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ABSTRACT
When customers need to each be given portable access rights
to a subset of documents from a large universe of n avail-
able documents, it is often the case that the space available
for representing each customer’s access rights is limited to
much less than n, say it is no more than m bits. This is
the case when, e.g., limited-capacity inexpensive cards are
used to store the access rights to huge multimedia document
databases. How does one represent subsets of a huge set of
n elements, when only m bits are available and m is much
smaller than n? We use an approach reminiscent of Bloom
filters, by assigning to each document a subset of the m bits:
If that document is in a customer’s subset then we set the
corresponding bits to 1 on the customer’s card. This guar-
antees that each customer gets the documents he paid for,
but it also gives him access to documents he did not pay
for (“false positives”). We want to do so in a manner that
minimizes the expected total false positives under various
deterministic and probabilistic models: In the former model
we assume k customers whose respective subsets are known
a priori, whereas in the latter we assume (more realistically)
that each document has a probability of being included in
a customer’s subset. We cannot use randomly assigned bits
for each document (in the way Bloom filters do), rather we
need to consider the a priori knowledge (deterministic or
probabilistic) we are given in each model in order to bet-
ter assign a subset of the m available bits to each of the n
documents. We analyze and give efficient schemes for this
problem.
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1. INTRODUCTION
We explore a model of a very large collection of objects

where the customer is not limited to a predefined set of
objects to which he may obtain access. With the rapid re-
cent increase in the number and the level of maturity of
on-line document collections (digital libraries and the like)
which provide payment-based access to the documents, this
model has emerged as an appropriate way of dealing with
this explosive growth. In order to make access as flexible and
convenient to the customer as possible, such systems might
let each subscriber specify a set of documents to which to
have access, and charge a fee according to the (subscription)
request.

With such a scheme in place, each customer receives an ac-
cess policy configuration unique to her subscription request.
Access control enforcement should be performed at the ob-
ject level, which requires each object in the data collection
to carry its own access policy. From Bertino et al. [5], we
adopt binary strings as the method of policy representation,
which combines flexibility with light policy storage require-
ments. These are especially important in contexts where
the access rights are portable and stored on space and/or
battery-limited devices like cards and sensors.

As the number of documents in the data collection grows,
it becomes infeasible to store very long access policy strings
with each document or, alternatively, the user might be con-
strained in space with e.g., card-based access. Therefore we
propose a scheme for reducing the length of policy strings,
thus saving space but with the unavoidable side effect of
losing precision of the customer requests’ representation: A
customer still has access to her whole subscription, but also



has access to some extra documents (we refer to such docu-
ments as “false positives”). More specifically, the customer
has to be given an access-rights bitstring (called access policy
configuration in the terminology of [5]) that is the logical OR
of all her subscription documents’ access policy bitstrings,
because (as in [5]) access is granted to a document as long as
the customer’s access-rights bitstring is bitwise larger than
that document’s own access policy bitstring. This guaran-
tees access to all subscribed documents, but also to some
extraneous ones as well (the false positives). The goal of
this work is to provide a scheme for document policy as-
signment such that the expected number of false positives is
minimized.

We identify two flavors of the problem: deterministic, in
which all customer subscription requests are known prior to
policy assignment, and probabilistic, in which every docu-
ment in the data repository has a number associated with
it that indicates the probability of that document being in-
cluded in a single customer request; the latter model has
the advantage of not requiring prior knowledge of customer
subscription requests (all it needs is a subscription proba-
bility for each document), so customer subscriptions can be
processed as they arrive (well after policy assignment).

In the following summary, we provide a brief description
of our results:

• For the probabilistic model, we give a scheme for min-
imizing the total additional cost, i.e. the total number
of false positives over all documents in the repository,
analyze its complexity, and give two policy assignment
algorithms that run in O(mn2), where n denotes the
number of documents in the data repository and m is
the length of each policy string. We also give a scheme
for minimizing the maximum number of false positives
for any one subscription, and give a policy assignment
algorithm that runs in O(n log n) time.

• For the deterministic model, we also analyze schemes
for minimizing the total (cumulative over all customers)
as well as the maximum (per customer) false positives.
We do not provide algorithms for this model but in-
stead show that this flavor of the problem can be solved
using the probabilistic model.

After presenting our schemes, we discuss the issue of “drift”
away from optimality as the system evolves over time through
the addition/removal of customers, documents, or simply
changes in the access probabilities.

The layout of this paper is as follows: In section 2, we
start by presenting an overview of the work performed in
this area. Section 3 provides a detailed description of the
problem, followed by sections 4 and 5 which express the two
flavors of the problem. These sections give efficient algo-
rithms for computing a set of document policies that mini-
mize expected false positives, and also prove the intractabil-
ity of some more general versions of the problem. Section
6 discusses implementation and deployment issues. Finally,
section 7 presents possible extensions and directions for fu-
ture work. To avoid breaking the flow of the exposition, the
highly technical proofs are given in the appendices.

