
Partition Algorithms for the Doubly Linked List

John M. Boyer
Department of Computer Science and Statistics

University of Southern Mississippi
Hattiesburg, MS 39406

Abstract
The purpose of this paper is to present partition

sort and search algorithms developed by the author for
the doubly linked list. First, the binary search concept
will be modified to enable its use on a linked list, and the
resulting algorithm, (he Blink Search, will be shown to be
more than twice as time efficient as the sequential search.
The Blink Search will then be used to enhance a standard
insertion sort. Upon finding that the improvement still
leaves the insertion sort with the unacceptable 0(n^)
rating, several linked list partition sorts will be
developed. We will see later that the best of these, the
Blink Sort, shows very comparable execution lime to the
Quicksort on an equivalent array; in fact, the Blink Sort
is rated O(nlogn) for random data and 0(n) for reversed
order and sorted order lists.

Introduction

Synthesis of doubly linked list partition sort and
search algorithms necessarily began with an analysis of
the anay partition algorithms. A substantial theoretical
discussion of these algorithms appears in Knuth [2], and
a more intuitive discussion appears in Koffman [3]. Like
many other authors, Knuth and Koffman expressed
concern for Quicksort performance on pre sorted data. A
corollary concern questions the time efficiency of the
Quicksort on reversed order data. Tenenbaum and
Augenstein [4] discuss an ample solution to both the
reversed and sorted order problems: modify the partition
operation to use the median of the first, last and middle
sublist elements as the pivot value. The only drawback
to this median-of-three method is that it increases
execution time on random data by as much as 50% in
spite of the fact that it promotes more balanced partitions;
this is due to the special Quicksort implementation
required for it to work on reversed data and, of course,
the cost of calculating the median. A more elegant
solution to the reversed and sorted order problems is
simply to swap the first and middle elements before
performing the normal partition. Intuitively, the median-
of-three method seems to do this, but in practice it docs
not work with all Quicksort implementations.

Permission to copy without fee all or part of this material is grant* d
provhled that (lie copies arc not made or distributed for direct com
mercial advantage, ilie ACM copyright notice and (lie title of llie
publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific per
mission.
© 1990 ACM 0 89791-356 6/90/0400/0234 $1.50

Neither the simple Mid-swap method nor the
median-of-three method provide adequate solutions to
the reversed and sorted order problems on a linked list
because 0(n) link assignments are required to access the
middle node in a sublist. Nevertheless, the doubly linked
list cannot be a competitive data handling construct
without solutions to the reversed and sorted order
problems. In addition, this difficulty in accessing the
middle node casts a shadow of doubt on the efficacy of a
linked list partition search, which requires access to the
middle sublist element- the concept seems preposterous.

Despite these concerns, development of linked list
partition algorithms would yield the speed and simplicity
offered by a list structure without the size bounding
characteristic of the array data structure. This paper is
devoted to presenting algorithms developed by the author
to meet this need.

The Partition Search

The Blink Search (Appendix 1) and the binary
search are very similar, taken to a significant degree of
abstraction. The anay binary search is a more time
efficient algorithm than the array sequential search
method because the binary search makes far less
comparisons. The Blink Search also makes many less
comparisons than a linked list sequential search, however
the Blink Search must also access each node between a
certain node and the next middle node. Thus, it will
average log2/i key comparisons but n link assignments;
on the other hand, the sequential search averages only n/2
link assignments but also n/2 key comparisons. In
deciding the more efficient search, we must note that the
problem reduces to deciding the cost of a key comparison
in terms of a certain number of link assignments.

Given the mathematical relations above, inductive
reasoning dictates that if the Blink Search can be shown
to be more time efficient than a sequential search for
some number of nodes n, then it will be more efficient
for all lists with more than n nodes. The test below will
provide the 'anchor' for this inductive hypothesis and
sample test the hypothesis by examining average case
performance of (lie Blink Search for various values of n.

To gain information regarding average case
performance, an ordered linked list is created; the search
being tested is then called n limes to seek each element in
the list. This test method incorporates every case, from
worst to best, into one performance evaluation. Since we
seem to be comparing link assignments to key

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98949.99118&domain=pdf&date_stamp=1990-04-01

risons, both the size or the list and the type of key
aried. Graphs 1 below contain the results of this
the Blink Search and the sequential search as run
i MHz, 1 wait state IBM PC clone.

