at a local level if a
recovery action should be taken. The actions available
at this level arc limited to the rcuse of the function, the
production of some output valuc(s), or the posting of
appropriate conditions to a more global Igvel.

Supervisor S

TAT: OATECH:
Part 1 Part 2
Name Name

Figure 7 : Components of a Named Supervisor

The process of creating a supcrvisor entails
providing a named collection containing the (wo
components, We require a  special naming convention
for the creation of supervisors as shown in Figure_ 7.

SYSTEM SUPPORT FOR NODES

A node is tightly bound 1o the supervisor associated
with it. This binding requires intervention by the
system support (e.g., the system may detect a condition
rclated to the node and post the condition to the
associaled condition handler). To illustrate the tight
binding between the node and ils supervisor and to
include the possibility of participation by the system
support, a system support diagram is given in Figure 8.
The flow of information is labeled according to Figurc
6. In Figurc 8, N1 is a node with a supcrvisor called S.

f Supervisor

A l ~ 8 for node N1
U ' J
l v v
E, F 4, X A,8,6,J,K B,C,D,E,

F,G,H,1
System Support for Node N1
l

x
PO G
<

Figure 8 : Node System Support
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The system support:

(1) maintains all token qucucs rclated to the
cxtended node.  For example, at the input
boundary of the extended node (labeled X) it
acls to qucuc tokens for a subscquent use. In
this capacity it may be involved in
communication with other parts of the overall
system support (c.g., it may “rcspond” to
inquirics regarding qucuc spacc on a given
“arc”. Such inquiries come from node system
supports that want to pass an oulput token to
this node).

(2) detennines if the firing rule has been met
and if so, initiatcs computation (labcled A).

(3) assists in the verification that the function f
performed properly. This includes the detection
of system posted conditions related to f (labeled
J, C, H).

(4) initatcs whatever actions must be performed
to terminate the execution of the exiended node
if such a request should be passed to it from a
more global level.

In Figure 8 the input to the extended node, labeled X, is
shown as amriving "from below”. This X is sent to the
system supporl for node N1 from the procedure wide
sysiecm support as part of the token routing activity.

SUMMARY

This paper has presented a proposal [or an extension
1o the dataflow model. The extension described include:
(a) the addition of condition tokens and arcs, (b) systcm
support for the detection and posting of system related
conditions, and (c) the inclusion of a linguistic
mecchanism called a node supervisor 10 assist in the
detection of inpul or oulput related conditions and
handling of conditions posted by the node or system.
This paper did not address how conditions are to be
handled at the more global level.  That topic is an
extension of this work described in "Condition Handlers
for Dataflow Proccdures”.
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