2. RELATED WORK
Research in the area of access control for on-line document

repositories mostly focuses on digital libraries and access

to XML documents. Digital libraries usually employ access
control enforcement at the system level, but work conducted
by Payette and Lagoze [16] uses digital objects that carry
and enforce policies. Payette and Lagoze [16], however, pro-
vide only a general framework for such a system and do not
explore the problem of policy assignment.

Many documents on the web use XML, which provides
a flexible way of representing documents of various types.
Recently, there has been extensive work on securing access
to XML documents and using XML as a tool for specifying
security policies [6, 7, 8, 11, 12]. Security enhanced XML
documents, among other security fields, include a policy field
which lets the publisher enforce access control mechanisms.
The most space efficient method of policy representation, bi-
nary strings, was used in Bertino et al. [5]. Bertino et al. [5],
however, allocate one bit per policy and do not provide more
insight on the policy assignment process. As was state ear-
lier, this approach becomes expensive as the data collection
grows in size. In this work we concentrate on finding an
efficient solution to the policy assignment problem with re-
duced policy strings.

The idea of achieving space efficiency at the cost of a small
probability of false positives was introduced in Bloom [9].
Bloom filter is a ingenious randomized data-structure that
supports approximate membership queries with a very low
rate of false positives and has been adopted in a wide range
of applications ([10, 13, 15, 17] to name a few). Bloom fil-
ters, however, cannot apply directly to solve our problem.
To keep the rate of false positives small, Bloom filters im-
ply that the length of the filter (i.e., m) is larger than the
number of items n it represents, which is not the case in our
approach. Also, the original design of Bloom filters does not
support the notion of probability of an item being selected,
thus producing a suboptimal solution in our case.

Recent work that addresses the problem of software license
management through portable card-based access rights was
done by Aura and Gollmann [4] and more recently by Atal-
lah and Li [3]. These provide ways of managing software li-
censes with tamper-resistant smart cards, where each smart
card can store many software licenses and allow partial or
complete transfers of licenses between cards, while using
only O(1) storage space. Constant storage space is achieved
through the use of an untrusted user workstation (for which
the software licenses were issued) that stores a list of soft-
ware licenses bound to a smart card. This scheme works
exceptionally well for managing software licenses but can
hardly apply to our problem, in which there is no single log-
ical place where additional information about requested doc-
uments can be stored, including the data provider’s server
itself.

Work in the direction of Digital Rights Management (DRM)
is also concerned with the problem of unauthorized access
to similar (copyrighted) material (for an overview of existing
DRM challenges and solutions see [2]). Even though in our
work we attempt to protect data objects in a context differ-
ent from that of DRM (i.e., in our model we assume that the
data provider has full control over what items a customer
is allowed to have access to, while in the DRM settings an
item must be protected when the customer controls the ob-
ject itself, as well as the environment in which the object is
used), there is a potential use of the techniques that we are
developing for DRM due to portability of the access rights.



3. DESCRIPTION OF THE PROBLEM
As was mentioned above, we use binary strings to repre-

sent policies — both the policies of the documents in the
data repository and the customer policy configurations. A
customer is said to have access to a document if his config-
uration policy is bitwise greater than or equal to the policy
of the document; i.e., every bit of the configuration policy is
greater than or equal to the bit at the same position in the
document policy. If a subscription request contains multiple
documents, the resulting policy configuration, which is then
given to the subscriber, is formed using a bitwise OR of the
policies of all of the documents that compose the request.
This guarantees that the subscriber gets access to all of the
documents requested.

Assume that we are given n documents 1, 2, . . ., n, and
each document i has a policy number ri associated with it
and can be accessed for the price ci. We desire to have poli-
cies of less than n bits long (i.e., less than one bit per docu-
ment), and bound the length of the policies by some number
m < n, which unavoidably leads to the fact that some doc-
uments or subsets of the documents will have to share the
same policy, and therefore some configuration policy might
result in false positives. Below we address the problem of
minimizing the false positives by assigning optimal policies
to each document through the use of probabilistic and de-
terministic models.

4. PROBABILISTIC MODEL
Assume that each document i has an access probability pi

associated with it and all probabilities p1, . . ., pn are not cor-
related. Each document is viewed as an independent event
with a probability 0 < pi ≤ 1 of being included in a sin-
gle subscriber request, and pi with the value of 1 means
that every customer subscribes to the document i. We view
this model as more likely to exist in real life than the de-
terministic model since it is not tied to a specific set of
customer requests and can be used in situations even when
subscribers’ requests are not known in advance. The deter-
ministic variation of the problem can be easily converted to
the probabilistic model by computing probabilities for each
document based on the customers’ requests.

The expected number of false positives, or “cost” of a par-
ticular policy assignment, is now the sum of the probabilities
of all of the possible subsets of the documents weighted by
the costs of documents not in the subset (not requested).
Similar to the previous model, here we look at the problem
of minimizing the total (cumulative) and the maximum (per
customer) false positives.

4.1 Minimizing the Total False Positives
In the general case, the number of false positives of a pol-

icy assignment is computed by looking at every policy con-
figuration possible, computing the probability that it occurs
based on the documents that might result in that configu-
ration and weighting them by the document costs.