30BS

Blink Search

■°* Seq. Search

2BS

30 260 330 520 676

•*- Blink Search

■ö- Seq. Search

30 260 330 520 676

•*' Blink Search

Seq. Search

Integer

Blink Search

Seq. Search

Graphs 1: Searches

The types of keys were integer, real, 2 byte string
(2BS) containing any two letters of the alphabet (such as
•AA\ ’MIST and 'ZY), and 30BS (consisting of 28 A’s
followed by the same 2BS). Thus, the data points In each
graph indicate the amount of time in seconds required by
the test algorithm to operate on an n-elcment list using
the key type indicated above the graph. Since the Blink
Search's superiority proved to be monotonlc Increasing
with n, as predicted above, the restriction of list size to
676 (26x26) was not constraining.

The first fact observed in Graphs 1 is that the
Blink Search Is 2 to 3.5 times more time efficient than
the sequential search in the average case, regardless of
key type (including hardware integer comparisons) and
linked list size. A corollary fact verified in Graphs 1 is
that the Blink Search seems relatively unencumbered by
the data type of the key because it does so little
comparing. Note that both searches were also tested
using n < 130, but the results were severely distorted by
the IBM PC timer's inaccuracy. However, the average of
several test iterations using very small n (down to n=13)
yielded exactly the same trends as those in Graphs 1.

Graphs 1 illustrates one last Important fact, though
it is not quite as obvious. Since the test algorithm
performs n search operations, Its big-O rating will be n
multiplied by the big-O rating of the search. In the lest of
the sequential search, doubling the list size quadrupled
the execution time. This is the hallmark of an 0(n2)
algorithm, which implies that a single element sequential
search is 0(n), the expected result. In the case of the
Blink Search lest, O(n^) performance was only observed
on numeric key types. This alone Is enough to assert that
the Blink Search is an 0(n) algorithm. Even using the
more complex types, the Blink Search Is still not an
O(logn) algorithm, though. Recall that for the search test
to be rated O(nlogn) means that Time = knlogn for some
constant i; this means (hat the ratio Time/(n1ogn) should
hold constant (k) for any list size n. Neither the 30BS
nor the 2BS data displayed this characteristic for any
reasonable level of error tolerance. In the end. Graphs 1
show that the Blink Search is simply a much faster 0(n)
search than the sequential search— regardless of (non
trivial) list size and key data type.

The Insertion Sorts

One very important characteristic of the Blink
Search in Appendix 1 is that it will always return a valid
pointer value. If the search succeeds, then the desired
node address is returned; if the search fails, then the
Blink Search always returns the address of the node prior
to where the search value would be if it existed in the list
(a nil value is returned if the search value belongs before
the first node). This is crucial to a linked list insert
operation and, hence, to an insertion sort. With this in
mind, it seems natural to begin the investigation of

efficient linked list sorting by exploring the impact of the
Blink Search on the standard insertion sort algorithm.

The insertion sort sequences a linked list by
inserting each node into its proper position in a new list;
it uses a search to find that proper position. The insertion
sorts referred to here sort the linked list in memory, using
the old nodes to create the new list. The S-insertion sort
is implemented with a sequential search; the B-inscrtion
sort is implemented with the Blink Search (Appendix 2).
Chart 1 shows relative performance of the S-insertion
sort and the B-inscrtion sort on random data as list size is
varied up to 2000.

Chart 1: Insertion Sorts

Chart 1 shows some improvement in lime
efficiency of the insertion sort using the Blink Search.
Despite this, execution time is still quite slow because it
is not logarithmically related to list size. The linked list
cannot be a truly competitive data handling construct
without a much faster sort— namely a partition algorithm
with Ofnlogn) time efficiency.

The Partition Sorts

The partition sorts below differ more noticeably
from the array Quicksort paradigm than docs the Blink
Search from the array binary search. In fact, even the
idea of two partitions is no longer sacrosanct. All of the
sort algorithms discussed below are conceptually similar
to the array sort in general operation. Each sort
algorithm partitions the list then calls itself recursively to
sort the resulting sublists. However, the sorts below
differ considerably from the array Quicksort in how the
partition operation is performed.

The Separation Sort (Appendix 3) is a partition-
exchange sort without the exchange. The partition
operation starts by choosing the first sublist node as the
pivot. A single down pointer is then initialized to the
address of the last sublist node. The down node's

previous node is recorded for later use. The down node
is moved behind the pivot node if its key value is less
than that of the pivot (i.e. the down node becomes the
pivot node's new previous element). The dawn pointer is
then reassigned the value of (lie previous node saved
above. This process is repeated until the down pointer
has moved down the list from the last node to the pivot
node, at wliich time the partition is complete.

