
MICROCOMPUTERS IN THE COMPUTER SCIENCE CURRICULU M

Alfred C . Weaver
Department of Applied Math and Computer Science

University of Virginia
Charlottesville, Virgini a

IMPACT

The impact of the ubiquitous microprocessor is being felt at all levels of education and industry .

It is not only changing the technology of production, but altering the basic concepts of the design cycl e

itself . The tremendous flexibility of "programmable architecture" [1,2], or "dynamic configuration "

[3,4], dictates that hardware-standardized, software-customized modules, of which microprocessors for m

an integral part, are the way of the future . Changes of this magnitude must be reflected in ou r

computer science curriculum, else our own relevance is suspect . How to reflect this technologica l

shift in the classroom is the subject of this paper .

171

http://crossmark.crossref.org/dialog/?doi=10.1145%2F990654.990611&domain=pdf&date_stamp=1978-02-01


REALIZATIONS

A first realization is that microprocessor -

based systems are, by their very nature, hybri d

hardware/software systems . True, microcomputer s

can teach either hardware or software with only lip -

service to the other, but to do so is to abridg e

the total learning experience available . The elec-

trical engineer who denies the existence or impor-

tance of sophisticated programming techniques an d

cross-software support systems is missing the poin t

just as surely as the computer scientist who disdain s

the ability to quickly and accurately implement a

hardware device interface . The hardware/software

nature of microprocessors can be explained, utilized ,

and even exploited for the benefit of the studen t

who will soon be designing his own microprocessor -

based systems .

Secondly, microprocessors are popular . They

represent state-of-the-art technology and as suc h

benefit directly from students' natural curiosit y

and motivation . The first offering of a graduate -

level computer science course at the University o f

Virginia attracted wide-spread attention and inquiry

from students, faculty, government, and industr y

within a 150 mile radius .

A third realization is that microprocessor s

illustrate some basic computer science concept s

as well as, or even better than, a large machine .

Techniques of interrupt handling, peripheral de -

vice interfacing, direct memory access, assembl y

language programming, etc ., are easier to teach

and understand when presented in a simple environ-

ment uncluttered by the non-enlightening complex-

ities of a big machine .

Finally, the hands-on experience provided b y

low-cost microprocessor-based equipment is an in -

valuable and cost-effective teaching aid . While

lectures present a broad range of knowledge, a lab -

oratory experience permits practical applicatio n

and in-depth examination of the course material at

a very practical level .

STRUCTURE

Should microprocessor education be formalize d

as a new subject, or should the content of existin g

courses be modified to include this new material ?

This decision is as much political as it is prag-

matic ; a given department's investment in equipment

or personnel may make the question moot . However ,

in the absence of extenuating circumstances, a ne w

course offers both the greatest challenge to th e

designer as well as the maximum potential benefi t

to the student . Certainly there is no lack o f

material to fill a one-semester course : See

"Course Outline" .

Faced with a variety of educational goals an d

student backgrounds (CS majors and non-majors ,

engineers and non-engineers, graduate and under -

graduate, full-time resident and part-time indust-

rial), can a microprocessor course be structure d

to provide something of benefit to everyone? A

possible solution is the use of variable credit .

This technique enables each student to contrac t

for the amount of work he or she is willing to

perform in exchange for a proportional amount o f

academic credit . One option attempted was t o

structure the course in three parts : required

lecture, including homeworks and exams ; optiona l

lab; and optional project . Lecture-only was chose n

by those who needed or wanted only a survey know -

ledge of the subject ; typical of this category i s

the student about to graduate in a related disci-

pline who wants to round out his educational back -

ground before seeking jobs in industry . The

lecture/lab combination was popular with those who

found the hands-on experience exciting and challeng-

ing, but whose course load that semester prohibited

undertaking an additional project . Lecture -

project was useful to those who were already work-

ing in a related area, or who were contemplatin g

future research work with microprocessors ; double

benefits were obtained by applying the projec t

portion of the course to a research task . Finally ,

the lecture/lab/project combination was student -

rated as the most valuable" of the four option s

because it provided such an intense learning ex-

perience . As expected, it also demanded consider -

able (perhaps too much) time and dedication on th e

part of the student .

The remaining sections of this paper summar-

ize three semesters of experience in teaching a

microprocessor course at the University of Illinoi s

and the University of Virginia . Suggestions and

observations are made concerning course content ,

homeworks, laboratory exercises, projects, and a

suggested course outline .