To simplify this scheme, one might consider only certain
policies for individual documents rather than allowing any
random configuration. One approach that performs rather
well in an average case is to assign to each document a policy
number with only one out of m policy bits set to 1 and all
others set to 0. Further simplification might allow only one
document be requested by a single customer. These schemes
are described in detail in the next subsections. In addition

to the algorithms, we prove the intractability of the more
general problem.

We henceforth assume, without loss of generality, that
the documents are sorted by their probabilities in a non-
increasing order, i.e., p1 ≥ p2 ≥ . . . ≥ pn.

4.1.1 One Bit per Document
To minimize the total expected false positives using poli-

cies with one bit set, we divide of the documents into m
groups: All documents within one group are assigned the
same policy with only one bit set to 1 (the first group’s
documents have the first bit set to 1, the second group’s
documents have the second bit set to 1, etc.). Since a cost
of an assignment is formed by adding the costs of all possible
subsets, the cost of a group is computed as the sum of all
possible requests made of the documents within the group
weighted by the total cost of documents that were not in
the request. There is an exponential number of subsets, but
the next theorem shows that the sum can be computed effi-
ciently. Specifically, for a group i of size si, the next theorem
implies that we can compute the cost Ci as the following:

Ci =

si�
j=1

cij
(1 − pij

) − � si�
j=1

cij � � si�
j=1

(1 − pij
) � (1)

Theorem 1. For any set S of elements i1, i2, . . ., is with
respective probabilities p1, p2, . . ., ps and costs c1, c2, . . ., cs,

the value of
s�

i=1

ci(1−pi)− � s�
i=1

ci � � s�
i=1

(1−pi) � is equal to

the sum of probabilities of all possible subsets of S, weighted
by the cost of elements not in the subset.

Proof. See Appendix A.

Corollary 1. For any given set of elements 1, 2, . . . ,
s, with probabilities pi and costs ci for 1 ≤ i ≤ s, the cost
of the group containing them all can be calculated in linear
time.

The total cost of grouping n documents into m groups can
be calculated as the sum of the costs over all groups:

C =
m�

i=1

Ci =
m�

i=1

�
si�

j=1

cij
(1−pij

)− � si�
j=1

cij � � si�
j=1

(1−pij
) ���

Now to solve the problem of minimizing the expected false
positives count, we need to solve the problem of minimizing
the value of C over all possible partitionings of n documents
into m groups. As will be shown later in this paper, allowing
arbitrary and distinct document costs makes the problem
intractable. We therefore consider next the case where all
ci’s are equal (e.g., to 1).

The Algorithm
Suppose we have n sorted documents with probabilities pi

and costs ci = 1 for 1 ≤ i ≤ n. The goal is to partition the
documents into m groups, so that the total of false positives
is minimized. Let si denote the number of documents in
group i. Then the “cost” of group i, according to equation
(1), is now equal to the sum of all possible requests made of
the documents within the group, weighted by the number
of documents that were not in the request, and is calculated
as follows:

Ci =

si�
j=1

(1 − pij
) − si

si�
j=1

(1 − pij
) (2)



We build a dynamic programming bottom-up implementa-
tion with running time of O(mn2) for finding an optimal
partitioning of n documents into m groups, such that the

value of C =
m�

i=1

Ci is minimized over all possible partition-

ings of the documents. The algorithm relies on the following
lemma.

Lemma 1. Given n items with probabilities 0 < pi ≤ 1
sorted in a non-increasing order and m, such that m < n,
there exists an optimal solution to the problem of grouping
the n items into m groups, in which the items are partitioned
contiguously.

Proof. See Appendix B.

The above lemma tells us that we can find an optimal solu-
tion with no “gaps”, i.e., if documents i and j (i < j) are
assigned to a certain group then so are all the documents
i + 1, i + 2, . . . , j − 1.

Definition 1. Let Ci,j,t be the minimum expected num-
ber of false positives if the only documents were i, i+1, . . . , j
(i ≤ j) and only t bits were available for them (t ≤ m). Let
Pi,j,t be the partition of the documents i, i + 1, . . . , j into t
groups that achieves Ci,j,t.

The Ci,j,1’s are not hard to compute in O(n2) time for all
i and j, i ≤ j, using precomputed values for the sum and
product:

Ci,j,1 =

j�
k=i

(1 − pk) − (j − i + 1)

j�
k=i

(1 − pk).

The corresponding Pi,j,1 is a single group: {i, i + 1, . . . , j}.

Theorem 2. If C1,j,t′ and P1,j,t′ are known for all t′ ≤
j ≤ n and t′ ≤ t, then C1,j,t+1 and P1,j,t+1 for fixed j can
be computed in linear time.

