
Modelling internet based applications for designing
multi-device adaptive interfaces

Enrico Bertini and Giuseppe Santucci
Dipartimento di Informatica e Sistemistica

Università di Roma "La Sapienza"
Via Salaria, 113

Roma, Italy

{bertini, santucci}@dis.uniroma1.it

ABSTRACT

The wide spread of mobile devices in the consumer market
has posed a number of new issues in the design of internet
applications and their user interfaces. In particular, applica-
tions need to adapt their interaction modalities to different
portable devices. In this paper we address the problem of
defining models and techniques for designing internet based
applications that automatically adapt to different mobile de-
vices. First, we define a formal model that allows for spec-
ifying the interaction in a way that is abstract enough to
be decoupled from the presentation layer, which is to be
adapted to different contexts. The model is mainly based
on the idea of describing the user interaction in terms of
elementary actions. Then, we provide a formal device char-
acterization showing how to effectively implements the AIUs

in a multidevice context.

1. INTRODUCTION
The era of standard situated PCs is over; nowadays users
own multiple different computing appliances that can be
easily transported and that, consequently, operate in mul-
tiple changing environments. In order to address this issue
the next generation of internet based application should be
designed for adapting to a very large spectrum of different
characteristics. This is why the research is faced with the
problem of finding models and techniques to design appli-
cations aware of and adaptable to: (a) Devices (e.g., cell-
phones, PDAs, PCs), (b) Environment (e.g., noisy room,
low light, moving person), and Users (e.g., users with spe-
cial needs).
In this paper we focus on the first issue trying to solve dif-
ferent problems: architectures that support heterogeneous
devices, models to exchange and share data, techniques for
building effective user interfaces. Our focus is on user in-
terfaces and our current approach is mainly based on the
idea of modelling user interaction in very abstract and sim-
ple way. Moreover, we would like to clarify the context in
which our proposal takes place. We want to deal with sim-
ple internet based applications/services, like reserving an
hotel room, finding a restaurant, or booking a flight seat.
It is out of the scope of our approach to redesign generic
web sites making them accessible through different devices
or implementing complex applications over large informa-

tion systems. We are focusing on the plethora of simple but
useful applications that can run on a cellular phone, on a
connected PDA, and so on, providing the user with concise
pieces of information and/or simple services.
The rest of the document is structured as follows: in Sec-
tion 2 we describe some related proposals, in Section 3 we
introduce a model that supports the design of adaptive ap-
plications: the Atomic Interaction Units model and a work-
ing example is provided. Section 4, provides a description of
the main device characteristics we want to take into account.
Section 5 describes some preliminary results on the AIUs im-
plementation strategies, and finally in Section 6 some con-
clusions and open issues are discussed.

2. RELATED WORKS
The problem of generating different interfaces for different
devices is often indicated as the problem of creating plastic
interfaces [9].
Many ideas come from research in model-based user interface
design [8] where the designer is supposed to design an inter-
active system by editing and manipulating abstract models
(e.g., task model) that describe the system’s behavior and
where the system is supposed to automatically generate the
final application code.
In [11, 3, 2] a design framework that consists of a platform
model, a presentation model, and a task model is presented.
The designer builds the user interface by means of abstract
interaction objects (AIOs) that are platform-neutral widgets
he can assemble to design the interface in an abstract man-
ner. Different presentation structures can then be generated
to allocate the interaction units across many windows.
With a similar approach, in [7] the Teresa tools is presented.
It provides an environment to design multi-device applica-
tions that is strongly based on task modelling and the pre-
sentation structure is automatically generated from a task
model, taking into account temporal constraints specified
into it. Screen space optimization is obtained mapping the
abstract objects into suitable concrete objects.
The same idea of heavily exploiting formal models to de-
sign interactive applications comes from research on data-
intensive web design, as illustrated in [4], that stems from
past research on model-based hypermedia design, like RMM
[6] and HDM [5], and that has a major focus on data mod-
elling. This approach suggests a process in which the de-
signer starts from a model of the data (usually drawing an
entity-relationship model) and on top of it creates an hyper-
text model that defines the connection points between the

ar
X

iv
:1

70
1.

