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Decomposition into Boyce-Codd Normal Form (BCNF) with a lossless join and preserva-
tion of dependencies is desired in the design of a relational database scheme . However ,
there may be no decomposition of a relation scheme into BCNF that is dependency preserv-
ing, and the known algorithms for lossless join decomposition into BCNF require exponen-
tial time and space . In this paper we give an efficient algorithm for lossless join de-
composition and show that the problem of deciding whether a relation scheme has a depen-
dency-preserving decomposition into BCNF is NP-hard . The algorithm and the proof assume
that all data dependencies are functional . We then discuss the extension of our tech-
niques to the case where data dependencies are multivalued .
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1 . Introductio n

Since the relational data model wa s
proposed in the early 1970's by Codd [9] ,
the idea of using semantic information
about databases in order to attempt to
mechanize portions of the design has re-
ceived a great deal of attention . The
first natural kind of semantic informa-
tion is the concept of functional depen-
dency (FD) [2] . Here the values of som e
attributes functionally determine th e
values of other attributes .

A good database design often mean s
a proper choice of the database scheme ,
i .e ., the collection of relations used .
In general, a database designer has to
answer the following two questions :

(1) What are the properties of a good
database scheme ?

(2) How can one find a good databas e
scheme ?

This work was partially supported by NS F
Grants MCS-7904129 and MCS-8007706 .

A simple answer to the first question i s
that a good database scheme ought to hav e
both the "lossless-join" property and th e
"dependency-preserving" property . Further -
more, each relation scheme in a databas e
scheme should be in Boyce-Codd Normal Form
(BCNF) . However, the answer to the second
question is not as easy as the first ques-
tion since there may be no decompositio n
of a relation scheme into BCNF that is de-
pendency preserving, [3,5,16] . Thus, ob-
taining a lossless-join and dependency -
preserving decomposition into BCNF is an
unrealistic goal . What is actuall y
achievable, therefore, is of interest .

In section 2, we give basic defini-
tions and summarize some known results .
In section 3, we will present a polyno-
mial-time algorithm for a lossless-joi n
decomposition into BCNF . This algorithm
is a big improvement over the existin g
algorithms, which require exponential tim e
and space . In section 4, we will show
that the problem of deciding whether a
relation scheme has a dependency-preserv-
ing decomposition into BCNF is NP-hard .
Our result strengthens the result o f
Beeri and Bernstein [3] by eliminatin g
some unnecessary assumptions . In the last
section, we will discuss the extension o f
our techniques to the case where dat a
dependencies are multivalued .

2 . Basic Definitions and Known Result s

The basic objects studied in thi s
paper are sets of data dependencies whic h
are defined over sets of individua l
attributes . We will reserve the following
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letters, with or without subscripts, fo r
the following types of objects :

ABCDE - individual attribute s
UVWXYZ - sets of attribute s
T

	

- a collection of sets o f
attributes

fg

	

- individual functiona l
dependencies

FG

	

- sets of functional
dependencies

All sets discussed are finite .

When context makes clear our intent ,
we shall abbreviate proper set-theoreti c
notation by omitting braces when enumer-
ating a set of attributes and using con -
catenation to denote the union of sets o f
attributes, e .g ., AB means {A,B} and XY Z
means XuYuZ . Similarly, F-f means F-(f) .

We now give some basic definitions .

Definition 2 .1 : A relation r is a table
where each column is labeled and repre-
sents an attribute and each row represent s
a record . No two columns can have th e
same label, and no two rows can be identi-
cal (cf .[121]) .

There are two relational operation s
of interest to us : projection and join .

Definition 2 .2 : Let U be a set of attri-
butes and let r be a relation over U .

(a) For any X c U, r(X), the projection
of r on X, is a relation obtained by
taking from each row of r those entrie s
corresponding to the attributes of X an d
identifying identical rows .