Proof. To find the best value for C1,j,t+1, we must try to
divide the set 1, . . ., j into two sets of t and 1 groups, using
all positions suitable for the split. For the partitioning to be
optimal, the total cost of both sets should be minimal. The
formula for finding C1,j,t+1 then looks like the following:

C1,j,t+1 = min
k=1 to j−t � C1,j−k,t +

j�
l=j−k+1

(1 − pl)−

−k
j�

l=j−k+1

(1 − pl) � =

= min
k=1 to j−1

{C1,j−k,t + Cj−k+1,j,1}

From the formula we can see that the cost of any single split
is computed in constant time, therefore computation of the
optimal partitioning for C1,j,t+1 takes linear time. 2

Corollary 2. For a fixed t, there are O(n) C1,j,t’s over
all possible values of j, therefore the one bit per document
case can be solved in O(mn2) time.

This algorithm is naturally expandable to policies of arbi-
trary length.

4.1.2 One Bit per Document, One Document at a Time
We consider the situation here where a document is as-

signed only one bit, and a request is for only one document.
This implicitly introduces an upper bound on the aggregate

probability over all documents
n�

i=1

pi ≤ 1. In this case, af-

ter partitioning all of the documents into groups 1, . . ., m of
size s1, s2, . . ., sm respectively, the expected false positives
for group i becomes:

Ci =

si�
j=1

pij

si�
k=1

k 6=j

cik
(3)

And the total cost respectively is:

C =

m�
i=1

Ci =

m�
i=1

�
si�

j=1

pij

si�
k=1

k 6=j

cik �
What if the “loss” due to the unintended granting of ac-

cess to document i is proportional to its probability, i.e.
ci ∼ pi? The rationale for this model is that pi is a good
measure of the “desirability” of a document, and a very un-
desirable document should not contribute the same amount
(to the total loss) as a very desirable document. The prob-
lem of optimizing allocation in this model turns out to be
NP-complete, even for the simple case where a document
is assigned to only one bit, and a request is for only one
document.

As before, we let m be the number of bits available, n be
the number of documents, and p1, . . . , pn be their respec-
tive probabilities of occurrence. For any given solution, for
each document j, f(j) denotes the position of the bit that
corresponds to that document, 1 ≤ f(j) ≤ m. For each bit
position i, 1 ≤ i ≤ m, let

f−1(i) = {j : f(j) = i}

that is, f−1(i) is the set of documents corresponding to the
ith bit. We use Pi to denote the sum of the probabilities
of the documents in f−1(i): Pi =

�
k∈f−1(i)

pk. Using this

notation, the expected loss of a given solution f is

m�
i=1

�
k∈f−1(i)

pk ∗ (Pi − pk) =

m�
i=1

P 2
i −

n�
j=1

p2
j .

The second summation in the above is fixed (independent
of f). So the optimization consists of minimizing the first

summation, that is
m�

i=1

P 2
i . Given n quantities p1, . . . , pn and

a value U , partitioning these n quantities into m buckets
such that the sum of the squares of bucket weights is ≤ U
is known to be NP-Complete [14, 18].

The Algorithm
Here we consider the case when only one bit is set in a
single document policy, only one document is requested by
each customer, and the cost of each document i is ci = 1.
In this case, the formula for computing a cost of grouping si

documents together into group i, according to equation (3),
becomes:

Ci = (si − 1)

si�
j=1

pij



We give an O(mn2) time algorithm for policy assignment
for that case.

For each document j, let f(j) be the position of the bit
that corresponds to that document, 1 ≤ f(j) ≤ m. For each
bit position i, 1 ≤ i ≤ m, let f−1(i) = {j : f(j) = i}, that is,
f−1(i) is the set of documents corresponding to the ith bit.
We henceforth use si to denote the number of documents in
f−1(i).

Theorem 3. If documents x, y are such that x ∈ f−1(i)
and y ∈ f−1(j), then in any optimal solution px > py im-
plies si ≤ sj .

Proof. Suppose not; that is, assume px > py and si > sj .
Then swapping x and y between f−1(i) and (respectively)
f−1(j) changes the expected number of false positives by:

px ∗ sj + py ∗ si − px ∗ si − py ∗ sj = (px − py) ∗ (sj − si)

which is negative. This contradicts the assumed optimality
of the solution considered. 2

Corollary 3. Given s1, s2, . . ., sm for an optimal solu-
tion, s1 ≤ s2 ≤ . . . ≤ sm, then that optimal solution can be
realized by assigning the first s1 documents to bit 1 (these
are the documents with the highest probabilities), the next s2

documents to bit 2, . . ., the last sm documents to bit m.

The above lemma reduces the problem to that of computing
the si’s, that is, of computing an optimal partition of the
integers 1, 2, . . . , n into m groups. Trying all possible par-
titions (subject to the increasing sorted order requirement)
gives an algorithm that is exponential in m. Here we give
an O(mn2) dynamic programming algorithm for the case of
one document per access request.

Definition 2. Let Cj,t be the minimum expected number
of false positives if the only documents were 1, 2, . . . , j and
only t bits were available for them (t ≤ m). Let Pj,t be the
partition of the integers 1, 2, . . . , j into t groups that achieve
Cj,t. We use sj,t,1, . . . , sj,t,t to denote the sizes of the groups
of partition Pj,t, sj,t,1 ≤ . . . ≤ sj,t,t.