07
29

0v
1 

 [
cs

.H
C

] 
 2

5 
Ja

n 
20

17



web pages, i.e., the links. Finally, he creates a presentation
part that permits to give a visual form to the various pages.
WebML [1] is a powerful data-driven language that permits
to describe an hypertext composed of single atomic blocks
that are tightly connected to underlying data elements.
Our work shows similarities with all these systems, in fact
here we propose a model-based approach. We adopt the
idea of abstracting on interaction elements and provide a
collection of atomic interaction units that are the abstract
counterpart of common interaction elements. At the same
time our work diverges from this approach and comes closer
to data-intensive web modelling approach. Hence, we pro-
pose to directly design the hypertext and, thus, the structure
of links that connect the presentation units. As it will be de-
scribed in detail below, our method fundamentally consists
in specifying a graph structure (an UML Activity Diagram)
in which the nodes are populated with atomic interaction
units and the edges represent the transition triggered inter-
acting with atomic interaction units.

3. THE ATOMIC INTERACTION UNITS
The foundation of our proposal is an abstract model able
to describe the user interaction with the system focusing on
the basic activities whose composition will produce simple
but effective internet based application. As a consequence,
we model the information that is exchanged between the
user and the system together with the purpose for which
such an information is exchanged. Using this approach the
designer is provided with a formalism to specify the informa-
tion content of each presentation and the connection among
the various parts, in order to indicate the behavior of the
application, that is, how the system evolves as the user in-
teract with it.
Our proposal consists of two main parts:(a) a set of Abstract
Interaction Units (AIUs ) to be used as building blocks for
abstract interface definition and (b) the UML Activity Di-
agram as formalism to connect the AIUs that compose the
interface. The set of AIUs has been designed analyzing the
user interfaces that are actually used to model standard web
services. The challenge is in collecting a small set of atomic
units that could describe the interaction, abstract enough to
be completely unrelated with a particular device but expres-
sive enough to let designers to model complex services. The
effort we made has produced a small set of AIUs , described
in the following section.
The UML Activity Diagram is basically a state chart dia-
gram in which each state represents an activity and each
transition is triggered by the end of this activity. How the
Activity Diagram can be used to glue together the AIUs will
be explained later by using an example.
We foresee two main interaction activities: browsing, i.e.,
just observing something produced by the system and in-
putting, i.e., providing the system with some information.
In the following each AIU is described in detail. Note that
all the AIUs share a Quit command that allows for leaving
the AIU with no effects and returning the null value.

BrowseImage(ImageId,ImageDescription,BrowsingCommands)

:{NULL, elemOfBrowsingCommands}

This AIU allows for browsing an image; usual facilities of
zooming and panning are provided, if possible, by the device.
The image description is a two values record: [ImageName,
ImageSummary], where ImageName is used as a title during

the image presentation and ImageSummary is an image de-
scription that can be used when the video channel is not
available or disturbed. The BrowsingCommands is a set of
commands oriented towards server side image manipulation
(e.g., changing image detail and/or resolution); such com-
mands do not allow to reach any other state than the one
hosting the AIU (i.e., they correspond to self-transitions).

InteractImage(ImageId,ImageDescription,BrowsingCommands)

:{point, NULL, elemOfBrowsingCommands}

This AIU is quite similar to the BrowseImage; the only dif-
ference is that the user can leave the AIU both choosing the
Quit button or selecting a point (the AIU returns the x,y
coordinates of a point) on the image itself.

BrowseText(TextId,TextDescription,BrowsingCommands)

:{NULL, elemOfBrowsingCommands}

This AIU allows for browsing a large body of text. The text
description is a two value record: [TextName, TextSummary],
where TextName is used as a title during the text presenta-
tion and TextSummary is a text description that can be used
when the video channel is not available or disturbed or as
an alternative when the device capability of displaying such
an amount of text is very poor.

BrowseMessage(MessageId,MessageDescription, OKbutton)

:{NULL, OK}

This AIU allows for browsing a message; usual facilities of
panning are provided, if possible, by the device. OKbutton

is a boolean parameter that forces the activation of an OK
command, useful to answer messages that contain a confir-
mation choice.

BrowseTable(TableId, TableDescription,BrowsingCommands)

:{NULL, elemOfBrowsingCommands}

This AIU allows for browsing a relational table; usual facil-
ities of panning are provided, if possible, by the device.

