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Abstract
The purpose of this paper is to present partition 

sort and search algorithms developed by the author for 
the doubly linked list. First, the binary search concept 
will be modified to enable its use on a linked list, and the 
resulting algorithm, (he Blink Search, will be shown to be 
more than twice as time efficient as the sequential search. 
The Blink Search will then be used to enhance a standard 
insertion sort. Upon finding that the improvement still 
leaves the insertion sort with the unacceptable 0(n^) 
rating, several linked list partition sorts will be 
developed. We will see later that the best of these, the 
Blink Sort, shows very comparable execution lime to the 
Quicksort on an equivalent array; in fact, the Blink Sort 
is rated O(nlogn) for random data and 0(n) for reversed 
order and sorted order lists.

Introduction

Synthesis of doubly linked list partition sort and 
search algorithms necessarily began with an analysis of 
the anay partition algorithms. A substantial theoretical 
discussion of these algorithms appears in Knuth [2], and 
a more intuitive discussion appears in Koffman [3]. Like 
many other authors, Knuth and Koffman expressed 
concern for Quicksort performance on pre sorted data. A 
corollary concern questions the time efficiency of the 
Quicksort on reversed order data. Tenenbaum and 
Augenstein [4] discuss an ample solution to both the 
reversed and sorted order problems: modify the partition 
operation to use the median of the first, last and middle 
sublist elements as the pivot value. The only drawback 
to this median-of-three method is that it increases 
execution time on random data by as much as 50% in 
spite of the fact that it promotes more balanced partitions; 
this is due to the special Quicksort implementation 
required for it to work on reversed data and, of course, 
the cost of calculating the median. A more elegant 
solution to the reversed and sorted order problems is 
simply to swap the first and middle elements before 
performing the normal partition. Intuitively, the median- 
of-three method seems to do this, but in practice it docs 
not work with all Quicksort implementations.

Permission to copy without fee all or part of this material is grant* d 
provhled that (lie copies arc not made or distributed for direct com
mercial advantage, ilie ACM copyright notice and (lie title of llie 
publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specific per
mission.
© 1990 ACM 0 89791-356 6/90/0400/0234 $1.50

Neither the simple Mid-swap method nor the 
median-of-three method provide adequate solutions to 
the reversed and sorted order problems on a linked list 
because 0(n) link assignments are required to access the 
middle node in a sublist. Nevertheless, the doubly linked 
list cannot be a competitive data handling construct 
without solutions to the reversed and sorted order 
problems. In addition, this difficulty in accessing the 
middle node casts a shadow of doubt on the efficacy of a 
linked list partition search, which requires access to the 
middle sublist element- the concept seems preposterous.

Despite these concerns, development of linked list 
partition algorithms would yield the speed and simplicity 
offered by a list structure without the size bounding 
characteristic of the array data structure. This paper is 
devoted to presenting algorithms developed by the author 
to meet this need.

The Partition Search

The Blink Search (Appendix 1) and the binary 
search are very similar, taken to a significant degree of 
abstraction. The anay binary search is a more time 
efficient algorithm than the array sequential search 
method because the binary search makes far less 
comparisons. The Blink Search also makes many less 
comparisons than a linked list sequential search, however 
the Blink Search must also access each node between a 
certain node and the next middle node. Thus, it will 
average log2/i key comparisons but n link assignments; 
on the other hand, the sequential search averages only n/2 
link assignments but also n/2 key comparisons. In 
deciding the more efficient search, we must note that the 
problem reduces to deciding the cost of a key comparison 
in terms of a certain number of link assignments.

Given the mathematical relations above, inductive 
reasoning dictates that if the Blink Search can be shown 
to be more time efficient than a sequential search for 
some number of nodes n, then it will be more efficient 
for all lists with more than n nodes. The test below will 
provide the 'anchor' for this inductive hypothesis and 
sample test the hypothesis by examining average case 
performance of (lie Blink Search for various values of n.

To gain information regarding average case 
performance, an ordered linked list is created; the search 
being tested is then called n limes to seek each element in 
the list. This test method incorporates every case, from 
worst to best, into one performance evaluation. Since we 
seem to be comparing link assignments to key
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risons, both the size or the list and the type of key 
aried. Graphs 1 below contain the results of this 
the Blink Search and the sequential search as run 
i MHz, 1 wait state IBM PC clone.
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Graphs 1: Searches

The types of keys were integer, real, 2 byte string 
(2BS) containing any two letters of the alphabet (such as 
•AA\ ’MIST and 'ZY), and 30BS (consisting of 28 A’s 
followed by the same 2BS). Thus, the data points In each 
graph indicate the amount of time in seconds required by 
the test algorithm to operate on an n-elcment list using 
the key type indicated above the graph. Since the Blink 
Search's superiority proved to be monotonlc Increasing 
with n, as predicted above, the restriction of list size to 
676 (26x26) was not constraining.