The Cj,1’s are trivial to compute in linear time for all j:

Cj,1 = (j − 1)
j�

k=1

pk. The corresponding Pj,1 is a single

group: {1, . . . , j}.

Theorem 4. If Cj,t′ and Pj,t′ are known for all 1 ≤ j ≤
n and t′ ≤ t, then Cj,t+1 and Pj,t+1 for all 1 ≤ j ≤ n can
be computed in O(n2) time.

Proof. Here is how we compute Cj,t+1 and Pj,t+1. First,
observe that if we knew sj,t+1,t+1 then we could easily com-
pute Cj,t+1 as:

Cj,t+1 = Cj−sj,t+1,t+1,t + (sj,t+1,t+1 − 1)×

×(pj−sj,t+1,t+1
+ . . . + pj)

and the corresponding Pj,t+1 would simply be Pj−sj,t+1,t+1

augmented with the group {j − sj,t+1,t+1 + 1, . . . , j}. If we
pre-compute all sums of probabilities from p1 on, then we
could do the above in constant time. But we do not know
sj,t+1,t+1, and must try the O(j) possible values for it and
choose the best among them. We must of course carry this
out for all j values, which is why the theorem claims the
O(n2) time bound. 2

Corollary 4. The one bit per document, one document
per request case can be solved in O(mn2) time.

4.2 Minimizing the Maximum Per-Customer
False Positives

Here instead of minimizing the cumulative total of false
positives, we minimize the maximum per-customer false pos-
itives. In the probabilistic model each combination of docu-
ments has a non-zero probability of being requested, there-
fore the problem of minimizing the maximum per-customer
false positives reduces to the problem of minimizing the false
positives introduced by a single document.

If subscription to any document costs the customer the
same amount of money as any other document (ci = cj for
1 ≤ i ≤ j ≤ n), then we solve the minimization problem by
dividing all documents into m (the number of bits available
for policy numbers) groups in such a way that each group
contains the same number of documents. In other words,
we have m groups of size n/m and assign the same policy
bit to all documents within the same group.

If the subscription fee varies from document to document,
then we should take into account the varying costs. In this
case, the sum of costs of all documents within the same
group should stay about the same value across all groups,
i.e., the sum of costs of all documents within a group is

about (
n�

i=1

ci)/m.

Assume that we calculated m optimal sets of documents
and they are S1, S2, . . . , Sm. Then the maximum per-
customer false positives is computed as:

C =
n�

i=1

ci −
m�

j=1

min
i=1 to n

{ci | i ∈ Sj} (4)

i.e., the cost of all documents decreased by the minimal doc-
ument cost within each group. As we can see, the maximum
per-customer false positives stays high even after its mini-
mization.

The Algorithm
The purpose of the algorithm is to come up with a partition-
ing (i.e., S1, . . . , Sm) that minimizes the value in the above
Equation 4. The first term of that formula is constant and
cannot be changed, therefore the problem of computing an
optimal solution reduces to maximizing the second term of
the equation. In other words, in the optimal partitioning of
n documents into m groups the sum of minimal elements of
the groups is maximal. The following theorem states that,
given n sorted elements, such a partitioning can be found in
linear time.

Theorem 5. Given n documents 1, 2, . . . , n sorted ac-
cording to their costs ci for 1 ≤ i ≤ n, so that c1 ≥ c2 ≥
. . . ≥ cn, a solution to the problem of computing a document
policy assignment that minimizes the maximal (over all in-
dividual customers) individual customer false positives, can
be computed in O(n) time.

Proof. The algorithm for constructing an optimal parti-
tioning works as follows. We first create m−1 groups of size
1 by placing the m− 1 documents with the highest costs in
a group by themselves. The rest of the n−m+1 documents
compose the last mth group. With this approach, we have:

m�
j=1

min
i=1 to n

{ci | i ∈ Sj} = c1 + c2 + . . . + cm−1 + cn



where Sj refers to the jth group in the partitioning of n
documents into m groups.

It is not hard to see that this algorithm maximizes the sum
of minimal elements over all groups because the element with
the smallest cost cn is unavoidably included in the sum and
all other costs in the summation are maximal. Therefore
moving any document from one group to another decreases
the value of the sum, thus making it suboptimal. 2

Corollary 5. If the documents are not originally sorted
by their costs, the optimal solution to the problem of mini-
mization of the maximal per-customer false positives can be
computed in O(n log n) time.

Note that document probabilities are not included in the
solution because the goal here is to minimize the cost of a
request in the worst case scenario, regardless of its proba-
bility of occurring (which is always non-zero).

5. DETERMINISTIC MODEL
Suppose there are k subscribers 1, . . ., k who request s1, . . ., sk

documents, respectively. Then for optimal policy assign-
ing all documents should be grouped according to the sub-
scribers’ requests. The problem of minimization can target
either the total (cumulative) false positives or the maximum
per-customer false positives. We describe each of the models
in turn.

Although the deterministic model is less realistic, it is still
useful to characterize its inherent difficulty. As was pointed
out earlier, in practice the probabilistic framework can be
used to approximately solve the deterministic one, and as
this section shows the latter one is essentially intractable
even in a simplified special case.

