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Decomposition intc Boyce-Codd Normal Form (BCNF) with a lossless join and preserva-
tion of dependencies is desired in the design of a relational database scheme. However,
there may be no decomposition of a relation scheme into BCNF that is dependency preserv-
ing, and the known algorithms for lossless join decomposition into BCNF require exponen=
tial time and space. In this paper we give an efficient algorithm for lossless join de-
composition and show that the problem of deciding whether a relation scheme has a depen-
dency-preserving decomposition into BCNF is NP-hard. The algorithm and the proof assume
that all data dependencies are functional. We then discuss the extension of our tech-
niques to the case where data dependencies are multivalued.

Key words: relational data base, decomposition, lossless join,
dependency-preserving, Boyce-Codd Normal Form.

1. Introduction A simple answer to the first question is
that a good database scheme ought to have
both the "lossless~join" property and the
"dependency-preserving" property. Further-

Since the relational data model was
proposed in the early 1970's by Codd [9],

the idea of using semantic information more, each relation scheme in a database
about databases in order to attempt to scheme should be in Boyce-Codd Normal Form
mechanize portions of the design has re- (BCNF). However, the answer to the second

ceived a great deal of attention. The
first natural kind of semantic informa-
tion is the concept of functional depen-
dency (FD) [2]. Here the values of some
attributes functionally determine the

guestion is not as easy as the first ques-
tion since there may be no decomposition
of a relation scheme into BCNF that is de-
pendency preserving, [3,5,16]. Thus, ob-
taining a lossless-join and dependency-

values of other attributes.

A good database design often means
a proper choice of the database scheme,
i.e., the collection of relations used.
In general, a database designer has to
answer the following two questions:

(1) What are the properties of a good
database scheme?

(2) How can one find a good database
scheme?
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preserving decomposition into BCNF is an
unrealistic goal. What is actually
achievable, therefore, is of interest.

In section 2, we give basic defini-
tions and summarize some known results.
In section 3, we will present a polyno-
mial-time algorithm for a lossless=join
decomposition into BCNF. This algorithm
is a big improvement over the existing
algorithms, which require exponential time
and space. In section 4, we will show
that the problem of deciding whether a
relation scheme has a dependency-preserv-
ing decomposition into BCNF is NP-~hard.
Our result strengthens the result of
Beeri and Bernstein [3] by eliminating
some unnecessary assumptions. In the last
section, we will discuss the extension of
our techniques to the case where data
dependencies are multivalued.

2. Basic Definitions and Known Results

The basic objects studied in this
paper are sets of data dependencies which
are defined over sets of individual
attributes. We will reserve the following
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letters, with or without subscripts, for
the tollowing types of objects:

ABCDE =~ individual attributes

UVWXYZ - sets of attributes

T - a collection of sets of
attributes

fq - individual functional
dependencies

FG - sets of functional
dependencies

All sets discussed are finite.

When context makes clear our intent,
we shall abbreviate proper set-theoretic
notation by omitting braces when enumer-
ating a set of attributes and using con-
catenation to denote the union of sets of
attributes, e.g., AB means {A,B} and XY2
means XuYuZ. Similarly, F-f means F-{f}.

We now give some basic definitions,

Definition 2.1: A relation r is a table
where each column is labeled and repre-
sents an attribute and each row represents
a record. No two columns can have the
same label, and no two rows can be identi-
cal (cf.[121]).

There are two relational operations
of interest to us: projection and join.

Definition 2.2: Let U be a set of attri-
butes and let r be a relation over U.

(a) For any X < U, r(X), the projection
of r on X, is a relation obtained by
taking from each row of r those entries
corresponding to the attributes of X and
identifying identical rows.

(b) For any family {X1,X2,...,Xk} of

subsets of U such that X1UX2U...UXk = U,

the natural join of the projection of r
onto the X1 s 1s r(x1)*r(X2)*...*r(Xk)
= {u| for each 1<ic<k, there is a row Uy

in r(xi) such that row u agrees with uy
on the entries of the X-attributes}.

Definition 2.3: Let U be a finite set of
attributes. A functional dependency (FD)
f over U is an ordered pair (X,Y) of non-
empty subsets of U. Following common
notation, we shall write f: X =+ ¥ and
call X the left side of f, denoted L(f),
and ¥ the right side of f, denoted R(f).

Definition 2.4: Let U be a set of attri-
butes and let F be a set of FD's over U.
The pair <U,F> is called a dependency
system., A relation r is called a Vvalid
relation over <U,F> if for every FD
f: X + Y in F, no two rows of r with
identical entries in the X-columns have
differing entries in the Y-columns,

Definition 2.5: Let F be a set of FD's
over U, For any X c U, we define CLF(X)

(or simply CL(X)), the closure of X under
F, as follows [1,81]:

(1) X e CL(X)

(2) If Y ¢ CL(X) and Y + 2 is a FD in F
then 2 < CL(X).