(b) For any family (X1,X2, . . .,Xk) o f

subsets of U such that X 1 uX2 u . . .uXk = U ,

the natural join of the projection of r
onto the X 1 's is r(X1)*r(X2)* . . .*r(Xk )

{uJ for each 1<i_<k, there is a row ui

in r( X i ) such that row u agrees with u i

on the entries of the X-attributes} .

Definition 2 .3 : Let U be a finite set of
attributes . A functional dependency (FD )
f over U is an ordered pair (X,Y) of non -
empty subsets of U . Following commo n
notation, we shall write f : X

	

Y and
call X the left side of f, denoted L(f) ,
and Y the right side of f, denoted R(f) .

Definition 2 .4 : Let U be a set of attri-
butes and let F be a set of FD's over U .
The pair <U,F> is called a dependency
system . A relation r is called a Valid
relation over <U,F> if for every F D
f : X + Y in F, no two rows of r with
identical entries in the X-columns hav e
differing entries in the Y-columns .

Definition 2 .5 : Let F be a set of FD' s
over U . For any X c U, we define CL F (X )

(or simply CL(X)), the closure of X under
F, as follows [1,8] :

(1) X c CL(X )
(2) If Y c CL(X) and Y + Z is a FD in F

then Z c CL (X) .
(3) CL(X) is the least set (with respec t

to set inclusion) satisfying (1) an d
(2) .

A database scheme is a collection of
sets of attributes used to define th e
relations in the database . A relatio n
scheme is a set of attributes used t o
define a single relation . A decompositio n
of a relation scheme R = A l A2 . . . An is

its replacement by a database schem e
T = {R1,R2, . . .,Rk} such that R 1 uR2 u . . .uRk

= R (cf .E16]) .

Definition 2 .6 : Let F be a set of FD' s
over U and let T = {X1,X2, . . .,Xk} be a

collection of subsets of U .

(a) T is said to be a lossless-joi n
decomposition of U under F if for ever y
valid relation r over <U,F> :

r = r(X1)*r(X2)'* . . .*r(Xk )

that is, r is the natural join of it s
projections onto X i 's .

(b) For each 1si<_k, let F i be a set o f

FD's over Xi such that CLF (Z) = CL F (Z)nXi

for every Z c Xi . T is said to be a

dependency-preserving decomposition of U
if for every Y c U, we have CLF (Y) =

CLG (Y), where G = F 1 uF 2 u . . .uFk .

We note the following result of Aho, Beer i
and Ullman ([1], Corollary 1) .

Remark 2 .7 : {X,Y} is a lossless-joi n
decomposition of XuY if and only if eithe r
Y c CL(XnY) or X c CL(XnY) .

The next definition will formaliz e
the concepts o6 key and Boyce-Codd Norma l
Form (BCNF) .

Definitiofl 2 .8 : Let F be a set of FD' s
over U and let W c U .

(a) A subset X of W is said to be a key
of W under F if W c CL(X) . Otherwise, i t
is a nonkey of W under F .

(b) W is said to be in BCNF if wheneve r
A E CL (X) -X for A E W, X c W, then X is a
key of W under F . (In other words, th e
only nontrivial dependencies in W ar e
those in which a key functionally deter -
mines one or more attributes [16] .)



2 5

Jou and Fischer [14] have shown th e
following .

Remark 2 .9 : For a given set U of attri-
butes and a given set F of FD's over U ,
if for every FD f in F either CL(L(f) )
L(f) or CL(L(f)) = U, then U is in BCNF .

From Remark 2 .9, a polynomial-time
algorithm can easily be developed for
testing if the universal relation schem e
is in BCNF . Decomposition is desire d
only when the universal relation scheme
is not in BCNF .

3 . An Algorithm for Lossless Join
Decomposition into BCNF .

The correctness of the algorithm
presented in the second half of thi s
section is based on the following two
lemmas . Lemma 3 .1 provides a sufficient
condition for a decomposition to have a
lossless join, and Lemma 3 .2 provides a
sufficient condition for a set of attri-
butes to be in BCNF .