The first fact observed in Graphs 1 is that the 
Blink Search Is 2 to 3.5 times more time efficient than 
the sequential search in the average case, regardless of 
key type (including hardware integer comparisons) and 
linked list size. A corollary fact verified in Graphs 1 is 
that the Blink Search seems relatively unencumbered by 
the data type of the key because it does so little 
comparing. Note that both searches were also tested 
using n < 130, but the results were severely distorted by 
the IBM PC timer's inaccuracy. However, the average of 
several test iterations using very small n (down to n=13) 
yielded exactly the same trends as those in Graphs 1.

Graphs 1 illustrates one last Important fact, though 
it is not quite as obvious. Since the test algorithm 
performs n search operations, Its big-O rating will be n 
multiplied by the big-O rating of the search. In the lest of 
the sequential search, doubling the list size quadrupled 
the execution time. This is the hallmark of an 0(n2) 
algorithm, which implies that a single element sequential 
search is 0(n), the expected result. In the case of the 
Blink Search lest, O(n^) performance was only observed 
on numeric key types. This alone Is enough to assert that 
the Blink Search is an 0(n) algorithm. Even using the 
more complex types, the Blink Search Is still not an 
O(logn) algorithm, though. Recall that for the search test 
to be rated O(nlogn) means that Time = knlogn for some 
constant i; this means (hat the ratio Time/(n1ogn) should 
hold constant (k) for any list size n. Neither the 30BS 
nor the 2BS data displayed this characteristic for any 
reasonable level of error tolerance. In the end. Graphs 1 
show that the Blink Search is simply a much faster 0(n) 
search than the sequential search— regardless of (non
trivial) list size and key data type.

The Insertion Sorts

One very important characteristic of the Blink 
Search in Appendix 1 is that it will always return a valid 
pointer value. If the search succeeds, then the desired 
node address is returned; if the search fails, then the 
Blink Search always returns the address of the node prior 
to where the search value would be if it existed in the list 
(a nil value is returned if the search value belongs before 
the first node). This is crucial to a linked list insert 
operation and, hence, to an insertion sort. With this in 
mind, it seems natural to begin the investigation of



efficient linked list sorting by exploring the impact of the 
Blink Search on the standard insertion sort algorithm.

The insertion sort sequences a linked list by 
inserting each node into its proper position in a new list; 
it uses a search to find that proper position. The insertion 
sorts referred to here sort the linked list in memory, using 
the old nodes to create the new list. The S-insertion sort 
is implemented with a sequential search; the B-inscrtion 
sort is implemented with the Blink Search (Appendix 2). 
Chart 1 shows relative performance of the S-insertion 
sort and the B-inscrtion sort on random data as list size is 
varied up to 2000.

Chart 1: Insertion Sorts

Chart 1 shows some improvement in lime 
efficiency of the insertion sort using the Blink Search. 
Despite this, execution time is still quite slow because it 
is not logarithmically related to list size. The linked list 
cannot be a truly competitive data handling construct 
without a much faster sort— namely a partition algorithm 
with Ofnlogn) time efficiency.

The Partition Sorts

The partition sorts below differ more noticeably 
from the array Quicksort paradigm than docs the Blink 
Search from the array binary search. In fact, even the 
idea of two partitions is no longer sacrosanct. All of the 
sort algorithms discussed below are conceptually similar 
to the array sort in general operation. Each sort 
algorithm partitions the list then calls itself recursively to 
sort the resulting sublists. However, the sorts below 
differ considerably from the array Quicksort in how the 
partition operation is performed.

The Separation Sort (Appendix 3) is a partition- 
exchange sort without the exchange. The partition 
operation starts by choosing the first sublist node as the 
pivot. A single down pointer is then initialized to the 
address of the last sublist node. The down node's

previous node is recorded for later use. The down node 
is moved behind the pivot node if its key value is less 
than that of the pivot (i.e. the down node becomes the 
pivot node's new previous element). The dawn pointer is 
then reassigned the value of (lie previous node saved 
above. This process is repeated until the down pointer 
has moved down the list from the last node to the pivot 
node, at wliich time the partition is complete.