5.1 Minimizing the Total False Positives
Let subscriber i request documents i1, . . ., isi

, then the
false positives count for that customer is:

Ci = f−1(

si�
j=1

rij
) −

si�
j=1

cij
(5)

where the cost of policy r is calculated as:

f−1(r) =

n�
i=1

{ci | r ≥b ri}
∗

Then the problem is to minimize the total false positives
(cumulative over all customers):

C = min

�
k�

i=1

Ci � = min

�
k�

i=1

�
f−1(

si�
j=1

rij
) −

si�
j=1

cij � �
Definition 3. A policy assignment to documents 1, . . ., n

is said to be optimal if the value of C is minimal over all
possible policy assignments to the documents.

5.2 Minimizing the Maximum Per-Customer
False Positives

In the problem of minimizing the maximum per-customer
false positives, the extra cost per customer i is the same as in
equation (1), and the maximum per-customer false positives
count is
∗Here we define ≥b to mean “bitwise greater than or equal
to”.

C = min � max
i=1 to k

Ci �
= min

�
max

i=1 to k

�
f−1(

si�
j=1

rij
) −

si�
j=1

cij � �
5.3 Complexity of the Deterministic Version

of the Problem
Here we refer to the special case of the problem when there

is only one bit set to 1 in a policy of a single document and all
other bits are set to 0, each customer requests 2 documents
and the length of policy numbers m = 2. We show that the
deterministic case, even its special case, is NP-hard.

The reduction is from the known NP-hard problem of
graph bisection: Given an n-vertex undirected graph (n is
even), partition its vertices into two sets V1 and V2, of size
n/2 each, so as to minimize the number of edges between V1

and V2.
Given an instance G = (V, E) of the graph bisection prob-

lem, the instance of our problem is created as follows. Create
an (n + 2)-document version of our problem where n of the
documents correspond to vertices of G, and documents n+1
and n+2 are additional ones that do not correspond to any
vertices of G.

For every edge (i, j) of G, create a customer who requests
documents i and j. Then create n5 additional customers
each of whom requests a pair of documents: n4 of the cus-
tomers request the documents 1 and n + 1, another n4 of
them request the documents 2 and n + 1, . . ., n4 request
documents n and n + 1. Similarly create n5 additional cus-
tomers each of whom requests a pair of documents: n4 of
the customers request the documents 1 and n + 2, another
n4 of them request the documents 2 and n + 2, . . ., n4 re-
quest documents n and n + 2. Let D be the deterministic
problem so created.
Claim: Any solution that optimally solves D also solves the
minimum graph bisection of G by simply putting in V1 the
vertices that correspond to documents that were assigned
to the first bit, and in V2 the vertices that correspond to
documents that were assigned to the second bit.
The rest of this section proves the above claim. Consider
any optimal solution S for D, and assume without loss of
generality that document n + 1 was assigned to bit 1.

Let n1 be the number of documents from {1, . . . , n} as-
signed to bit 1, n2 be the number of documents from {1, . . . , n}
assigned to bit 2, e1,1 be the number of edges of G both of
whose corresponding documents are assigned to bit 1, e2,2

be the number of edges of G both of whose corresponding
documents are assigned to bit 2 (hence n2 = n − n1), and
e1,2 be the number of edges of G whose corresponding doc-
uments are assigned to different bits. If we use C1 (resp.,
C2) to denote the total loss in solution S if document n + 2
happens to be assigned by S to bit 1 (resp., to bit 2), then
we have:

C1 = (e1,1 + 2n1n
4)(n1 + 2 − 2) + e2,2(n2 − 2)+

+(e1,2 + 2n2n
4)(n + 2 − 2)

C2 = (e1,1 + n1n
4)(n1 + 1 − 2) + (e2,2 + n2n

4)(n2 + 1 − 2)+

+(e1,2 + n1n
4 + n2n

4)(n + 2 − 2)

Now observe that, in the above, the terms not involving n4

add up to less than n4 (in fact less than n3+2n2), so that any



solution that minimizes C1 (resp., C2) must also minimize
the following C′

1 (resp., C′
2) obtained from C1 (resp., C2) by

considering only the terms that multiply n4:

C′
1 = 2n2

1 + 2n2n

C′
2 = n1(n1 − 1) + n2(n2 − 1) + n1n + n2n.

Using n1 + n2 = n in the above gives:

C′
1 = 2n2

1 − 2n1n + 2n2

C′
2 = n2

1 + (n − n1)
2 − n + n2 = 2n2

1 − 2n1n − n + 2n2.

Because C′
1 − C′

2 = n > 0, it follows that S must have
assigned document n + 2 to bit 2. Therefore the problem
is to minimize C′

2. The minimum for C ′
2 is easily seen to

occur for n1 = n/2, which implies that n2 = n/2. This
immediately implies that |V1| = |V2| = n/2, as required.
We now must prove that S minimizes e1,2. Re-writing L
with each of n1 and n2 replaced by n/2 gives:

C2 = n5(n − 2)4−1 + e1,1(n − 2)2−1 + n5(n − 2)4−1+

+e2,2(n − 2)2−1 + n6 + ne1,2

which is minimized when the following L′′ is minimized:

C′′ = (e1,1 + e2,2)(n − 2)2−1 + ne1,2.