Lemma 3 .1 :

	

Let T = (Y1, . . .,Yk) be a

collection of subsets of U and le t
Y 1 u . . .uYk = U .

	

If for every 1<_i<k

(Yi,Y .

	

u . . .uYk ) has a lossless join, the n1+ 1
T is a lossless-join decomposition .

Proof . Follows from Definition 2 .6(a) ,
Remark 2 .7, and the associativity of th e
natural join .

Lemma 3 .2 : Let F be a set of FD's over U
and let Y c U .

(a) If 1YIs2, then Y is in BCNF .

(b) For IYI>2, if for any pair of dis-
tinct attributes A,B c Y ,
A i CL(Y-AB), then Y is in BCNF .

Proof . (a) Immediate from Definitio n
2 .8(b) .

(b) Suppose Y is not in BCNF . Then there
exist A E Y, X c Y, B E Y, such that
A E CL(X)-X but B i CL(X) . The n
A c CL(Y-AB), a contradiction . (The con-
verse of Lemma 3 .2(b) is not true .
Consider Y = ABC, with the FD C -+ AB . )

The following algorithm offers a
significant improvement over the previous-
ly known lossless-join decomposition
algorithms :

(Algorithm given on following page,)
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Algorithm 3 .3 : Lossless Join Decomposition into BCNF .

Input : A set U of attributes and a set F of FD's over U .
Output : A decomposition of U with a lossless join, such that every set in the decomposi-
tion is in BCNF under F .

Procedure :

begi n

1.

	

X + U ;

2.

	

pl

** after initialization, we start the main loop * *

3.

	

while X x Y do

begin

4.

	

Y + X

5.

	

Z .-0 ;

6. repeat : if IYI>2 then do

begin

7.

	

for each attribute A E Y do

8.

	

for each attribute B E Y-A do

begin

** check if Y-AB + A is logically implied by F * *

9.

	

if A E CL(Y-AB) then d o

begin

** remove B from Y * *

10.

	

Y + Y-B ;

11.

	

Z •- A ;

12.

	

go to repeat ;

end ;

end ;

end ;

** remove Z from X and output a relation scheme Y * *

13.

	

X + X-Z

14.

	

write Y

end ;

end ;
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Theorem 3 .4 : Let U be a set of attribute s
and let F be a set of FD's over U .

(a) Algorithm 3 .3 terminates in tim e

0(IU1 5 .IFI) .

(b) Algorithm 3 .3 yields a lossless-join
decomposition into BCNF .

Proof .

(a) First let us count the number of time s
each statement will be executed in eac h
iteration of the main loop . Statements 4 ,
5, 13, and 14 will be executed only once .
Since one attribute is removed from Y
(statement 10) before the execution of th e
go to statement (statement 12), statement s
6, 10, 11, and 12 will be executed at mos t
0(I(7I) times . Each time when statement 6
is true, statement 7 will be executed at
most 0(IUI) times and statements 8 and 9

will be executed at most 0(IUI 2 ) times .
Hence in each iteration of the main loop ,
statement 7 will be executed at most

0(IU I 2 ) times and statements 8 and 9 wil l

be executed at most 0(1U1 3 ) times .

Now we consider the main loop . Sinc e
one attribute is removed from X at state-
ment 13 in each iteration with the excep-
tion of the last one, the main loo p
iterates at most 0(IUI) times . It is
therefore clear that statements 8 and 9

will be executed at most 0(IUI 4 ) times .
Since the execution of statement 9 is th e
most time-consuming execution, and i t
takes time 0(IUI .IFI) (for the computatio n
of closure [3]), the total running time o f

Algorithm 3 .3 is 0(IUI 5
.IFI) .

