
A Localized Condition Handling Construct
for a Graphical Dataflow Language

David D. Langan, Pli. D.
University of South Alabama

Mobile, Alabama 36688

ABSTRACT

This paper gives a brief description of dataflow
programming and of the condition handling constructs
used in existing dataflow languages. It is argued that
existing mechanisms arc deficient both in terms of
flexibility and performance. A construct that provides
for increased flexibility and improved performance is
presented. The construct described here is called a
supervisor and has three component parts called (a) the
input acceptance lest, (b) the condition handler and (c)
the output acceptance test. The basic dataflow model is
expanded to include condition arcs and tokens. The
construct presented here is a part of a more
comprehensive scheme for condition handling in dataflow
models [Langan 88].

AN INTRODUCTION TO DATAFLOW

The increased use of computers, the decrease in
(heir cost, and the application of computers to more
complex problems, has led to languages and architectures
designed to take advantage of increased processing
power. Languages have evolved that allow the
programmer to identify computations that can be
executed in asynchronous fashion (e.g., Ada and
Modula-2). Such parallel processing languages allow for
a clear statement of algorithms that require parallel
execution.

The languages mentioned above all have one aspect
in common; they are control flow based languages which
assume multiple loci of execution. Another approach for
the description of parallel computations is dataflow. The
essential characteristics of basic datallow arc:

(1) A dataflow graph is collection of nodes,
each providing a side effect free function,
connected by directed arcs. The arcs arc the
data paths along which the data tokens flow
from node to node.

(2) A node executes (or fires), consuming its
input tokens, only if the input it requires is
available and if adequate space is available for
anv output tokens.____________________________
Permission lo copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com
mercial advantage, live ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or lo republish, requires a fee and/or specific per
mission.
© 1990 ACM 0-89791-356-6/90/0400/0118 $1.50

(3) All communication including input
values, output values and
synchronization signals is via tokens.

Figure 1: A Dataflow Graph

Figure 1 shows a dataflow graph called G dial
computes (a+b)*(a-b). The compulations for + and - can
be performed as soon as tokens holding values for a and
b, appear on the input arcs to the nodes labeled N1 and
N2. The + and - may be executed in parallel.

Dataflow languages differ from oilier parallel
processing languages in that their execution is data
driven as opposed lo being driven by control flow.
Many descriptions of dataflow have appeared in the
literature of the past twenty years. [Karp 1966, Dennis
1975, Landry 1981, Veen 1986], define different
dataflow models. These models differ with respect to
the atomic operations available, the use of arcs, and the
rules concerning the firing of nodes. As a result, a
"standard" dataflow model docs not exist; however, most
of the models proposed are basically similar. These
models assume dial nodes represent deterministic side-
effect free compulations. An excellent overview of both
proposed models and architectures may be found in
[Arvind 1986, Srini 1986, Veen 1986].

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98949.99015&domain=pdf&date_stamp=1990-04-01

A condition is an event that is deemed noteworthy.
An event, at the hardware level, might be the existence
of a designated slate after a given instruction (c.g.,
overflow after multiplication) or it might refer to an
attempt to make an invalid memory reference (e.g., range
error on an array reference). At the programming level,
an event might refer to a particular set of values for a
specified set of variables during execution. Conditions
may include slates predefined by the system, language
support environment, or the user of the programming
language.

The existence of a noteworthy event may be
independent of its detection. The act of checking to
determine if a condition has occurred or that the
condition exists, is referred to as condition detection.
The signaling of the fact that a condition exists is called
posting the condition. A condition handler is a
collection of responses that are taken if a condition is
detected. A condition handler may include the
resumption, termination or modification of the execution
environment of the associated code.

The major problems with conditions concern
detection, flow of control, association of condition
handlers with code, and the transfer of condition
notification through environments.