The first noticeable change is the use of only one 
pointer to move 'down' the list toward the pivot element. 
The Quicksort requires finding two elements to swap 
because insertion is not a trivial operation on an array. 
This constraint is not shared by the linked list. Another 
interesting feature of this particular method is the fact 
that a reversed order list will be converted to a sorted 
order list in the first partition. Consider a list that is in 
descending order which we would like to put in 
ascending order. The first element has the greatest key, 
and it becomes the pivot. As the down pointer moves 
from the last element toward the pivot, it encounters a 
sequence of keys of increasing value, each of which it 
inserts just before the pivot element. Inserting 
successively greater nodes just before the pivot implies 
inserting just after all ol ihe nodes containing keys which 
have a lesser value- the first sublist will contain n-1 
nodes in sorted order.

While this does account for the reversed order 
problem by reducing it to a sorted order problem, the 
sorted order problem remains. The solution is the 
reliability adjustment (Appendix 3) for the Separation 
Sort. The concept is simple: move the pivot pointer 
forward in the list for as long as the nodes contain a 
monotonic increasing sequence of key values (monotonic 
decreasing if sorting into descending order); if the pivot 
pointer reaches the last element, then the sublist is 
already sorted- neither the remaining partition nor the 
two recursive sort calls need be performed. If the pivot 
pointer does not reach the end of the sublist, then the 
normal Separation Sort partition can occur by starting a 
down pointer at the last sublist node.

The Reliable Separation Sort is rated 0(nlogn) for 
random data. For reversed order and pre-sorted data, the 
Reliable Separation Sort requires only O(n) operations, 
far surpassing the O(nlogn) rating of the reliable 
Quicksort for these cases. However, the Separation 
Sort's reliability adjustment causes the pivot pointer to 
gravitate to a local maximum in the sequence of 
elements, greatly increasing (lie likelihood of suboptimal 
partitioning- the left partition will very often contain 
more elements than the right partition.

This problem can be alleviated by using the pivot 
from the Reliable Separation Sort and the pivot from the 
plain Separation Sort, causing the creation of three 
partitions. The resulting algorithm, the Blink Sort 
(appendix 4), maintains 0(n) efficiency on reversed and 
sorted order data. It also averages nlogjn operations on 
random data, but it is still rated O(nlogn) because



irrelevant constants are ignored in O-notation. 
Nevertheless, that constant does provide 25% more time 
efficiency than the Reliable Separation Sort.

The Blink Sort's partition operation is somewhat 
more complex than the others. It starts by moving the 
second node behind the first if it contains a lesser key 
value. With this change, the present first node becomes 
the first pivot and the second node becomes die second 
pivot. The second pivot is then moved up to successive 
sublist elements until it reaches the sublist's end or until 
the next node has a lesser key value. If the second pivot 
reaches the last node, then neither the rest of the partition 
nor the recursive calls are performed (just as in the 
Reliable Separation Sort). The second half of the 
partition starts, as expected, by assigning the address of 
the last node to the down pointer. The down pointer is 
moved toward the second pivot by the same mechanism 
as in the Separation Sort; each successive down node is 
compared to both pivot keys, and moved before the 
appropriate one (or left alone if its key is greater than that 
of the second pivot).

Both the Blink Sort and the Reliable Separation 
Sort showed O(n) time efficiency on reversed and sorted 
data; both reversed the order of a 2000 element list in 
under a second and handled the sorted order problem in 
under an eighth of a second. The array Quicksort 
required over two seconds to handle the reversed and 
sorted order cases on a 2000 element array. Chart 2 
compares the performance on equivalent lists of the 
Reliable Separation Sort, the Blink Sort and the anay 
Quicksort using the Mid-swap method presented in the 
introduction. The test lists contained 250 to 2000 
randomly generated key values.

n=250 5 0 0  1000  2 0 0 0

Conclusion

The field of software engineering is one of the 
fastest growing concerns in computer science because we 
are finally realizing that programs cannot be efficiently 
written by depending on software wizardry alone [I). 
Many espouse the concept of information hiding as a 
method for forcing programmers to slay at the 
appropriate level of abstraction required to solve a 
computing problem [1J. We must be sure, however, that 
abstraction docs not lead to lethargy. For example, one 
should never say, "A sort is a sort; I should not have to 
care how it works." The package author is responsible 
for insuring that the package algorithms work; the 
package user is still responsible for knowing how they 
work. The programmer cannot effectively decide 
whether to use a package without being cognizant of the 
exact strengths and weaknesses of the package 
algorithms. For example, if a linked list package author 
employs an Insertion sort using a sequential search, then 
the prospective package user may well choose not to use 
the package, but instead, write another package using the 
Blink algorithms.