(3) CL(X) is the least set (with respect
to set inclusion) satisfying (1) and
(2).

A database scheme is a collection of
sets of attributes used to define the
relations in the database. A relation
scheme is a set of attributes used to
define a single relation. A decomposition

of a relation scheme R = A1 A2 e An is

its replacement by a database scheme
T = {R1,R2,...,Rk} such that R1UR2U...URk

= R (cf.[16]).

Definition 2.6: Let F be a set of FD's
over U and let T = {X1,X2,...,Xk} be a

collection of subsets of U.

(a) T is said to be a lossless-join

decomposition of U under F 1f for every
valid relation r over <U,F>:

r = r(X1)*r(X2)*...*r(xk)

that is, r is the natural join of its
projections onto Xi's.
(b) For each 1zick, let Fi be a set of

1 P
FD's over X, such that CLFi(Z) = CLF(Z)nxi
for every 2 c Xi. T is said to be a

dependency-preserving decomposition of U
if for every Y c U, we have CLF(Y) =

CLG(Y), where G = F

1quu...qu.
We note the following result of Aho, Beeri
and Ullman ({13, Corollary 1).

Remark 2.7: ({X,Y} is a lossless-join
decomposition of XuY if and only if either
Y ¢ CL(XnY) or X < CL(XnY).

The next definition will formalize
the concepts of key and Boyce-Codd Normal
Form (BCNF).

Definitior 2.8: Let F be a set of FD's
over U and let W < U,

(a) A subset X of W is said to be a key
of W under F if W ¢ CL{X). Otherwise, it
is a nonkey of W under F.

(b) W is said to be in BCNF if whenever
A ¢ CL(X)-X for A ¢ W, X ¢ W, then X is a
key of W under F. (In other words, the
only nontrivial dependencies in W are
those in which a key functionally deter-
mines one or more attributes [16].)



Jou and Fischer [14] have shown the
following.

Remark 2.9: For a given set U of attri-
butes and a given set F of FD's over U,

if for every FD f in F either CL(L(f)) =
L(f) or CL(L(f)) = U, then U is in BCNF.

From Remark 2.9, a polynomial-time
algorithm can easily be developed for
testing if the universal relation scheme
is in BCNF. Decomposition is desired
only when the universal relation scheme
is not in BCNF.

3. An Algorithm for Lossless Join
Decomposition into BCNF,

The correctness of the algorithm
presented in the second half of this
section is based on the following two
lemmas. Lemma 3.1 provides a sufficient
condition for a decomposition to have a
lossless join, and Lemma 3.2 provides a
sufficient condition for a set of attri-~
butes to be in BCNF.
Let T =

Lemma 3.1: {Y1,...,Yk} be a

collection of subsets of U and let

Y1u...qu = U. If for every 1si<k
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(Y Y 0.

T is a lossless-join decomposition,

..qu) has a lossless join, then

Proof. Follows from Definition 2.6(a),
Remark 2.7, and the associativity of the
natural join.

Lemma 3.2: Let F be a set of FD's over U

and let ¢ < U.
(a) If |YIs2, then Y is in BCNF.

(b) For |Y¥|>2, if for any pair of dis-
tinct attributes A,B ¢ Y,
A ¢ CL(Y-AB), then Y is in BCNF.
Proof. (a) Immediate from Definition
.B(b).

(b) Suppose Y is not in BCNF. Then there
exist A ¢ Y, X < ¥, B ¢ Y, such that

A e CL(X)-X but B ¢ CL(X). Then

A ¢ CL(Y-AB), a contradiction. (The con-
verse of Lemma 3.2(b) is not true.
Consider Y = ABC, with the FD C -+ AB.)

The following algorithm offers a
significant improvement over the previous-
ly known lossless-join decomposition
algorithms;

(Algorithm given on following page,)
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Algorithm 3.3: Lossless Join Decomposition into BCNF.

Input: A set U of attributes and a set F of FD's over U,
Output: A decomposition of U with a lossless join, such that every set im the decomposi-
tion is in BCNF under F.

Procedure:
begin
1. X +« U ;
2. Y « @

¥* after initialization, we start the main loop **

3. while X = ¥ do
begin

4. Y « X ;

5. Z « g

6. repeat: if |Y|>2 then do

begin
7. for each attribute A ¢ Y do
8. for each attribute B ¢ Y~-A do
begin

** check if Y-AB + A is logically implied by F *#*
9. if A ¢ CL(Y-AB} then do
begin

** remove B from Y x

10. Y « Y-B ;
1. Z « A ;
12. go to repeat;
end;
end;
end;

¥* remove Z from X and output a relation scheme Y *%#

13. X « X=Z
14, write Y ;
end;

end;



Theorem 3.4: Let U be a set of attributes

and let F be a set of FD's over U.