EXISTING DATAFLOW LANGUAGES

Proposals for condition handling in dataflow differ
substantially. Three major efforts at creating a new high
level dataflow language have been VAL [Ackerman
1979], Id [Arvind 1978] and Lucid [Wadge 1985]. In
VAL the problem of handling conditions is dealt with by
extending each token type to include condition values
(c.g., OVERFLOW [Integer] or ZERO_DIVIDE [Real]).
The semantics of each operator is extended to include
the various condition values that might be received (e.g.,
P O S I T I V E _ O V E R F L O W + X =
POSITIVE_OVERFLOW if 0 ^ X, X =
P O S I T I V E . O V E R F L O W o r X =
POSITIVE.UNDERFLOW, otherwise UNKNOWN).

Plouffc [Plouffc 1980] proposes a mechanism for
exception handling and recovery in applicative systems
and demonstrates his proposal in terms of Id. Plouffc’s
mechanism differs from the VAL approach in that he
creates a type specifically for conditions. This
"condition" type permits more flexibility for condition
handling. For example, the user could define new types
of conditions, whereas with VAL the user is limited to
predefined condition values. Plouffc’s error type allows
for a "composite" type of condition through the
concatenation of error notifications.

In Lucid conditions are also treated as a separate
data type, but the various operators provided have an
extended semantics to allow for the use of condition
tokens. Unlike the two approaches described above, the

condition tokens do not carry with them any information
that would convey the original cause of the condition
and hence condition handling is made more difficult.

The three linguistic mechanisms proposed for
the textual dataflow languages VAL, Id [PloulTc 1980)
and Lucid demonstrate certain similarities; in particular,
all three do the following:

(1) extend the basic operators to
include the facility to produce an output
even if a condition should occur,

(2) extend functionality to deal with
condition values,

(3) allow conditions to flow through the
graph until a point is reached where
some action may be taken.

The proposals differ, however, in terms of how
they treat the association of condition handlers. Plouffc
demonstrates how condition handlers can be associated
with expressions in Id. He shows how they can be used
to implement either a forward (i.e., use current state to
respond to the condition) or backward (i.e., restore a
"correct” earlier stale) error recovery scheme. By
contrast, the VAL and Lucid proposals do not address
this problem.

All three approaches have several shortcomings.
Each was designed especially for textual dataflow
languages. While their solutions arc applicable to graphic
dataflow languages, the behavioral properties they exhibit
are not entirely satisfactory. In particular, a condition at
one point in the execution must flow through the graph
raking additional time and allowing useless computations
to be performed.

THE PROBLEM

Dataflow languages and models have been used
by researchers for a wide variety of tasks such as for
complex weather simulation problems [Dennis 1984],
and for signal processing in real time systems [Harlimo
1986]. If dataflow is to emerge as a viable tool for
general use, it must be augmented to include provisions
for resource sharing and condition handling.

Responding to conditions in an asynchronous
execution environment is difficult due to the complexity
of state information for such compulations and due to
the totally independent (potentially distributed) nature of
the execution itself. Similarly, the task of attempting to
debug programs written to execute in such an
environment is difficult because the problems might be
related to timing of the execution. Condition handling
and debugging arc related problems. As a partial
solution to this problem an extension to the dataflow
model is presented here.

The semantics of the enhanced model arc

presented using an extended graphical dataflow language
for an operational definition. The operational definition
identifies the dataflow system support required to
provide the semantics of the enhanced model.

EXTENSIONS FOR CONDITION HANDLING

The major extension presented here includes the
addition of "conditions" to the model. This addition
includes condition tokens, condition arcs, system and
user posted conditions, and association of condition
detection and handling with any node.

Each node has associated with it the name of the
operation to be performed and a firing rule that
identifies:

(1) inputs required for the firing to begin,

(2) output arcs that are supposed to receive a
token as a result of the firing,

(3) if desired, a limit on execution time.