InteractTable(TableId,TableDescription,BrowsingCommands)

:{NULL, elemOfBrowsingCommands,tableTuple)

This AIU is quite similar to the BrowseTable AIU . The main
difference is that the user can leave the AIU by selecting a
tuple.

FillList (ListId,ListDescription,ListOfField)

:{NULL, ListOfField}

The FillList AIU allows for filling a list of field. The AIU

returns the list with the filled values.

SelectChoice (ListId,ListDescription,ListOfChoices)

:{NULL, elementOfListOfListOfChoices}

This AIU allows for selecting an element among a predefined
a list of Choice and returns the selected element.

SelectMutipleChoice(ListId,ListDescription,ListOfChoices)

:{NULL, elementOfListOfChoices}

This AIU allows for selecting one or more elements among a
predefined list of choices, returning the selected values.



Figure 1: Activity diagram and AIUs to model a service that permits an hotel reservation



3.1 AIUs at work
In this section we want to describe how the composition of
these units can lead to the design of a whole service. The
UML Activity Diagram is used to compose the AIUs and
define the service. Each activity state contains one AIU .
Transitions are triggered by the user acting with the interac-
tion units and each transition correspond to a computation
operated on the server. Some interaction units can also ap-
pear in parallel by using the fork construct. This takes into
account the common situation in which a single presentation
contain more than one AIU at the same time and the case
in which we are modelling a task that involves interactions
that do not have a pre-defined sequential ordering. In order
to clarify the use of this model here we provide an example
describing an hotel reservation service (see Figure 1). The
user starts inputting data about the hotel city and some
details about the period he wants to reserve. Since these
are two separate tasks they are modelled with two separate
AIUs . The city specification is a SelectChoice AIU , the
details specification is a FillList AIU for which the user is
requested to input data about the reservation period. The
order of these two task is irrelevant, so they are connected
with a fork construct. The final implementation could be
a whatever ordering of these tasks or, if the selected device
has enough screen space, a single unified view of these two
tasks. As the the user sends input data, the system passes
to the next activity. The result is modelled as an Interact-
Table AIU . The result of the query (search for an hotel),
in fact, is a set of objects characterized by set of attributes.
When the user selects a certain hotel, the system moves to
the next activity; the selection of an action to perform on
it. The transition between the ”Interact Hotels” activity to
the ”Select Action” activity involves a parameter passing.
The InteractTable AIU , as described before, has a parame-
ter in output the system sends as the user selects an object
from the table. In the ”Select Action” activity, the user
is requested for selecting an action to perform between the
following list: reserve the hotel, start a new search, return
back to the result. This is modelled with a SelectChoice
AIU . According to the selection, the system can proceed
to three different activities: 1)return to the starting point,
2)go back to the previous result, and 3)proceed with the
reservation task. In the last case the system steps forward
to a new fork hosting two concurrent activities: the cus-
tomer data specification and the selection of the payment
method. The ”Fill Customer Data” activity is modelled as
a FillList AIU because it is supposed to accept data directly
specified by the user. The ”Select Payment Type” activity
is modelled as a SelectChoice AIU because it is supposed to
present the user with a predefined list of payment methods.
Eventually the system checks the data and, in case of er-
ror, redirects the user to the form. Otherwise the system
requests for a confirmation and, when the user confirms, the
system collects the data and makes the reservation. This
example shows how the composition of the abstract inter-
action units can be done in order to model a service. After
this phase, the system must be able to translate this model
into a final implementation. In order to perform the trans-
lation the system must take into account a set of key device
characteristics, described in the next section.

4. DEVICES AND AIUS METRICS

In order to effectively implement the AIUs on physical de-
vices, we need some figures about their capabilities. Dif-
ferent classifications and characteristics are available in the
literature (e.g., [10]). Here, we focus on a first set of charac-
teristics that constitute the minimal information needed to
adapt the different AIUs to each device. Moreover, we need
to investigate the AIUs as well because of the size of the pa-
rameters they handle heavily affects their implementation
(e.g., the way in which the user interacts with a relational
table may differs depending on the number of tuples and
attributes). A practical usage of such parameters is shown
in Section 5. Finally, in this work, even if we devised some
AIUs oriented towards image manipulation, we concentrate
on textual based AIUs and, consequently, we consider only
text/table oriented metrics. Concerning devices we define
the following functions:

• int RN(dev) (Row Number), returning the number of
rows the device is able to display;