(a) Algorithm 3.3 terminates in time
5
O(IUIT.IF]) .
{b) Algorithm 3.3 yields a lossless-join

decomposition into BCNF.
Proof.

(a) First let us count the number of times
each statement will be executed in each
iteration of the main loop. Statements U,
5, 13, and 14 will be executed only once.
Since one attribute is removed from Y
(statement 10) before the execution of the
go to statement (statement 12), statements

6, 10, 11, and 12 will be executed at most
0(lU}) times, Each time when statement 6
is true, statement 7 will be executed at
most 0(|U|) times and statements 8 and 9

will be executed at most O(IUIZ) times,
Hence in each iteration of the main loop,
statement 7 will be executed at most

0(]U{2) times and statements 8 and 9 will

be executed at most O(|U|3) times.

Now we consider the main loop. Since
one attribute is removed from X at state-
ment 13 in each iteration with the excep-
tion of the last one, the main loop
iterates at most 0(|U|) times. It is
therefore clear that statements 8 and 9

will be executed at most O(lUIq) times.
Since the execution of statement 9 is the
most time-consuming execution, and it
takes time 0({U|.|F|) (for the computation
of closure [3]), the total running time of

Algorithm 3.3 is 0(|U|°.[F]).

(b) Suppose that Algorithm 3.3 terminates
after k iterations of the main loop. For
1<izk, let Xi’ Yi' and Zi represent,

respectively, the contents of X, Y, and 2
at the end of the ith iteration of the
main loop (after executing statement 14).

From the construction of the main
loop, in each iteration with the exception
of the last one, statements 10-12 must be
executed at least once and, hence,

Zic CL(Yi-Zi) for each 1zi<k. Therefore,

Y.c CL(Y.~2.). Furthermore, Y,-2, =
i i “i i i

Yinxi. Thus, from Remark 2.7, {Yi,xi} has

a lossless join for each 1si<k. One may
observe that Y, = Xk’ and for every
1<i<k, xi = Yi+1U"'UYk' Also, Y1u...qu

= U, and from Lemma 3.1 we conclude that
{Y1,Y2,...,Yk} has a lossless join.

Furthermore, for each 1s5ic<k, we have either

lYilSZ or A ¢ CL(Yi-AB) for any pair of
distinct attributes A,B ¢ Yl' From Lemma

3.2, Yiis in BCNF for every 1s<isk.
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4. The Complexity of Depenaency Preserving
Decomposition into BCNF.

We first give a lemma which provides
a necessary condition for a decomposition
to be dependency-preserving.

Lemma 4.1:
and let T =

Let ¥ be a set 0f FD's over U
{XI,XZ,...,XkJ be a dependen-

cy-preserving decomposition over U. Let
f's W+ A be a FD in F such that B ¢ W,
If A ¢ L(f) for every £ ¢ FP-f', then

WA < Xi for some Xi€ T.
Proof. For every 1sick, let Fi be a set

of FD's over Xi such that CLF (2) =
i

F If A ¢ L(f)

for every £ ¢ F-f', then by Definition 2.5
A ¢ CLF(Y=A) for any subset Y of U such

that W ¢ ¥. Suppose that WA ¢ Xi for
every Xi e T. If A ¢ Xi’ then W ¢ Xi'
Otherwise A ¢ Xi' In either case,

A ¢ CLF (Xi=A) for every 1<ic<k. Thus
i

A ¢ R(g) for any g ¢ Fiu...uF) =

Definition 2.5, A ¢ CLG(W). But

F(W); thus by

T is not dependency preserv-
a contradiction.

CL (Z)nXi for every 2 < Xi.

G. By
rule f'
in F implies A ¢ CL

tion 2.6 (b)
ing,

Defini-

Beeri and Bernstein [3] proved that
the problem "Is there a BCNF scheme that
represents F?" is NP-hard under the
assumption that no two relation schemes
have equivalent keys. However, we will
show in Theorem 4.3 below that this
assumption is unnecessary. Furthermore,
we present an example of a relation scheme
for which the only existing dependency-
preserving decomposition into BCNF does
not satisfy their assumption.

Example 4.2: ILet U = ABCD and let F =
TAB + CD, CD + B}. Then {ABC, ABD, BCD}
is the only dependency-preserving decompo-

sition into BCNF, where AB is a key for
both ABC and ABD.