(b) Suppose that Algorithm 3 .3 terminate s
after k iterations of the main loop . For
lsisk, let X i , Y,, and Z . represent ,

respectively, the contents of X, Y, and Z
at the end of the ith iteration of th e
main loop (after executing statement 14) .

From the construction of the mai n
loop, in each iteration with the exceptio n
of the last one, statements 10-12 must b e
executed at least once and, hence ,
Z ic CL(Y .-Z .) for each 1<_i<k . Therefore ,

Y ic CL(Y .-Z .) . Furthermore, Y .-Z . =

Y inX . . Thus, from Remark 2 .7, {i .,X .) ha s

a lossless join for each 1si<k . One may
observe that Yk = Xk , and for every

1_<i<k, Xi

	

Y i+1 u . . .uYk .

	

Also, Y 1 u . . .uYk

= U, and from Lemma 3 .1 we conclude tha t
{Y1,Y2, . . .,Yk} has a lossless join .

Furthermore, for each lsisk, we have eithe r
IY i ls2 or A i CL(Y i-AB) for any pair o f

distinct attributes A,B e Y i . From Lemma

3 .2, Y i is in BCNF for every lsisk .

4 . The Complexity of Dependency Preservin g
Decomposition into BCNF .

We first give a lemma .which provide s
a necessary condition for a decompositio n
to be dependency-preserving .

Lemma 4 .1 : Let F be a set of FD ' s over U
and let T = {X1,X2, . . .,Xk) be a dependen -

cy-preserving decomposition over U . Le t
f' : W -- A be a FD in F such that A i W .
If A e L(f) for every f E F-f', the n
WA c X . for some X is T .

Proof . For every lsisk, let F i be a se t

of FD ' s over X i such that CLF (Z) _

CLF (Z)nXi for every Z c X i . If A e L(f )

for every f e F-f', then by Definition 2 . 5
A i CLF (Y-A) for any subset Y of U suc h

that W ¢ Y . Suppose that WA ¢ X i for

every X i E T . If A e X i , then W Xi .

Otherwise A i X i . In either case ,

A I CLF (Xi -A) for every lsisk . Thu s
i

A I R(g) for any g e F 1 u . . .uF k = G . By

Definition 2 .5, A I CLG (W) . But rule f '

in F implies A e CLF (W) ; thus by Defini -

tion 2 .6(b) T is not dependency preserv-
ing, a contradiction .

Beeri and Bernstein [3] proved tha t
the problem " Is there a BCNF scheme that
represents F?" is NP-hard under th e
assumption that no two relation scheme s
have equivalent keys . However, we wil l
show in Theorem 4 .3 below that thi s
assumption is unnecessary . Furthermore ,
we present an example of a relation scheme
for which the only existing dependency -
preserving decomposition into BCNF doe s
not satisfy their assumption .

Example 4 .2 : Let U = ABCD and let F =
fAB -} CD, CD -+ B) . Then {ABC, ABD, BCD }
is the only dependency-preserving decompo-
sition into BCNF, where AB is a key fo r
both ABC and ABD .

Theorem4 .3 : Let F be a set of FD's ove r
U . The problem of deciding whether ther e
is a dependency-preserving decomposition
over U into BCNF is NP-hard .

Proof . To prove NP-hardness, we present a
polynomial-time reduction from the hittin g
set problem, which is NP-complete [15] ,
and can be formulated as follows :

Given a family {V1,V2, . . .,Vn} of subset s

of a set S, one is to decide if ther e
exists a subset W of S such that W con-
tains exactly one element of each Vi .

Such a set W is called a hitting set .
Without loss of generality, we assume tha t
n>1 and IV i I> 1 for some 1_i_n .
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Now let U = Su(B1, . . .,Bn,A,C} wher e

B 1 , . . .,Bn , A, and C are n+2 new symbols no t

in S . We shall construct a set F of FD' s
over U as follows :

(a) AD

	

B i for each lsisn and for each

D E V i ;

(b) ADE + S-DE for each pair of distinc t
elements D,E E Vi and for each 1sisn ;

(c) AB 1 . . .Bn + C ;

(d) CS -i A .

