
The Design and Implementation of the
Network Backup Control Language

John C. Orthocfer (Internet: jco(5)bcach.cis.ufl.edu)
University of Florida

Department of Computer and Informational Sciences

ABSTRACT

Dumper is the implementation of a language to sim­
plify the process of doing backups on a networked com­
puter system. The language, called Network Backup Con­
trol Language (NBCL), permits the user to relate UNIXt
mount points to backup devices, on a single TCP/IP net­
work, and executes these relations on specified days.
With backup schedules put forth in a formal language,
regular backups can be done efficiently and completely.

INTRODUCTION

Currently, backups are performed cither at irregular
intervals or by specialized personnel at most installations.
Now, by putting forth a schedule in a formal notation that
can be programmatically interpreted backups can be done
by non-spccialized personnel.

In the past, computers had small file systems and
contained their own secondary storage devices. With
such a system, backups of the entire file system could be
performed by a single person in little time. As computer
systems’ grew, their file systems capacity also increased,
causing a corresponding increase in the amount of time
needed to make effective backups. One of the steps taken
to reduce the amount of time needed to execute back-ups
was to introduce incremental backups. Incremental back­
ups reduce the amount of data duplicated on multiple
backup (apes.

An incremental backup is accomplished by noting
when (he last backup of a file system was done, and then
only placing the new data on the secondary backup dev­
ice. The new data is called a forward delta. The method
that the Berkeley dump [1] program uses to achieve
incremental backups is to assign each backup a number
and store that number (also referred to as a level) with a
date-lime stamp and the file system to which the date-time
and level apply. When a backup is begun, a level is stated

t UNIX is a trademark of Bell Laboratories.

Permission to copy without fee nil or purl of this material is granted
provided that llie copies are not made or distributed for direct com­
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specific per­
mission.
© 1990 ACM 0-S9791-356-6/90/0400/0329 $1.50

and the program then looks up the date of the previous
backup at the next lower level, so that the range of dates
of files lo be backed up at this level will be known.

For example, the method Berkeley suggest, for
doing incremental backups is to do a level 0 every month.
During a week, a modified Tower of Hanoi sequence is
used: Level 3 on Sunday, 2 on Monday, 5 on Tuesday, 4
on Wednesday, 7 on Thursday, 6 on Friday, and 9 on
Saturday. It may also be desirable to do a level 9 at the
end of every day.

While an incremental backup system reduces the
amount of data that needs to be backed up, the complexity
of the schedule is increased. To further complicate a
backup plan, many computers are now part of a network
with a combination of disked workstations and main­
frames which contain both user and system files. But, not
all machines have a secondary backup device and the
backup devices are not necessarily all identical.

Dump [1] was modified by Berkeley to work with
networks. The network version is called rdump. The
operation of rdump is very similar to dump with the
following exceptions in file names and tape control. All
file names, for files on remote machines are written as
hostnam e: / p a t h / f l i e name. The path should be
given from root Rdump also starts up a process on the
machine that contains the secondary backup device. This
process is used to control the tape device.

Currently, in a medium to large computer system,
several file systems on different machines need to be
backed up on a daily basis. The problem is that there is
no formal way to keep the schedule information in a cen­
tral location. Normally there are only a few people in the
system administration that know what backups arc to be
done and when. Also, with the backups being done by
hand, mistakes can be made.

Network Backup Control Language (NBCL) is a
way lo formalize the scheduling of file systems lo be
backed-up. Dumper is the name of the interpreter that
will control Berkeley's rdump [1] command to do back­
ups across a Transmission Control Protocol/lnlemct Pro­
tocol (TCP/IP) network.

TECHNICAL OVERVIEW

In the discussion that follows it is assumed that the
reader has some familiarity with TCP/IP, Network File

http://crossmark.crossref.org/dialog/?doi=10.1145%2F98949.99158&domain=pdf&date_stamp=1990-04-01

System (NFS), and BSD 4.3. The relevant parts of BSD
4.3 are the command rdump, and UNIX device files and
mount points.

Dumper was developed to execute the rdump

command. The rdunp program is part of the BSD 4.x
release, therefore it is easily accessible to all UNIX instal­
lations. Rdump requires a raw device file with which to
operate. Raw devices arc not exported by the NFS
mounting of the drive. Therefore, rdump is required to
be executed on the machine that the file system is physi­
cally mounted on. On the machine that supports the
secondary storage device, normally a tape backup unit,
rdump executes the rmt[l] command. Rmt is the
Remote Magnetic Tape control program which lets
rdump read and write the tape.

When rdump is finished with a tape, anyone who
has access through the machine to the tape drive could
write to the tape. To prevent this from affecting any back­
ups, when rdump gets done, dumper immediately sends
an offline command to the tape drive through the mt
command.

Dumper also needs access to the rah command,
so that it can start up remote shells over network links.
Mt must be executed on the machine that the tape drive is
physically mounted on, while rdump must be executed
on the machine that the disk is physically mounted on.
This also introduces the requirément that the machine and
account that dumper is run from must be trusted. That is
to say, the machine must let dumper login without a pass­
word.

Dumper was designed to be as general as possible
with regard to the size of the network to be backed-up.
Therefore, a macro facility and conditional execution
capability were added. This is done by piping the NBCL
source file through the' C preprocessor, cpp. When
dumper does this it passes a predefined value for
MACHINENAME to cpp. This value contains the internet
name. The machine’s internet name in capitals is also
defined, eg. beach would be passed as BEACH with a
value of 1.