Theorem 4.3: Let F be a set of FD's over
U. The problem of deciding whether there
is a dependency-preserving decomposition
over U into BCNF is NP-hard.

Proof. To prove NP-hardness, we present a
polynomial-time reduction from the hitting
set problem, which is NP-complete (157,
and can be formulated as follows:

Given a family {V1,V2,=..,Vn} of subsets

of a set 8, one is to decide if there
exists a subset W of S such that W con-
tains exactly one element of each Vi.

Such a set W is called a hitting set.

without loss of generality, we assume that
n>1 and |V11>1 for some 1<ic<n.
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Now let U = Su{B1,...,Bn,A,C) where
B1""'Bn’ A, and C are n+2 new symbols not

in S. We shall construct a set F of FD's
over U as follows:

(a) AD = Bi for each 1<isn and for each
D e V,;
1l

{({b) ADE =+ S-DE for each pair of distinct
elements D,E ¢ Vi and for each 1<isn;

(¢) AB,...B_ =~ C;
1 n

(d) Cs = A.

This construction can easily be per-
formed in polynomial time. We claim that
there is a hitting set W <« S if and only if
there is no dependency-preserving decompo-
sition over U into BCNF.

Suppose that there is a hitting set
W c 8. It is clear that CL(AW) =

AWB1...BnC. Since |Vi|>1 for some 1sis<n,

S = W follows from the definition of
hitting set, and AW is a nonkey.

Then from Definition 2.8(b), CSA is
not in BCNF. Since A ¢ L(f) for every
f ¢ F-{CS + A}, by Lemma 4.1, for any
dependency-preserving decomposition T, we
have CSA c X for some X ¢ T. Since CSA is
not in BCNF, any such X is not in BCNF.
Thus there is no dependency-preserving
decomposition,

Now suppose that there is no hitting
set. First we list the following computa-
tions of closure, which follow immediately
from the construction of F.

(1) CL(A) = A;

(2) CL(B = B.,, for each 1<iczn;

i) i
(3) CL(D) = D, for each D ¢ S;
(4) CL(DE) = DE, for any D,E ¢ S;

(5) E ¢ CL(AD), for any pair of distinct
attributes D,E ¢ S.

A dependency-preserving decomposition
into BCNF follows from the construction of
F, and we will show that each relation
scheme is in BCNF.

(a) From (1), (2), and (3), ADBi is in
BCNF for each 1si<n and for each
D ¢ Vi H

{b) From (1), (3), (4), and (5), -ADEB is
in BCNF for each pair of distinct
elements D,E ¢ Vi’ for each B ¢ S$-DE,

and for each 1sisn;

(c) Since L(f) contains an element from S
for every f in F-{AB1...Bn + C},
AB,....B C is in BCNF;

1 n

(d) For each proper subset Y of CS, since
A e L(f) for every £ in F-{C8 » A},
we have CL(Y) = Y. For any subset
W c S, either CL{ACW)nCSA = ACW or,
if any of the rules in (b) can be
applied, CL(ACW)nCSA = CSA. Finally,
for any subset W ¢ 8, since there is
no hitting set, we have either
CL(AW)nCSA = AW or CL(AW)nCSA = CSA.
Thus, CSA is in BCNF,

This completes the proof.
5. Conclusions and Future Work

The polynomial-time algorithm for a
lossless~join decomposition into BCNF and
the NP-hardness of the problem of deciding
whether there is a dependency-preserving
decomposition into BCNF come from the
analysis of the lossless-join property,
the dependency-preserving property, and
the definition of BCNF. The techniques
developed in sections 3 and 4 can easily
be extended to solve the problems concern-
ing the decomposition into BCNF in the
presence of multivalued dependencies
(MVD's). Since a FD is a special case of
a MVD [11], by using the same construction
as in the proof of Theorem 4.3, we can
prove that the problem of deciding whether
there is a dependency-preserving decompo-
sition into BCNF under both FD's and MVD's
is also NP-hard. Furthermore, if we
modify statement 9 of Algorithm 3.3 to "if
Y-AB + A is logically implied by the given
set of FD's and MVD's then do", then we
obtain a lossless-join decomposition into
BCNF under both FD's and MVD's. Since the
membership problem (testing whether a FD
can be logically implied by a set of FD's
and MVD's) can be solved in polynomial
time [4,13], the modified algorithm still
runs in polynomial time,

The next natural question is "Is
there a polynomial-time algorithm for
lossless-join decomposition into UNF?{10,
11])". However, we know of no simple
sufficient condition for testing 4 NF
analogous to our condition in Lemma 3.2
for the testing of BCNF, and this question
is open,
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