Implicitly, those outputs not listed by (2) would be
considered as optional for the given firing. In the above
list, item (1) constitutes an input specification, (2)
defines the output specification, and (3) is the associated
execution specification. A node’s firing rule is checked
whenever there is the possibility that the node may fire.
This includes the arrival of input tokens or the
completion of a given execution (i.e., due to queued
input tokens the node may have the inputs that it
requires to fire again). The output portion of the firing
rule is checked after the execution to confirm proper
behavior.

The nodes in this dataflow model differ from nodes
as used in other dataflow models in the following ways:

(1) The firing rules will include an output
specification identifying required and optional
outputs.

(2) In addition to the output values produced as
a result of a node firing, a node may
communicate information via the posting of a
condition. Condition tokens and their role in a
dataflow model arc discussed in the next
section.

(3) Node execution may be terminated if it is
determined that the computation is not needed.
This may be done if the time limit is exceeded
or if a procedure wide decision to terminate has
been made.

Each of the functions available to a programmer
must have its semantics adequately described for proper
use of the function. The semantics of the operation to be
performed must be described in terms of the inputs used
and the outputs produced. A portion of the semantic
description of a function must include those conditions
that may be posted. For each condition that may be
posted, there must be a clear statement of its meaning.

FUNCTION POSTED CONDITIONS

The conditions that may be posted as a result of
using a given function arc called function posted
conditions. These conditions are those detected and
posted by the entity used to provide the node's
functionality. This might be cither an atomic operation
or a dataflow procedure. A dataflow procedure is a
dataflow graph where the arrival of the input tokens is
synchronized and the departure of output tokens is
synchronized. An atomic operation is one that is
indivisible with respect to the dataflow model (e.g., an
operation provided by the hardware or by a sequentially
executed piece of code). The term "atomic function"
may have a connotation implying a low level operation.
This certainly need not be the case.

Conditions that are detected and posted by the
dataflow system are called system posted conditions.
For any node, the set of conditions that may be posted
as a result of its execution is the union of the function
posted and system posted conditions.

SYSTEM POSTED CONDITIONS

In the case of a timing constraint specified as a part
of the firing rule, the underlying system provides for
the watchdog capability to monitor the elapsed time and
to terminate the execution of llic node. This capability
permits the dataflow system to impose some resource
usage constraints. If the node’s execution is terminated
due to the specified time limit being exceeded, this
condition is posted to the program via a condition token
placed on the node’s condition arc. This condition is a
system posted condition (TIMED OUT) and would carry
will) it adequate information for debugging purposes.
The TIMED OUT condition is posted if a node exceeds
the minimum of (a) the user specified lime limit and (b)
a system wide lime limit. The user need not specify
any time limit in the firing rule in which case only the
system limit is enforced.

If the firing rule includes an output specification,
then the system can mechanically verify that the output
specification has been met. The system condition
INADEQUATE OUTPUTS, is used to indicate that an
output that had been explicitly identified as being
required, was not produced.

Output specification verification requires system
support and lime. This overhead is optional in the
sense that the default output specification for any firing
rule is that all outputs arc optional. The above system
posted conditions reflect only those that arc related to
the behavior of a single node. Other conditions related
to the behavior of an entire dataflow procedure as an
entity can be defined if the model is further extended to
include a procedure wide supervisor (see abstract entitled
"Condition Handlers for Dataflow Procedures”).

CONDITION TOKENS AND CONDITION ARCS

The condition token is used in the posting
procedure to carry the information concerning the
condition from the point of posting to the point of
condition handling. The token itself needs to convey in
some fashion which conditions arc being posted.

The maximum "size" of a condition token is known
since the system posted and function posted conditions
for a given node can be determined statically. This
limits the size of the composite list of condition names
that may be generated. To simplify graphs showing
dataflow programs the condition arc emanating from each
node in the graph is always displayed as the rightmost
output arc from a node.

For debugging purposes, it may be desirable to have
information in each condition token that identifies the
node that posted the condition. The system itself should
support an additional field in the condition token to
identify the node. The unique name for each node may
be user supplied or may be generated by the system. The
name for the node that posted the condition is, however,
known only within the dataflow procedure that contains
it. An example of this scheme may be seen in viewing
Figures 2a and 2b.