The first noticeable change is the use of only one
pointer to move 'down' the list toward the pivot element.
The Quicksort requires finding two elements to swap
because insertion is not a trivial operation on an array.
This constraint is not shared by the linked list. Another
interesting feature of this particular method is the fact
that a reversed order list will be converted to a sorted
order list in the first partition. Consider a list that is in
descending order which we would like to put in
ascending order. The first element has the greatest key,
and it becomes the pivot. As the down pointer moves
from the last element toward the pivot, it encounters a
sequence of keys of increasing value, each of which it
inserts just before the pivot element. Inserting
successively greater nodes just before the pivot implies
inserting just after all ol ihe nodes containing keys which
have a lesser value- the first sublist will contain n-1
nodes in sorted order.

While this does account for the reversed order
problem by reducing it to a sorted order problem, the
sorted order problem remains. The solution is the
reliability adjustment (Appendix 3) for the Separation
Sort. The concept is simple: move the pivot pointer
forward in the list for as long as the nodes contain a
monotonic increasing sequence of key values (monotonic
decreasing if sorting into descending order); if the pivot
pointer reaches the last element, then the sublist is
already sorted- neither the remaining partition nor the
two recursive sort calls need be performed. If the pivot
pointer does not reach the end of the sublist, then the
normal Separation Sort partition can occur by starting a
down pointer at the last sublist node.

The Reliable Separation Sort is rated 0(nlogn) for
random data. For reversed order and pre-sorted data, the
Reliable Separation Sort requires only O(n) operations,
far surpassing the O(nlogn) rating of the reliable
Quicksort for these cases. However, the Separation
Sort's reliability adjustment causes the pivot pointer to
gravitate to a local maximum in the sequence of
elements, greatly increasing (lie likelihood of suboptimal
partitioning- the left partition will very often contain
more elements than the right partition.

This problem can be alleviated by using the pivot
from the Reliable Separation Sort and the pivot from the
plain Separation Sort, causing the creation of three
partitions. The resulting algorithm, the Blink Sort
(appendix 4), maintains 0(n) efficiency on reversed and
sorted order data. It also averages nlogjn operations on
random data, but it is still rated O(nlogn) because

irrelevant constants are ignored in O-notation.
Nevertheless, that constant does provide 25% more time
efficiency than the Reliable Separation Sort.

The Blink Sort's partition operation is somewhat
more complex than the others. It starts by moving the
second node behind the first if it contains a lesser key
value. With this change, the present first node becomes
the first pivot and the second node becomes die second
pivot. The second pivot is then moved up to successive
sublist elements until it reaches the sublist's end or until
the next node has a lesser key value. If the second pivot
reaches the last node, then neither the rest of the partition
nor the recursive calls are performed (just as in the
Reliable Separation Sort). The second half of the
partition starts, as expected, by assigning the address of
the last node to the down pointer. The down pointer is
moved toward the second pivot by the same mechanism
as in the Separation Sort; each successive down node is
compared to both pivot keys, and moved before the
appropriate one (or left alone if its key is greater than that
of the second pivot).

Both the Blink Sort and the Reliable Separation
Sort showed O(n) time efficiency on reversed and sorted
data; both reversed the order of a 2000 element list in
under a second and handled the sorted order problem in
under an eighth of a second. The array Quicksort
required over two seconds to handle the reversed and
sorted order cases on a 2000 element array. Chart 2
compares the performance on equivalent lists of the
Reliable Separation Sort, the Blink Sort and the anay
Quicksort using the Mid-swap method presented in the
introduction. The test lists contained 250 to 2000
randomly generated key values.

n=250 5 0 0 1000 2 0 0 0

Conclusion

The field of software engineering is one of the
fastest growing concerns in computer science because we
are finally realizing that programs cannot be efficiently
written by depending on software wizardry alone [I).
Many espouse the concept of information hiding as a
method for forcing programmers to slay at the
appropriate level of abstraction required to solve a
computing problem [1J. We must be sure, however, that
abstraction docs not lead to lethargy. For example, one
should never say, "A sort is a sort; I should not have to
care how it works." The package author is responsible
for insuring that the package algorithms work; the
package user is still responsible for knowing how they
work. The programmer cannot effectively decide
whether to use a package without being cognizant of the
exact strengths and weaknesses of the package
algorithms. For example, if a linked list package author
employs an Insertion sort using a sequential search, then
the prospective package user may well choose not to use
the package, but instead, write another package using the
Blink algorithms.