In conclusion, the Blink Search and Blink Sort 
developed by the author in this paper add to the 
efficiency of the doubly linked list, and improve its status 
as a competitive data handling construct.

[1] Booch, Grady. Software Engineering with 
Ada. 2nd ed. Menlo Park: Benjamin/Cummings 
Publishing, 1987.

[2] Knulh, Donald E. The Art of Computer 
Programming: Sorting and Searching. 3rd vol. Reading: 
Addison-Wesley, 1973.

[3] Koffman, Elliot B. Problem Solving and 
Structured Programming in Pascal. 2nd ed. Addison- 
Wesley, 1985.

[4] Tenenbaum, Aaron M„ and Augcnslein, 
Moshe J. Data Structures Using Pascal. Englewood 
Giffs: Prentice Hall, 1986.

Chart 2: Partition Sorts

Every sort in Chart 2 clearly shows O(nlogn) 
efficiency. Perhaps the most dramatic illustration of just 
how much improvement in linked list performance has 
been made is the fact that time is measured in seconds in 
Chart 2 and in lens of seconds in Chart 1.



NOTE: The code in all appendices assumes SHORT CIRCUIT EVALUATION OF BOOLEAN EXPRESSIONS.

Al 1 appendices contain code for the implementation section of a linked list package or unit; FIRST and LAST will 
point to the beginning and the end of the list, respectively, and COUNTER will keep track of the number of nodes in the 
list, which is only needed for the Blink Search. In Appendices 1 through 4, the node data structure has the Pascal 
declaration:

type
Key_Type = (* arbitrary *)
Node_Ptr = *Node_Rec;
NodeRec = Record 

Key : Key_Type;
Prev, Next : Node_Ptr 

end;

function Search (Search_Key : Key_Type) : NodePtr;

function Blink_Search (Search_Key : KeyType) : NodePtr;
var First_Pos, Mid_Pos, New_Mid, LastPos, I, Move : integer;

Fnd_Ptr : NodePtr; 
begin

First_Pos := 1;
Last_Pos := COUNTER;
F n d P t r  := FIRST;
Mid_Pos := (First_Pos + Last_Pos) div 2;
for I := 2 to Mid_Pos do Fn d P t r  := Fnd_Ptr*.Next;
while First_Pos <= Last_Pos do begin

if Fnd_PtrA .Key = Search_Key then FirstPos := Last_Pos + 1 
else begin

if Fnd_Ptr*.Key < Search_Key then FirstPos := Mi d P o s  + 1 
else Last_Pos := Mid_Pos - 1;
New_Mid :«* (First_Pos + Last_Pos) div 2;
Move := Abs (New_Mid - MidPos); 
if New_Mid > Mid_Pos then

for I := 1 to Move do FndPtr := Fnd_PtrA .Next 
else for I :■ 1 to Move do Fnd_Ptr := FndPtr*.Prev 
Mid_Pos := N e w M i d  

end 
end;
BlinkSearch := FndPtr 

end;

begin

if COUNTER > 1 then Search := Blink_Search (Search_Key) 
end;



procedure Inaertion_Sort;
var Tempi, Temp2 : NodeJPtr;

procedure Insert (Node : Node_Ptr); (* see below *)

begin
Tempi := FIRSTA .Next;
FIRST*.Next := Nil;
LAST := FIRST;
COUNTER := 1;

while Tempi <> nil do begin 
Temp2 := Tempi*.Next;
Insert (Tempi);
Tempi := Temp2 

end; 
end;

procedure Insert (Node : Node_Ptr); (* Use with B-insertion sort *)
var Prev_Ptr : Node_Ptr; 
begin

Prev_Ptr := Blink_Search (Node*.Key); 
if Prev_Ptr = nil then begin 

Node*.Next := FIRST;
FIRST*.Prev := Node;
FIRST ;= Node 

end
else begin

Node*.Next := Prev_Ptr*.Next;
Prev_Ptr*.Next := Node 

end;
if Prev_Ptr = LAST then LAST := Node 
else Node*.Next*.Prev := Node;
Node*.Prev := Prev_Ptr;
COUNTER := COUNTER + 1 

end;

procedure Insert (Node : Node_Ptr); (* Use with S-insertion sort *)
var Next_Ptr : Node_Ptr; 
begin

Next_Ptr := Sequential_Search (Node*.Key); 
if N e x tPtr = nil then begin 

Node*.Prev := LAST;