This construction can easily be per -
formed in polynomial time . We claim that
there is a hitting set W c S if and only i f
there is no dependency-preserving decompo-
sition over U into BCNF .

Suppose that there is a hitting se t
W c S . It is clear that CL(AW) =
AWB 1 . . .BnC . Since IVi I>1 for some lsisn ,

S x W follows from the definition o f
hitting set, and AW is a nonkey .

Then from Definition 2 .8(b), CSA i s
not in BCNF . Since A E L(f) for every
f E F-(CS + A}, by Lemma 4 .1, for any
dependency-preserving decomposition T, w e
have CSA c X for some X E T . Since CSA i s
not in BCNF, any such X is not in BCNF .
Thus there is no dependency-preservin g
decomposition .

Now suppose that there is no hitting
set . First we list the following computa-
tions of closure, which follow immediatel y
from the construction of F .

(1) CL(A) = A ;

(2) CL(B i ) = B i , for each 1sisn ;

(3) CL(D) = D, for each D E S ;

(4) CL(DE) = DE, for any D,E E S ;

(5) E

	

CL(AD), for any pair of distinc t
attributes D,E E S .

A dependency-preserving decompositio n
into BCNF follows from the construction o f
F, and we will show that each relatio n
scheme is in BCNF .

(a) From (1), (2), and (3), ADBi is in

BCNF for each 1sisn and for eac h
D E V i ;

(b) From (1), (3), (4), and (5),•ADEB is
in BCNF for each pair of distinc t
elements U,E E Vi , for each B E S-DE ,

and for each 1sisn ;

(c) Since L(f) contains an element from S
for every f in F-(AB 1 . . .Bn -+ C) ,

AB 1 . . .BnC is in BCNF ;

(d) For each proper subset Y of CS, sinc e
A E L(f) for every f in F-(CS -t A) ,
we have CL(Y) = Y . For any subse t
W c S, either CL(ACW)nCSA = ACW or ,
if any of the rules in (b) can be
applied, CL(ACW)nCSA = CSA . Finally ,
for any subset W c S, since there i s
no hitting set, we have eithe r
CL(AW)nCSA = AW or CL(AW)nCSA = CSA .
Thus, CSA is in BCNF .

This completes the proof .

5 . Conclusions and Future Wor k

The polynomial-time algorithm for a
lossless-join decomposition into BCNF an d
the NP-hardness of the problem of decidin g
whether there is a dependency-preserving
decomposition into BCNF come from th e
analysis of the lossless-join property ,
the dependency-preserving property, an d
the definition of BCNF . The technique s
developed in sections 3 and 4 can easil y
be extended to solve the problems concern-
ing the decomposition into BCNF in th e
presence of multivalued dependencies
(MVD's) . Since a FD is a special case o f
a MVD [11], by using the same constructio n
as in the proof of Theorem 4 .3, we can
prove that the problem of deciding whethe r
there is a dependency-preserving decompo-
sition into BCNF under both FD's and MVD' s
is also NP-hard . Furthermore, if we
modify statement 9 of Algorithm 3 .3 to "i f
Y-AB + A is logically implied by the given
set of FD's and MVD ' s then do " , then we
obtain a lossless-join decomposition int o
BCNF under both FD's and MVD's . Since the
membership problem (testing whether a FD
can be logically implied by a set of FD' s
and MVD's) can be solved in polynomia l
time [4,13], the modified algorithm stil l
runs in polynomial time .

The next natural question is "I s
there a polynomial-time algorithm fo r
lossless-join decomposition into 4NF?[10 ,
11]" . However, we know of no simpl e
sufficient condition for testing 4N F
analogous to our condition in Lemma 3 . 2
for the testing of BCNF, and this questio n
is open .
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