A Program

other internal
nodes

Dataflow Procedure |
Node: ----- V—

Function f

Function f

other internal
nodes

Important |
Node :,-- V-----

Function g

Figure 2a: Dataflow Program Figure 2b: Dataflow
Procedure

In Figure 2b the name attached to any condition token
posted from the node called "Important Node" is simply
"Important Node". If, subsequently, a condition is
posted from Function f, then the condition token within
"A Program" (Figure 2a) from the node called "Dataflow
Procedure Node" is called "Dataflow Procedure Node”.
This simple approach has a conceptual advantage as well
as an implementation advantage. At the conceptual
level, we arc assured that a desirable level of
information hiding is being supported. As procedure
boundaries arc crossed, the identification of the node that
may have actually detected the "original condition" is
lost. As an implementation issue, this approach is
desirable because it guarantees that the node
identifications being attached by the system are of a
limited length. (Such might not be the case if full
context names were being generated).

The naming of the node that posts a condition
is of no importance in the case of a condition handler
associated with a single node. The importance of this
facility is more clearly seen when procedure condition
handlers are presented.

STATE INFORMATION WITH A CONDITION

In posting a given condition, it is often
advantageous to include additional data pertaining to the
precise nature of the condition or the environment within
which it was delected (i.e., state information). A precise
description of this additional information must
accompany (he description of the condition itself, so that
a programmer writing a condition handler can properly
use the extra information to respond to the condition.
This specification is also important to an implementor
of the model if the approach used requires a type
specification for each token. The use of additional
information does not include the name of the node that
posted the condition as that would be provided by the
system support. The information contained in a
condition token includes:

(1) Source Node Identification (System Supplied)

(2) List of :
(A) Condition Name
(B) Additional information associated with the

specific condition.

NODE SUPERVISORS

An input acceptance test (IAT) is a test that is
applied to one or more of the inputs to the node in order
to test the acceptability of the values of the input
tokens. An output acceptance test (OAT) is a lest that
is applied to the outputs produced as the result of the
firing of a node. A node supervisor is a named
collection of the input acceptance test, tire output

acceptance lesl and the condition handler (CH), that may
he associated with a specified node. A nolle supervisor
need not contain all of the components mentioned above.
It may, for example, consist of only an input acceptance
test and a condition handler. The association of a
supervisor with a node forms an extended node.

INPUT ACCEPTANCE TEST

The input acceptance lest (IAT) may consist of
several subcomponents if the requirements on
individual inputs are considered separately. The input
acceptance test is a form of condition detection. The
choices of action available within a supervisor are
somewhat limited due to the requirement of
synchronization on outputs from the extended node.
After the supervisor detects an input-value related
condition it may (a) pass a set of input values (possibly
modified) to the node to be fired, or (b) select to bypass
the firing of the node and simply produce the outputs for
the node. In the latter case, the input acceptance test
may also post a condition for the node. In the former
case, a condition may be posted, but only at the time of
termination as all outputs (including the condition) are
synchronized. The input acceptance test is involved in
condition detection, condition handling and in the posting
procedure.

The role of the input acceptance test is graphically
represented Figure 3. In (his and subsequent figures,
solid lines represent "data arcs" and the dotted lines
indicate condition arcs. The single solid lines represent
a single arc while the double lines are used to represent
one or more arcs. The distinction between data and
conditions is made primarily as a convenience to
emphasize lire route of posted conditions. The condition
tokens are otherwise identical to the data tokens.

x

---- V-------
Input f

Acceptance Test
1

- - - V------ V— r- - V------ V--
Merge Merge

Y V Z V

A node supervisor is itself a named entity. If
the node N1 in Figure 4a is to have the supervisor "S"
associated with it, then the extended node, EN1, is
graphically represented by the diagram in Figure 4b.