172



CONTENT

Lecture content can and should be varied t o

accommodate subjects of mutual instructor-studen t

interest . One set of topics which adequately (per-

haps abundantly) filled 45 lecture hours include d

the following .

(1) Motivation . The first two lectures consisted

entirely of examples of contemporary microprocesso r

utilization . Tying the course immediately to rea l

life set a tone of relevance which enhanced studen t

motivation .

(2) In-depth example . Next was the intensive pre-

sentation of one microprocessor. (Intel 8080), in-

cluding hardware characteristics, instruction set ,

available software, and architectural advantages /

disadvantages . The chip was examined from the in -

side out, starting with its finite-state machin e

design and working outward, through its instructio n

set, to its real-world interface signals . A simple

microcomputer system using minimal component s

(microprocessor, clock, bus driver, memory, and I/ O

port) was designed on the blackboard .

(3) Manufacturer-supplied software . Everyone i n

the course would eventually program a microprocessor

and either simulate via interactive cross-softwar e

(in homeworks) or observe (in lab) the execution o f

their programs . Some time was spent describin g

the peculiarities of the main cross-software pro-

vided by the manufacturer . For the 8080, a discussion

of MAC-80, INTERP-80, FL/M, and library program s

was appropriate .

(4) Course projects . Two additional lectures wer e

devoted to discussion of acceptable course projects .

Allowable projects included hardware design, soft -

ware implementation, language design, and librar y

research . Each student was allowed to pick one o f

the proposed projects or suggest his own . No stu-

dent was allowed to continue the course until hi s

project proposal had been edited sufficiently t o

gain the instructor's approval . This is of parti-

cular importance when specifying how much hardwar e

and/or software, or how much design and/or imple-

mentation, is finally required .

(5) Comparative architecture . Other microproces-

sors were examined as in (2), but in less detail t o

prevent boredom . If the 8080 was used in (2), then

a look at two or more of the Motorola 6800, MOS

Technology 650x, Zilog Z-80, or TI 9900 would be

instructive .

(6) Support software . Similarly to (3), we ex-

amined the manufacturer-supplied resident an d

cross-software supplied for each machine presente d

in (5) . Also introduced at this point was th e

concept of "universal" cross-software, includin g

assemblers and simulators [5,6 ]

(7) Microprogramming . The theory of micropro-

gramming [7] was covered, followed by its imple-

mentation in the micro world (e .g ., Intel 3000 ,

AND 2901) . A case study of its use in a multiple-

precision arithmetic unit was presented .

(8) Real world applications . Applications, as i n

(1), were re-introduced here to reinforce motiva-

tion after mid-semester . Also, details of imple-

mentation can now be expanded . At this point th e

student has enough background to appreciate som e

technical examples, such as microprocessor use s

in industrial process control, electronic naviga-

tion, and medical instrumentation, and can appre-

ciate a case study, such as replacement of discrete

logic with microprocessor software in a periphera l

device controller .

(9) Automatic generation of software . We briefly

investigated and discussed the formal technique s

for describing digital systems and current progres s

toward automatic generation of assemblers, simula-

tors, and loaders from an architectural descrip-

tion [5,6] .

(10) Put it all together . A case study of a real

world design problem is appropriate as a fina l

topic . Important considerations include th e

specification of the problem itself, the selectio n

of an appropriate microprocessor and support hard -

ware, the actual system design and interface wit h

existing equipment, production of the residen t

software, and the hardware/software trade-off s

encountered during the design phase .

HOMEWORK S

Homeworks should enhance subjects introduce d

in lecture or encourage independent exploration o f

areas not suitable for, or time limited by, a

lecture-style presentation . Some suggestions :

(1) Research report . Conduct a library searc h

for documentation on a current use of micro -

computers . Examples : point-of-sale terminals ,

home appliances, video games .

173



(2) Hardware design . Design a microprocessor -

based system to recognize sequential input from a

numeric keypad and display same on a seven-segmen t

LED display .

(3) Software design . Write the software whic h

would turn (2) into a running machine . Assemble and

simulate using supplied cross-software .

(4) Hardware replacement . Given the functiona l

description of a simple hardware module, write a

functionally equivalent software package (subroutine )

which could replace it .