LAST*.Next := Node;
LAST := Node 

end
else begin

Node*.Prev := Next_Ptr*.Prev;
NextPtr*.Prev := Node 

end;
if Next_Ptr = FIRST then FIRST := Node 
else Node*.Prev*.Next := Node;
Node*.Next := Next_Ptr;
COUNTER ;= COUNTER + 1 

end;



procedure Sort;

procedure Separation_Sort (SubF, SubL : Node_Ptr); 

var Down_Ptr, Pvt_Ptr, Temp : Node_Ptr;

procedure Move_Behind; 
begin

if Down_Ptr <> SubL then
Down_PtrA .NextA .Prev :■* Down_PtrA .Prev 

else begin
SubL :■= Down_PtrA .Prev?
if Down_Ptr •= LAST then LAST := Down_PtrA .Prev 
else Down_PtrA .NextA .Prev := Down_PtrA .Prev; 

end;
Down_PtrA .PrevA .Next := Down_PtrA .Next;
Down_PtrA .Next :■* Pvt_Ptr;
Down_PtrA .Prev := Pvt_PtrA .Prev;
Pvt_PtrA .Prev := Down_Ptr;
if Pvt_Ptr <> SubF then Down_PtrA .PrevA .Next :» Down_Ptr 

else begin
SubF Down_Ptr;
if Pvt_Ptr = FIRST then FIRST := Down_Ptr 
else Down_PtrA .PrevA .Next := Down_Ptr; 

end; 
end;

begin
(1) Pvt_Ptr := SubF;
12) Down_Ptr ;= SubL;

while Down_Ptr <> Pvt_Ptr do begin 
Temp := Down_PtrA .Prev;
if Down_PtrA .Key < Pvt_PtrA .Key then Move_Behind; 
Down_Ptr := Temp 

end;
if (SubF <> Pvt_Ptr) and (SubFA .Next <> Pvt_Ptr) then 

Separation_Sort (SubF, Pvt_PtrA .Prev); 
if (Pvt_Ptr <> SubL) and (Pvt_PtrA .Next <> SubL) then 

(9) Separation_Sort (Pvt_PtrA .Next, SubL)
end;

begin

if FIRST <> LAST then Separation_Sort (FIRST, LAST) 
end;

The reliability adjustment can be mode by adding anodicr 
'end' after line 9 and the following code between lines 1 and 2:

while (Pvt_Ptr <> SubL) and
(Pvt_PtrA .NextA .Key >= Pvt_PtrA .Key) do 

Pvt_Ptr := Pvt_PtrA .Next; 
if Pvt_Ptr <> SubL then begin



procedure Sort;

procedure Blink_Sort (SubF, SubL : Node_Ptr); 
var Down, Pvtl, Pvt2, Temp : Node_Ptr;

procedure Move_Behind (var Pvt, Down : Node_Ptr); 
begin

if Down <> SubL then DownA .NextA .Prev := DownA .Prev 
else begin

if Down = LAST then LAST := DownA .Prev 
else DownA .NextA .Prev := DownA .Prev;
SubL := DownA .Prev; 

end;
DownA .PrevA .Next := DownA .Next;
DownA .Next := Pvt;
DownA .Prev := PvtA .Prev;
PvtA .Prev :■= Down;
if Pvt <> SubF then DownA .PrevA.Next := Down 
else begin

if Pvt = FIRST then FIRST Down 

else DownA .PrevA .Next := Down;
SubF := Down; 

end; 
end;

begin

Pvt2 := SubFA .Next;

if SubFA .Key > Pvt2A .Key then Move_Behind (SubF, Pvt2);
Pvtl := SubF;
while (Pvt2 <> SubL) and (Pvt2A .NextA .Key >= Pvt2A .Key) do 

Pvt2 := Pvt2A .Next; 
if Pvt2 <> SubL then begin 

Down := SubL;
while Down <> Pvt2 do begin 

Temp := DownA .Prev;
if DownA .Key < PvtlA .Key then MoveBehind (Pvtl, Down) 
else if DownA .Key < Pvt2A .Key then MoveBehind (Pvt2, Down) 
Down := Temp; 

end;
if (Pvtl <> SubF) and (PvtlA .Prev <> SubF) then 

Blink_Sort (SubF, PvtlA .Prev); 
if (PvtlA .Next <> Pvt2) and (PvtlA .Next <> Pvt2A .Prev) then 

Blink_Sort (PvtlA .Next, Pvt2A .Prev); 
if (Pvt2 <> SubL) and (Pvt2A .Next <> SubL) then 

Blink_Sort (Pvt2A .Next, SubL)
end

end;

begin
if FIRST <> LAST then Blink_Sort (FIRST, LAST) 

end;