• int CN(dev) (Column Number), returning the number
of columns the device is able to display;

• boolean CVS(dev) (Continuous Vertical Scrolling), re-
turning the availability of a continuous (i.e., pixel based)
vertical scrolling;

• boolean RVS(dev) (Row-based Vertical Scrolling), re-
turning the availability of stepped (i.e., row based) ver-
tical scrolling;

• boolean PVS(dev) (Page-based Vertical Scrolling), re-
turning the availability of stepped (i.e., page based)
vertical scrolling;

• boolean CNHS(dev) (CoNtinuous Horizontal Scrolling),
returning the availability of a continuous (i.e., pixel
based) horizontal scrolling;

• boolean COHS(dev) (COlumn-based Horizontal Scrolling),
returning the availability of stepped (i.e., column based)
horizontal scrolling;

• boolean PHS(dev) (Page-based Horizontal Scrolling),
returning the availability of stepped (i.e., page based)
horizontal scrolling;

• boolean WE(dev) (WAP Enabled), true if the device
is Wap enabled;

• boolean JE(dev) (Java Enabled), true if the device is
Java enabled;

• boolean AA(dev) (Audio Availability), returning the
audio channel availability;

• int CD(dev) (Color Depth), returning the color/black
and withe depth (expressed in bit);

• boolean TSA(dev) (Touchable Screen Availability), re-
turning the availability of touchable surfaces.

Concerning AIUs , we investigate some metrics about the
text based AIUs , distinguishing between table and pure text
oriented AIUs .

• int RN(table-oriented-AIU ), (Row Number) returning
the number of rows the AIU needs to be displayed;

• int CN(table-oriented-AIU ), (Column Number) return-
ing the number of columns the AIU needs to be dis-
played;



Figure 2: Implementing the InteractionTable AIU on a regular browser (a) or on a medium size handheld (b)

• int CHN(text-oriented-AIU ), (CHaracter Number) re-
turning the number of characters the AIU needs to be
displayed.

The main idea, described in the next session through an
example, is to use the above metrics to measure the level
of degradation an AIU suffers when implemented on a spe-
cific device. As an example, we can count the number of
scrolling commands (both vertical and horizontal) needed
in order to display the overall AIU content and, depending
on the computed figures, decide to rearrange the AIU struc-
ture, adapting it to the particular device.

5. IMPLEMENTATION ISSUES
In this section we propose a dynamic adaptation based on
the metrics described in the previous section. A systematic
analysis of the AIUs implementation is out of the scope of
this paper. Here we discuss, as a working example, the
implementation on the device d of the AIU a, InteractTable
described in the example shown in Section 3.1. The purpose
of such an AIU is to allow the user for displaying a table
containing a set of hotels (one per row) allowing the selection
of a specific hotel. Assume that the following figures hold
for the involved device and AIU :

• RN(a)= 40 (i.e., the tables contains 40 hotels);

• CN(a)= 105 (i.e., each row needs 105 columns);

• CN(d)= 30 (i.e., the device can handle 30 columns);

• RN(d)= 14 (i.e., the device can handle 14 rows);

• RVS(d)= true (i.e., the device allows for row based
vertical scrolling);

• PVS(d)= true (i.e., the device allows for page based
vertical scrolling);

• COHS(d)= false (i.e., the device does not allow for
column based horizontal scrolling);

• PHS(d)= true (i.e., the device does not allow for page
based horizontal scrolling);

• JE(d)=false (i.e., the device is not Java enabled);

• WE(d)=true (i.e., the device is Wap enabled);