(5) Comparison of assembly language vs . high-leve l

language . Given a simple software task, implemen t

its solution first in assembly language (e .g ., MAC-

80), and then in a high-level language (e .g ., PL/M) .

Gather statistics on program development time, pro -

gram debug time, efficiency of the generated code ,

memory space required, and execution time of the fina l

code . Draw conclusions concerning the condition s

under which each type of programming is appropriate .

PROJECTS

Projects could be chosen largely at the student' s

discretion . One month into the semester a contrac t

was signed between instructor and student whic h

clearly specified what was to be accomplished . Pro-

jects, depending upon complexity, could be accomp -

lished individually or in teams of two (maximum) .

The acceptable level of complexity for a projec t

was a function of the student's level (graduate ,

undergraduate) and his background . Thus, the

selection of a project was a highly individua l

process . Some of the more interesting project s

completed included :

(1) traffic control system

(2) audio cassette interfac e

(3) acoustic digitizer

(4) building an 8080 system from the chip se t

(5) interfacing a KIM-1 to a Baudot TTY

(6) design and construction of a serial I/ O

card

(7) design of a high-level language especiall y

for micros

(8) implementation of a microprocessor -

controlled music bo x

(9) floppy disk controller (2 semesters )

(10) software for floppy disk filing syste m

(11) floating point software package

(12) controller for heating/cooling system

(13) graphic display controller

(14) design of an "optimal" microprocessor

instruction se t

(15) implementation of a Z-80 assembler and

simulato r

(16) anesthesia monitor

LABORATORY

The lab was the vehicle for implementing

topics first introduced in lecture . The hardwar e

support necessary is an assembled microcomputer

system (e .g ., IMSAI 8080) or an equivalen t

locally-developed system (e .g ., MUMS [3]) . Emphasis

was on gaining familiarity with microprocessors ,

learning their software, and interfacing thei r

hardware (in that order) . Students working in team s

of two in an open lab (lab stations were schedule d

for convenience but no minimum or maximum number o f

hours was imposed) were able to accomplish the

following six exercises :

(1) Write a simple program to create a specifi c

display pattern (e .g., a left-shifting 1) on a n

output LED register . Assemble the code by han d

and load the program in binary using toggl e

switches .

(2) Repeat (1) using a supplied cross-assemble r

and a supplied monitor for loading .

(3) Write an absolute loader for object code o n

paper tape . Include a simple teletype monitor for

commands (start, stop, restart) and check-sum erro r

detection for each load block .

(4) Design a teletype software interface using

double buffering . Implement it first using polling ,

then repeat with an interrupt-driven scheme .

(5) Design and build the hardware necessary to

interface the microprocessor to a Tektronix display ,

using two D/A converters . Demonstrate correctnes s

by running the hardware with instructor-supplie d

software .

(6) Design and implement the software packag e

necessary to accept line definitions (two (x,y )

endpoints) from a TTY and display that line on th e

CRT screen . Add a simple display file manager t o

permit definition and display of figures containin g

multiple lines .

174



COURSE OUTLINE

I . Architecture of microprocessors

1. Characteristics of microprocessors
2. Limitations implied by (1 )

3. Memories (RAM, ROM, PROM )

4. Support chips (e .g ., clocks, bus drivers ,
buffers, UARTs, interrupt and DMA con-
trollers )

5. Survey of some currently available micro -
processors (e .g ., Intel 8080, Motorol a
6800, MOS Technology 6502, Texas Instru-
ments 9900, Zilog Z-80, Intel 3000, AM D
2901 )

6. Interrupt structur e
7. Direct memory acces s

8. Complete vs . bit-slice CPU s
9. MOS vs . bipolar technolog y

10. Input/output facilities, capabilities ,
and limitation

II . Software Systems

1. Software constraints due to time and space

2. Manufacturer-supplied ROM utility program s
3. Cross-assemblers and cross-compiler s
4. Designing microcomputer software system s

5. Case study : a "universal" assemble r
6. Programming microcoded systems

III . Architecture of microcomputer system s

1. Peripheral interfacing
2. Communication s
3. Configuring a bare-bones syste m

4. Configuring a modular system (MUMS )
5. Configuring a networ k
6. Microprogramming
7. Matching the architecture to the

application
8. Choosing a "home" computer syste m

IV. Real world application s

1. Replacing random logic with software
2. Industrial process contro l
3. OEM equipmen t
4. Mass market s

LABORATORY

bones system; input/output ; communications with peri-

pherals ; communications protocols ; peripheral devic e

hardware/software interface; loaders ; downloaders ;

writing and running assembly language programs ; high -

level languages for microprocessors ; comparison o f

assembled vs compiled code .