In conclusion, the Blink Search and Blink Sort
developed by the author in this paper add to the
efficiency of the doubly linked list, and improve its status
as a competitive data handling construct.

[1] Booch, Grady. Software Engineering with
Ada. 2nd ed. Menlo Park: Benjamin/Cummings
Publishing, 1987.

[2] Knulh, Donald E. The Art of Computer
Programming: Sorting and Searching. 3rd vol. Reading:
Addison-Wesley, 1973.

[3] Koffman, Elliot B. Problem Solving and
Structured Programming in Pascal. 2nd ed. Addison-
Wesley, 1985.

[4] Tenenbaum, Aaron M„ and Augcnslein,
Moshe J. Data Structures Using Pascal. Englewood
Giffs: Prentice Hall, 1986.

Chart 2: Partition Sorts

Every sort in Chart 2 clearly shows O(nlogn)
efficiency. Perhaps the most dramatic illustration of just
how much improvement in linked list performance has
been made is the fact that time is measured in seconds in
Chart 2 and in lens of seconds in Chart 1.

NOTE: The code in all appendices assumes SHORT CIRCUIT EVALUATION OF BOOLEAN EXPRESSIONS.

Al 1 appendices contain code for the implementation section of a linked list package or unit; FIRST and LAST will
point to the beginning and the end of the list, respectively, and COUNTER will keep track of the number of nodes in the
list, which is only needed for the Blink Search. In Appendices 1 through 4, the node data structure has the Pascal
declaration:

type
Key_Type = (* arbitrary *)
Node_Ptr = *Node_Rec;
NodeRec = Record

Key : Key_Type;
Prev, Next : Node_Ptr

end;

function Search (Search_Key : Key_Type) : NodePtr;

function Blink_Search (Search_Key : KeyType) : NodePtr;
var First_Pos, Mid_Pos, New_Mid, LastPos, I, Move : integer;

Fnd_Ptr : NodePtr;
begin

First_Pos := 1;
Last_Pos := COUNTER;
F n d P t r := FIRST;
Mid_Pos := (First_Pos + Last_Pos) div 2;
for I := 2 to Mid_Pos do Fn d P t r := Fnd_Ptr*.Next;
while First_Pos <= Last_Pos do begin

if Fnd_PtrA .Key = Search_Key then FirstPos := Last_Pos + 1
else begin

if Fnd_Ptr*.Key < Search_Key then FirstPos := Mi d P o s + 1
else Last_Pos := Mid_Pos - 1;
New_Mid :«* (First_Pos + Last_Pos) div 2;
Move := Abs (New_Mid - MidPos);
if New_Mid > Mid_Pos then

for I := 1 to Move do FndPtr := Fnd_PtrA .Next
else for I :■ 1 to Move do Fnd_Ptr := FndPtr*.Prev
Mid_Pos := N e w M i d

end
end;
BlinkSearch := FndPtr

end;

begin

if COUNTER > 1 then Search := Blink_Search (Search_Key)
end;

procedure Inaertion_Sort;
var Tempi, Temp2 : NodeJPtr;

procedure Insert (Node : Node_Ptr); (* see below *)

begin
Tempi := FIRSTA .Next;
FIRST*.Next := Nil;
LAST := FIRST;
COUNTER := 1;

while Tempi <> nil do begin
Temp2 := Tempi*.Next;
Insert (Tempi);
Tempi := Temp2

end;
end;

procedure Insert (Node : Node_Ptr); (* Use with B-insertion sort *)
var Prev_Ptr : Node_Ptr;
begin

Prev_Ptr := Blink_Search (Node*.Key);
if Prev_Ptr = nil then begin

Node*.Next := FIRST;
FIRST*.Prev := Node;
FIRST ;= Node

end
else begin

Node*.Next := Prev_Ptr*.Next;
Prev_Ptr*.Next := Node

end;
if Prev_Ptr = LAST then LAST := Node
else Node*.Next*.Prev := Node;
Node*.Prev := Prev_Ptr;
COUNTER := COUNTER + 1

end;

procedure Insert (Node : Node_Ptr); (* Use with S-insertion sort *)
var Next_Ptr : Node_Ptr;
begin

Next_Ptr := Sequential_Search (Node*.Key);
if N e x tPtr = nil then begin

Node*.Prev := LAST;