Based on these figures, we can argue that the AIU can be
easily displayed for what concerns the number of columns:
in fact, it requires at most 40 row based scrolling commands
or d40/14e page based vertical scrolling commands and such
figures are quite reasonable (formally speaking, we define
some threshold values). On the other hand, handling 105
columns on a device that is able to display only 30 columns
and does not allows for horizontal scrolling is not an easy
task. The only way is to present the table to the user in a
two steps interaction: (1) the user is presented with a table
containing only a subset of the table attributes (e.g., hotel-
name and hotel-price) whose column occupation is less than
30 and (2) and additional commands allows for detailing a
single row, getting all the hotel attributes. The way in which
it is possible to implement the above strategy strongly de-
pends on the device computational capabilities (e.g., Java
enabled) and on load balancing issues. Here, in order to
follow the more robust solution we assume that all the work
is performed by the server that, looking at the device capa-
bilities, will produce the needed Java code or Wap pages.
As an example, we can see in Figure 2 (a) a possible im-
plementation of the InteractTable AIU on a device with no
significative limitations (e.g, a usual browser on a portable
PC). In order to display the same table on a device with the
above capabilities we have to reduce the table attributes,
producing the table shown in Figure 2 (b). In such a table
only the hotel-name and the hotel-price are available; if the
user requires more pieces of information, a new command,
details, is available showing the full hotel description.
The above example provides the feeling on how it is possible
to adapt the same AIU to different device. We are currently
investigating different implementation strategies and differ-
ent threshold values to in order to come up with a more
formal and complete way of implementing AIUs .



6. FUTURE WORK AND CONCLUSIONS
In this paper we presented a novel approach for implement-
ing, on a variety of portable devices, simple internet based
applications. The main ideas supporting our proposal are
(a) a formal model characterizing the user interaction build-
ing blocks (AIUs ), (b) the embedding of such a model within
the UML activity diagram, (c) the formalization of the char-
acteristics of devices and AIUs through several suitable met-
rics, and (d) the definition of ad-hoc strategies for imple-
menting in efficient way the AIUs on different devices. Some
aspects of our approach deserve more deep analysis: we are
currently working on defining a complete set of AIUs and de-
vices metrics; moreover we are developing a first prototype
for implementing the AIUs , in order to have some feedback
about our approach.
Acknowledgments Work supported by the MIUR-FIRB
project ”MAIS” (Multichannel adaptive Information Sys-
tems, http://black.elet.polimi.it/mais/index.php).

7. REFERENCES
[1] S. Ceri, P. Fraternali, and A. Bongio. Web modeling

language (webml): a modeling language for designing
web sites. In Proceedings of the 9th international
World Wide Web conference on Computer networks,
pages 137–157. North-Holland Publishing Co., 2000.

[2] J. Eisenstein and A. Puerta. Adaptation in automated
user-interface design. In Proceedings of IUI’2000,
pages 74–81. ACM Press, 2000.

[3] J. Eisenstein, J. Vanderdonckt, and A. Puerta.
Applying model-based techniques to the development
of uis for mobile computers. In Proceedings of the 6th
international conference on Intelligent user interfaces,
pages 69–76. ACM Press, 2001.

[4] P. Fraternali. Tools and approaches for developing
data-intensive web applications: a survey. ACM
Comput. Surv., 31(3):227–263, 1999.

[5] F. Garzotto, P. Paolini, and D. Schwabe. HDM - a
model-based approach to hypertext application
design. ACM Trans. Inf. Syst., 11(1):1–26, 1993.

[6] T. Isakowitz, E. A. Stohr, and P. Balasubramanian.
RMM: a methodology for structured hypermedia
design. Commun. ACM, 38(8):34–44, 1995.

[7] G. Mori, F. Paternò, and C. Santoro. Tool support for
designing nomadic applications. In Proceedings of the
2003 international conference on Intelligent user
interfaces, pages 141–148. ACM Press, 2003.

[8] A. Puerta and J. Eisenstein. Towards a general
computational framework for model-based interface
development systems. In Proceedings of the 4th
international conference on Intelligent user interfaces,
pages 171–178. ACM Press, 1999.

[9] D. Thevenin and J. Coutaz. Plasticity of user
interfaces: Framework and research agenda. In
I. Press, editor, Proceedings of Interact’99, volume 1,
pages 110–117, 1999.

[10] M. van Welie and B. de Groot. Consistent
multi-device design using device categories. In

Proceedings of the 4th International Symposium on
Mobile Human-Computer Interaction, pages 315–318.
Springer-Verlag, 2002.

[11] J. Vanderdonckt and F. Bodart. Encapsulating
knowledge for intelligent interaction objects selection.
In Proceedings of InterCHI’93, pages 424–429. ACM
Press, 1993.

http://black.elet.polimi.it/mais/index.php

	1 Introduction
	2 Related works
	3 The Atomic Interaction Units
	3.1 AIUs at work

	4 Devices and AIUs metrics
	5 Implementation issues
	6 Future work and conclusions
	7 REFERENCES 