With the conditional execution it is possible to
build a prototype file, that is then distributed to several
different subnets. Each subnet will then do their own
backups. This gives a system administrator central con­
trol and distributed execution of backup schedules. With
distributed resources and decentralized execution one can
add redundancy to a backup scheme. Hence, if some of
the machines in a network go down, backup capability is
not lost.

NBCLSTRUCTURE

There are four pieces of information that dumper
requires to operate: devices to accept back ups, file sys­
tems to be backed up, which levels on what days, and a
set of relationships for the previous items. Since each
item is independent of the others they are placed separate
sections of the NBCL source file. Each section is proceed
by a percent sign (%) and the name of the section. The
sections are named d e v ic e s , s c h e d u le s ,
f ile sy s te m s ,a n d dumps.

The first section of the source file is the d e v ic e
section. In this section the user gives symbolic names to
sets of devices. The syntax of a symbolic list is a name, a
colon, and a list of comma separated devices and/or a list

of previously defined symbolic names, the list is ter­
minated by a semicolon. If you are listing a device you
must specify the device name as a hostname and a UNIX
device file, the density of the device, and a length. Nor-
maly the length is the length of the tape on the device.

The s c h e d u le s section of the source file follows
the device section. This section is comprised of a semi­
colon separated list of the following form: a symbolic
name, a colon, and a comma separated list of days and
dump levels. The days that NBCL reconize are sun for
Sunday, mon for Monday, tu e for Tuesday, wed for
Wednesday, th r for Thursday, f r l for Friday, and
s a t for Saturday. The list of days is terminated by a
semicolon.

The next section of the NBCL source file is
f i l e s y s t e m s . This section contains a semicolon
separated list having the form: name, colon, and a list of
file system mount points to be backed up. The file system
mount points are in the format of hostnam e: /p a th ,
the path to the mount point must be from the root.

The final section is named dumps. The dumps
section relates the previous three sections. This section
contains a series of semicolon separated lines with a for­
mat: file system name t o device name schedule name.
The schedule in figure 1 backs up the system files every
Saturday. The user file systems gel backed up 3 times a
week; Monday, Wednesday, and Friday. The system files
always go to the manatee tape drive, and the user files go
to the first free drive.

%devices
tapel: device=manatee:/dev/rat8 density=800 length=900;
tape2: device=beach:/dev/rmtl6 density=6250 length=2400;

alltapes: tapel, tape2;

%schedules
week a: mon 6, wed 7, fri 8;

weekend: sat 1;

%filesystems
beach_usr_fs: beach:/cis/beachO, beach:/cis/beachl;

manatee_usr_fs: manatee:/usr
sysfs: beach:/etc, manatee:/etc;

%dumps

3ysf3 to tapel weekend;
manatee_usr_f3 to alltapes aweek;
beach_u3r_fs to alltapes aweek;

FIGURE 1

SECURITY AND BACKUPS

Doing backups over a network can appear to cause
several problems with system security. Dumper must be
able to login to an account with the same login id on
every machine on which backups are to be done. Like­
wise, rdum p must be able to login in to the machine that
has the tape device mounted.

When machines are going to be logging in without
passwords, one might want to secure the account. To
secure accounts currently under UNIX a system adminis­
trator will create a small root file system with a minimum
of commands in i t The login would then be setup to do
c h r o o t , then the login directory would be the highest
point in the directory structure to which the account could
get.

While this would work to lock up the account,
rdump must be able to get to raw devices, this also can
be placed in the captive account. However, since the raw
devices can be read, and written, without going thru the
operating system, making a captive account for dumper
will not increase security.

A possible way to set-up dumper to minimize secu­
rity risk is to make its password entry a star (*). The
encryption algorithm used by UNIX, for password
verification, will not map any plaintext string to a single
star. The login would be accomplished through the use of
. r h o s t a files. A . r h o s t file is a list of accounts log­
ging in from particular machines that may login without
passwords.

In addition to the trusted login. Dumper must be
able to execute rdump, which is done by placing the

dumper account in the same group as the owner of the
rdump program, the group is often named operator,
rdum p must also be able to set its uid to root so that
rdump can get raw access to the disk drive.

SOFTWARE ENVIRONMENT

Dumper utilizes several existing Berkeley Standard
Distribution (BSD) 4.3 commands. The commands
Dumper executes are rdump, mt, epp , and rah . By
using these existing commands, rather than duplicating
their functionality, it is possible to modify the networking
protocols with few or no changes to the interpreter.

The programming languages chosen for this project
were Flex[2], Bison[3], and C. All three are available
from the Free Software Foundation. Flex generates a lexi­
cal analyzer. Bison generates the parser. Finally, C was
needed to compile the lexer, parser, and the actions that
are needed to tic the whole program together. Also avail­
able from the Free Software Foundation is epp which pro­
vides macro and conditional interpretation in NBCL.

CONCLUSION

Dumper is currently in daily use at the University of
Florida. While there is some room for improvement,
mostly in the area of intcrmachinc communications, the
program works well currently. The major goal of simpli­
fying backups on networked computer systems was met
totally.

ACKNOWLEDGMENTS

I would like to thank my senior project director. Dr.
Joseph Wilson, for helping me through the rough spots.
A big thank you also goes to Andy Wilcox who helped
me get NCBL off the ground.

REFERENCES

[II UNIX System Managers Manual, Virtual VAX-11
Version. Bell Laboratories, Modified by The
University of Califoria, Berkeley, California. April,
1986.

[2] Paxson, V. FLEX. Cambridge, MA: Free Software
Foundation, Inc, 1989.

[3] Donnelly. C. and Stallman, R. BISON, The Y ACC-
compatible Parser Generator. Cambridge, MA:
Free Software Foundation, Inc, 1989.