Because e1,1 + e2,2 + e1,2 = |E|, any solution that minimizes
C′′ must necessarily minimize e1,2. 2

This guarantees that the deterministic problem in general,
for arbitrary document policies and variable values of m, is
also NP-hard.

6. IMPLEMENTATION AND DEPLOYMENT
ISSUES

The simplicity of the algorithms developed for the prob-
abilistic model is balanced by the potential vulnerability of
the scheme to information-sharing, among different users,
about correlations between different documents’ bit pat-
terns, e.g., “if you pay for documents i1, i2, . . . , ik then you
get free access to document j”. Schemes that do not have
this vulnerability are considerably more computationally ex-
pensive [1], so the present scheme has a crucial virtue of
being simple and inexpensive. The ideal deployment for
the scheme of this paper is in dynamic situations where
the document repository changes rapidly, the policies need
to be re-generated on a periodic basis, or other situations
where the card contents are refreshed periodically through
interaction (say, once a month or more frequently) with a
server. For example, access to web sites or portions thereof
often satisfies this rapid-change condition. In such cases,
the above-mentioned correlation attacks are harder to carry
out because the existing correlations become obsolete by
the time they are discovered by the attackers. Furthermore,
the sharing of correlation information among attackers is of-
ten problematic for the attackers, because the internal (to
the document server and the smartcard) representation of a
document is not accessible to the attackers, who may not be
able to share a coherent description of the document (con-
tent changes daily or hourly, as does the URL).

What happens in between two of the above-mentioned pe-
riodic re-generations? During that in-between time period,

new customers join, some existing ones drop out, new doc-
uments are added and old ones removed, or access patterns
(i.e., the probabilities used in the optimization) change as
previously “hot” documents go out of fashion or vice-versa.
Of course these events are processed in real-time as they
occur (they cannot wait for the next re-generation), but as
these things happen the system is slowly drifting away from
optimality. This is in fact another reason (in addition to the
above-mentioned necessity of making the system less vulner-
able to information-sharing attacks) why optimization needs
to be periodically re-done, i.e., our scheme used with the
new data to compute the new optimal solution. We leave
the design of a self-evolving system that does not need such
periodic check-points for future research (in fact we already
have partial solutions to this [1]).

In the rest of this section we discuss operational and im-
plementation issues which might be useful for realization of
this approach. In this discussion we follow the probabilistic
mode of operation.

In the initial (or setup) stage, the data owner runs the
policy assignment algorithm and determines an exact pol-
icy assignment for the data collection. In order to do this,
the document probabilities should be known a priori. For
existing repositories, such information can be estimated us-
ing the past history; for new collections of documents, such
probabilities can be set based on expected access frequencies
and refined over the course of operation. The probabilities
of access are considered to be the data owner’s private data
and are not known to the general public (which complicates
discovery of documents that “come for free” with an order).

Due to the large size of the data repository, it is expected
that a (possibly significant) number of documents will not
have unique probabilities. In this case, the data owner has
the freedom to choose how the documents with the same
probabilities are combined into different groups. A good
strategy under these circumstances is to place the same topic
documents into different groups, so that the likelihood of
having documents of the attacker’s interest among the false
positives is minimized. In other words, if an attacker is in-
terested in documents on, say, computer security, then such
documents are distributed among a number of groups, and
are mixed with a large variety of documents on different top-
ics. Furthermore, the set of documents (and/or their topics)
that are combined together in one group should vary from
one policy assignment to another (note that such random-
ization only changes the ordering of documents in the entire
set of documents, but does not require modifications to the
dynamic programming algorithms themselves). Such a dis-
tribution is useful to the attacker only if he has a broad
range of topics of interest.

Even more randomization can be done to thwart attack-
ers if, for example, we modify the algorithm so it ignores
probabilities’ least-significant bits: This causes many more
“ties” and choice points in the optimization, which when re-
solved randomly will result in a very different set of policies
from one periodic optimization to the next even if very little
change to the customers/documents/probabilities occurred
in the in-between time period.

After generating the document policy assignment, the data
repository is set to accept user requests. When a customer
subscribes to the service and provides a list of documents
to be included in the subscription, a policy configuration
for that request is constructed in such a way that all doc-



uments are covered (using bitwise OR of all documents in
the requests), and the customer is charged accordingly. The
customer, along with the a smart card that contains the ac-
cess policy configuration, is given a list of documents in the
request. Now any request to access a document from the list
of the purchased documents, which is made with the use of
the card, will be authorized. Access to a number of other
documents might also be granted due to existence of false
positives.