---- V--- 1 ------ V------
N1 : ' J EN1: f : S

Y I : Z Y~1 : Z
V V V V

Figure 4a : Node Figure 4b : Extended Node

OUTPUT ACCEPTANCE TEST AND CONDITION
HANDLER

In the case of a single node, the output of the
compulation is synchronized, i.e., the outputs and
conditions are available at the same time. For (his
reason, the output acceptance test (OAT) and the
condition handler (CH) are somewhat indistinguishable
though they play different roles. Either or both of them
might not be included in a node supervisor. When the
node has finished its computation, the supervisor must
determine what course of action is to be taken. Two
options available to either of them include: retrying the
node with either the same or modified input values, or
producing a set of output values (with or without posting
a condition). Figure 5 uses a state transition diagram to
show the stages of execution of the extended node.

IAT inhibits
firing

OAT or CH
decides to
retry

-------------- 1
Waiting «-

Firing Rule
Satisfied

IAT
executes

IAT allows
node firing

Node
executes

Node terminates
or is terminated

OAT&CH
execute

OAT&CH
produce
outputs

Figure 3: An Extended Node Figure 5 : Execution of Extended Node

A dataflow representation of the role of a node
supervisor is shown in Figure 6. Figure 6 includes an
input acceptance test (IAT). If the input acceptance test
determines that the node need not be executed, it may
produce output values (labeled as C) with or without
posting a condition (labeled as D). If the node is to be
fired, then it may be necessary to pass information from
the IAT to the OAT&CH (arc labeled B) in addition to
passing the input tokens (arc labeled E) on to the node.
The execution of the function f may lead to the
production of output tokens (arc labeled J) with or
without a condition being posted (arc labeled K).

Y V z V

Figure 6 : A Fully Supervised Node

The OAT&CH executes after the node has terminated (or
been terminated) and determines the course of action to
lake. It may choose to refire the node by passing it a
set of input tokens (arc labeled F), in which ease it may
also need to pass some additional slate information back
to itself (arc labeled G), e.g. a retry count, so that an
infinite loop of retries is avoided. The OAT&CH may
also choose to simply produce the output tokens (arc
labeled H) with or without posting a condition (arc
labeled I).

NAMING C O N V E N T IO N FOR NODE
SUPERVISORS

The node supervisor treats the execution of the

function it supervises in an indivisible fashion. The
supervisor construct allows the programmer a convenient
means of delecting conditions related to the input or
output values and responding at a local level if a
recovery action should be taken. The actions available
at this level arc limited to the reuse of llic function, the
production of some output valuc(s), or the posting of
appropriate conditions to a more global level.

Supervisor S

0ATÍCH:

Figure 7 : Components of a Named Supervisor

The process of creating a supervisor entails
providing a named collection containing the two
components. We require a special naming convention
for the creation of supervisors as shown in Figure. 7.

SYSTEM SUPPORT FOR NODES

A node is tightly bound to the supervisor associated
with it. This binding requires intervention by the
system support (e.g., the system may detect a condition
related to the node and post the condition to the
associated condition handler). To illustrate the tight
binding between the node and its supervisor and to
include the possibility of participation by die system
support, a system support diagram is given in Figure 8.
The flow of information is labeled according to Figure
6. In Figure 8, N1 is a node with a supervisor called S.

f Supervisor
* S for node N1 I

E, F J .

Sysl
A

1 V
X A.B,G,J,K B,C,D,E,

F.G.H.t
tem Support for Node N1

_____________________________I________;

V V
X Y z

Figure 8 : Node System Support

Part 1
Name

Part Z
Name

The system support

(1) maintains all token queues related to the
extended node. For example, at the input
boundary of the extended node (labeled X) it
acts to queue tokens for a subsequent use. In
this capacity it may be involved in
communication with other parts of the overall
system support (c.g., it may "respond" to
inquiries regarding queue space on a given
"are". Such inquiries come from node system
supports dial want to pass an output token to
this node).