PROJECT

The course project is expected to be a non -

trivial software, hardware, or hybrid project, chose n

individually by each student and approved by the

instructor . Projects may be cross-software system s

(e .g ., assembler, emulator, definition of an inter -

mediate text for a "universal" assembler), residen t

software systems (e .g ., peripheral device softwar e

interface, inter-processor communication, new vide o

game), or hardware development (e .g ., hardwar e

peripheral device interface, design of new micro -

processor, implementation of an industrial proces s

control problem) .

OBSERVATION S

The course style (lecture, homeworks, exams ,

lab, and project) was very well received and highl y

praised by student evaluations . The course content

was judged "exceptionally good" overall, bu t

suffered more variance in the ratings due primaril y

to the diversity of the audience . For instance ,

third-year undergraduates were "snowed" by th e

introduction of microprocessor applications t o

industrial process control, while Ph .D . candidat e

graduate students were bored by the discussing o f

microprogramming, a concept which they alread y

understood well . Limiting the diversity of th e

audience, particularly by strict enforcement of the

prerequisites, seems to be the only practica l

solution to this problem .

Persons taking the "full load" (homeworks ,

exams, project, and lab) rightfully complained o f

overwork ; all, however, were excited by the intens e

experience . Students desiring only a survey know -

ledge reported the accomplishment of that goal wit h

a minimal investment of time outside the classroom .

The lab experience was unanimously reported to b e

an essential ingredient for thorough understanding .

Most students who undertook a course project als o

elected to participate in the lab . Using teams of
Lab exercises will stress : cold start of a bare-

two in the lab (primarily a concession to th e

amount of hardware available) reduced the individua l

workload somewhat without any apparent degradatio n

in the learning experience .

No textbook was used since no one book con-

tained all the desired subject matter ; instead, a

large number of handouts throughout the semeste r

provided lecture documentation . While the use of

handouts is necessary to supplement weakly -

documented areas, one or two carefully selecte d

textbooks would have eased the burden of preparation .

Several appropriate textbooks [7,8,9,10,11] are no w

175



available .

REFERENCE S

(1) Weaver, Alfred C ., "A Graphically-Programmed ,

Microprocessor-Based Industrial Controller, "

Ph .D . Thesis, Department of Computer Scienc e

report no . UIUCDCS-R-77-865, University o f

Illinois, Urbana, Illinois 61801, May 1977 .

(2) Weaver, Alfred C ., "A Graphically-Programmed ,

Microprocessor-Based Industrial Controller, "

Proceedings of the Rocky Mountain Symposium o n

Microcomputers, Fort Collins, Colorado, Augus t

1977, p . 240-260 .

(3) Faiman, Michael, Weaver, A . C ., and Catlin, R .

W ., "MUMS - A Reconfigurable Microprocesso r

Architecture", IEEE COMPUTER, January 1977 ,

p. 11-17 .

(4) Faiman, M ., Catlin,R . W ., and Weaver, A . C . ,

"A Modular, Unified Microprocessor Syste m

(MUMS) , " Proceedings of the DISE Workshop o n

Microprocessors and Education, Fort Collins ,

Colorado, August 1976, p . 1-5 .

(5) Kominczak, Charles P ., "A Universal Cross-

Assembler", Department of Computer Scienc e

report no . UIUCDCS-R-76-803, University o f

Illinois, Urbana, Illinois 61801, May 1976 .

(6) Johnson, Gearold R ., and Mueller, Robert A . ,

"Automated Generation of Cross-System Softwar e

for Microcomputer s " , IEEE COMPUTER, January 1977 ,

p . 23-31 .

(7) Tanenbaum, Andrew S ., Structured Computer

Organization, Prentice-Hall, 1976 .

(8) Hilburn, John L ., and Julich, Paul N., Micro -

computers/Microprocessors, Prentice-Hall, 1976 .

(9) Soucek, Branko, Microprocessors & Micro-

computers, John Wiley and Sons, 1976 .

(10) Peatman, John B ., Microcomputer-based Design ,

McGraw-Hill, 1977 .

(11) Klingman, Edwin E ., Microprocessor System s

Design, Prentice-Hall, 1977 .

176