LAST*.Next := Node;
LAST := Node

end
else begin

Node*.Prev := Next_Ptr*.Prev;
NextPtr*.Prev := Node

end;
if Next_Ptr = FIRST then FIRST := Node
else Node*.Prev*.Next := Node;
Node*.Next := Next_Ptr;
COUNTER ;= COUNTER + 1

end;

procedure Sort;

procedure Separation_Sort (SubF, SubL : Node_Ptr);

var Down_Ptr, Pvt_Ptr, Temp : Node_Ptr;

procedure Move_Behind;
begin

if Down_Ptr <> SubL then
Down_PtrA .NextA .Prev :■* Down_PtrA .Prev

else begin
SubL :■= Down_PtrA .Prev?
if Down_Ptr •= LAST then LAST := Down_PtrA .Prev
else Down_PtrA .NextA .Prev := Down_PtrA .Prev;

end;
Down_PtrA .PrevA .Next := Down_PtrA .Next;
Down_PtrA .Next :■* Pvt_Ptr;
Down_PtrA .Prev := Pvt_PtrA .Prev;
Pvt_PtrA .Prev := Down_Ptr;
if Pvt_Ptr <> SubF then Down_PtrA .PrevA .Next :» Down_Ptr

else begin
SubF Down_Ptr;
if Pvt_Ptr = FIRST then FIRST := Down_Ptr
else Down_PtrA .PrevA .Next := Down_Ptr;

end;
end;

begin
(1) Pvt_Ptr := SubF;
12) Down_Ptr ;= SubL;

while Down_Ptr <> Pvt_Ptr do begin
Temp := Down_PtrA .Prev;
if Down_PtrA .Key < Pvt_PtrA .Key then Move_Behind;
Down_Ptr := Temp

end;
if (SubF <> Pvt_Ptr) and (SubFA .Next <> Pvt_Ptr) then

Separation_Sort (SubF, Pvt_PtrA .Prev);
if (Pvt_Ptr <> SubL) and (Pvt_PtrA .Next <> SubL) then

(9) Separation_Sort (Pvt_PtrA .Next, SubL)
end;

begin

if FIRST <> LAST then Separation_Sort (FIRST, LAST)
end;

The reliability adjustment can be mode by adding anodicr
'end' after line 9 and the following code between lines 1 and 2:

while (Pvt_Ptr <> SubL) and
(Pvt_PtrA .NextA .Key >= Pvt_PtrA .Key) do

Pvt_Ptr := Pvt_PtrA .Next;
if Pvt_Ptr <> SubL then begin

procedure Sort;

procedure Blink_Sort (SubF, SubL : Node_Ptr);
var Down, Pvtl, Pvt2, Temp : Node_Ptr;

procedure Move_Behind (var Pvt, Down : Node_Ptr);
begin

if Down <> SubL then DownA .NextA .Prev := DownA .Prev
else begin

if Down = LAST then LAST := DownA .Prev
else DownA .NextA .Prev := DownA .Prev;
SubL := DownA .Prev;

end;
DownA .PrevA .Next := DownA .Next;
DownA .Next := Pvt;
DownA .Prev := PvtA .Prev;
PvtA .Prev :■= Down;
if Pvt <> SubF then DownA .PrevA.Next := Down
else begin

if Pvt = FIRST then FIRST Down

else DownA .PrevA .Next := Down;
SubF := Down;

end;
end;

begin

Pvt2 := SubFA .Next;

if SubFA .Key > Pvt2A .Key then Move_Behind (SubF, Pvt2);
Pvtl := SubF;
while (Pvt2 <> SubL) and (Pvt2A .NextA .Key >= Pvt2A .Key) do

Pvt2 := Pvt2A .Next;
if Pvt2 <> SubL then begin

Down := SubL;
while Down <> Pvt2 do begin

Temp := DownA .Prev;
if DownA .Key < PvtlA .Key then MoveBehind (Pvtl, Down)
else if DownA .Key < Pvt2A .Key then MoveBehind (Pvt2, Down)
Down := Temp;

end;
if (Pvtl <> SubF) and (PvtlA .Prev <> SubF) then

Blink_Sort (SubF, PvtlA .Prev);
if (PvtlA .Next <> Pvt2) and (PvtlA .Next <> Pvt2A .Prev) then

Blink_Sort (PvtlA .Next, Pvt2A .Prev);
if (Pvt2 <> SubL) and (Pvt2A .Next <> SubL) then

Blink_Sort (Pvt2A .Next, SubL)
end

end;

begin
if FIRST <> LAST then Blink_Sort (FIRST, LAST)

end;