(2) determines if the firing rule has been met
and if so, initiates computation (labeled A).

(3) assists in die verification that the function f
performed properly. This includes the detection
of system posted conditions related to f (labeled
J. C, H).

(4) initiates whatever actions must be performed
to terminate the execution of die extended node
if such a request should be passed to it from a
more global level.

In Figure 8 the input to the extended node, labeled X, is
shown as arriving "from below". This X is sent to the
system support for node N1 from the procedure wide
system support as part of the token roudng activity.

SUMMARY

This paper has presented a proposal for an extension
to the dataflow model. The extension described include:
(a) the addition of condition tokens and arcs, (b) system
support for the detection and posting of system related
conditions, and (c) the inclusion of a linguistic
mechanism called a node supervisor to assist in the
detection of input or output related conditions and
handling of conditions posted by the node or system.
This paper did not address how conditions arc to be
handled at the more global level. That topic is an
extension of this work described in "Condition Handlers
for Dataflow Procedures".

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Bruce Shriver and
Dr. Steve Landry for their help during this research.

REFERENCES

(Ackerman 1979] Ackerman, W. B. and Dennis, J. B.,
"VAL - A Value-Oriented Algorithmic Language,
Preliminary Reference Manual", MIT, Cambridge,
Massachusetts, February 8, 1979.

(Arvind 1978] Arvind, Gostclow, and Plouffc, "The Id
Report: An Asynchronous Programming language and
Computing Machine”, TR 114, Dept, of Computer
Science, U. C. Irvine, California, Sept. 1978.

[Arvind 1986] Arvind and Culler, D. E., "Dataflow
Architectures", MIT/LCS/TM-294, February 1986.

[Dennis 1975] Dennis, J and Misunas D., "A Preliminary
Architecture for a Basic Data-Flow Processor",
Proceedings of the Second Annual Symposium on
Computer Architecture, IEEE, N.Y., 1975, pp. 126-132.

[Dennis 1984] Dennis, J. B„ Gao, G. R., and Todd, K.
W., "Modeling the Weather with a Data Flow Super
Computer", IEEE Transactions on Computers, Vol. C-33,
No. 7. July 1984, pp. 592 - 603.

[llartimo 1986] Harlimo, I., Kronlof, K., Simula, O.,
and Skytta, J., "DFSP: A Data Flow Signal Processor",
IEEE Transactions on Computers, Vol. C-36, No. 1,
January 1986, pp. 23 - 32.

[Karp 1966] Karp, R. M. and Miller, R. E., "Properties
of a Model for Parallel Computations: Dctcrminacy,
Termination, Queueing", SIAM Journal of Applied
Mathematics, Vol. 14, November 1966.

[Landry 1981] Landry, S. P., "System Oriented
Extensions to Dataflow", Ph. D. Thesis, Department of
Computer Science, Univ. of Southwestern Louisiana,
Lafayette, Louisiana, May 1981.

[Langan 1988] Langan, D., "A Dataflow Model
Incorporating Condition Handling and Fault Tolerance",
Ph. D. Thesis, Dept, of Computer Science, Univ. of
Southwestern Louisiana, Lafayette, LA, May 1988.

[Plouffe 1980] Plouffe, W., "Exception Handling and
Recovery in Applicative Systems", Ph. D. Thesis,
Deparunent of Computer Science, University of
California, Irvine, California, 1980.

[Srini 1986] Srini, V. P„ "An Architectural Comparison
of Dataflow Systems", Computer, Vol. 19, No. 9, March
1986, pp. 68-88.

[Veen 1986] Veen, A. H.. "Dataflow Machine
Architecture", ACM Computing Surveys, Vol. 18, No. 4,
December 1986, pp. 365 - 396.

[VVadge 1985] Wadge, W. W. and Ashcroft, E. A.,
Lucid, the Dataflow Programming Language. Academic
Press, London, ISBN 0-12-729650-5, copyright 1985.