In order to minimize the loss caused by the presence of
false positives, the data owner might want to reduce docu-
ment probing by limiting the number of requests to access
documents that result in denial of access. One possibility
here is to use a strategy similar to “t strikes and you are
out”, where the card erases itself when the maximum num-
ber of unauthorized requests (in this case t) is made. When
such a strategy is adopted, each customer needs to be ex-
plicitly notified of this policy at the time of purchase and
know what t for the card is (which, for example, can be
a function of the number of documents in the subscription
request). The list of documents included in the order will
help the customer to decrease the probability of error due
to mistyped references to the legitimate documents. This
strategy can significantly decrease the amount of document
probing because of the fear of losing the card, but the care
should be exercised to decide what values of t are appropri-
ate in order to not deny access to documents in cases when
no probing is taking place.

7. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this work we examined two basic models of the policy
assigning optimization problem: deterministic and proba-
bilistic. A model for the problem could be more compli-
cated, with certain requirements added to the documents,
their policies, or some other parameters, and its solution
might differ significantly from results presented here. We
envision the following ways of extending the current work.

In the probabilistic model we assumed independent prob-
abilities, while in real life they are likely to be correlated.
For example, if a customer selects a document from one sec-
tion, he is more likely to select another document from the
same section than from a new one. In this case, the expected
false positives count should be smaller since we can assign
similar policies to the documents from the same sections.

There could be more than one type of data item. For
example, a rather simple approach can use elements and
element attributes as two major categories of items. A more
sophisticated approach might include documents, packages
of documents, sections within documents, and single items
inside sections. Alternatively, one could extend this work
to hierarchically structured sets of documents (think of web
pages).
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Appendix A: Proof of Theorem 1
Proof. This is a proof by induction on a group’s size s.

For a set S of size j, we refer to the expression
j�

i=1

ci(1 −

pi) − � j�
i=1

ci � � j�
i=1

(1 − pi) � as the “left part” or Lj and to

the expression representing the sum of probabilities of all
possible subsets of S weighted by the cost of elements not
in the subset as the “right part” or Rj .
Basic Step: For s = 1, we have:

L1 = c1(1−p1)−c1(1−p1) = 0, R1 = p1 ·0 = 0 ⇒ L1 = R1

i.e., the equality holds.
Induction Hypothesis: Assume that the equality holds
for some s = k and we have:

Lk =
k�

i=1

ci(1 − pi) − � k�
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Induction Step: Given that the statement hold for s = k,
we show that it also holds for s = k + 1.

When we add element k + 1 to the set, it can be either
in or not in a particular subset of k + 1 elements. If the
element is in a subset, it does not increase the false positives
(compared to the k-element case), but when the element is
not included in a subset, the false positives of the subset
increases by ck+1. In general, for Rk+1 we have:

Rk+1 = pk+1
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Notice that the last summation in the equation represents
the probability that at least one element out of k happens.
In other words, we have:

k�
i=1

pi

k�
j=1

j 6=i

(1 − pj) +
k−1�
i=1

pi

k�
j=i+1

pj

k�
l=1

l6=i, l6=j

(1 − pl) + . . .+

+
k�

i=1

(1 − pi)
k�

j=1

j 6=i

pj +
k�

i=1

pi = 1 −
k�

i=1

(1 − pi)

Thus, substituting the summation in the formula for Rk+1

we obtain:

Rk+1 = pk+1 · R
k + � 1 − pk+1 �

�
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After applying the formula for a k-element set from the in-
duction hypothesis, we get:
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Appendix B: Proof of Lemma 1
Proof. We want to prove that, for unit costs (unweighted
documents), if documents i and j (i < j) are assigned to a
certain group then so are all the documents i+1, i+2, . . . , j−
1. For simplicity, we assume that p1 > p2 > · · · > pn rather
than p1 ≥ p2 ≥ · · · ≥ pn (the proof can be extended to the
case of “≥”). The proof is by contradiction: Assume to the
contrary that there are three documents i < v < j such that
documents i and j are assigned to group x and document
v is assigned to group y. Equation (2) implies that we can
write the cost of group y as

Cy = −α ∗ (1 − pv) + β + (1 − pv)

where α and β are positive and depend on how many (and
which) other documents than v are in group y. Equation
(2) also implies that we can write Cx as

Cx = −γ ∗ (1 − pi) ∗ (1 − pj) + θ + (1 − pi) + (1 − pj)

where γ and θ are positive and depend on how many (and
which) other documents than i, j are in group x. Now, note
that interchanging i and v from their groups (i.e., moving
document i to group x and document v to group y) would
result in a change in total cost of



∆i,v = α ∗ (pi − pv) − (pi − pv) + γ ∗ (1 − pj)(pv − pi) − (pv − pi)
= (α − γ ∗ (1 − pj)) ∗ (pi − pv)

and interchanging j and v similarly results in a change in
total cost of

∆j,v = (α − γ ∗ (1 − pi)) ∗ (pj − pv)

Optimality requires that both ∆i,v and ∆j,v are positive.
This, and the fact that pi > pv > pj , imply that

(α − γ ∗ (1 − pj)) > 0

(α − γ ∗ (1 − pi)) < 0

But this implies that pj > pi, a contradiction. 2


