R MICROCOMPUTERS IN THE COMPUTER SCIENCE CURRICULUM

Check for

updates Alfred C. Weaver
Department of Applied Math and Computer Science
University of Virginia
Charlottesville, Virginia

IMPACT

The impact of the ubiquitous microprocessor is being felt at all levels of education and industry.
It is not only changing the technology of production, but altering the basic concepts of the design cycle
itself. The tremendous flexibility of "programmable architecture" [1,2], or "dynamic configuration"
[3,4], dictates that hardware-standardized, software-customized modules, of which microprocessors form
an integral part, are the way of the future. Changes of this magnitude must be reflected in our
computer science curriculum, else our own relevance is suspect. How to reflect this technological

shift in the classroom is the subject of this paper.

171

http://crossmark.crossref.org/dialog/?doi=10.1145%2F990654.990611&domain=pdf&date_stamp=1978-02-01

REALIZATIONS

A first realization is that microprocessor-
based systems are, by their very nature, hybrid
hardware/software systems. True, microcomputers
can teach either hardware or software with only lip-
service to the other, but to do so is to abridge
the total learning experience available. The elec-
trical engineer who denies the existence or impor-
tance of sophisticated programming techniques and
cross~software support systems is missing the point
just as surely as the computer scientist who disdains
the ability to quickly and accurately implement a
hardware device interface. The hardware/software
nature of microprocessors can be explained, utilized,
and even exploited for the benefit of the student
who will soon be designing his own microprocessor-
based systems.

Secondly, microprocessors are popular. They
represent state-of-the-art technology and as such
benefit directly from students' natural curiosity
and motivation, The first offering of a graduate-
level computer science course at the University of
Virginia attracted wide-spread attention and inquiry
from students, faculty, government, and industry
within a 150 mile radius.

A third realization is that microprocessors
illustrate some basic computer science concepts
as well as, or even better than, a large machine.
Techniques of interrupt handling, peripheral de-
vice interfacing, direct memory access, assembly
language programming, etc., are easier to teach
and understand when presented in a simple environ-
ment uncluttered by the non-enlightening complex-
ities of a big machine.

Finally, the hands~on experience provided by
low-cost microprocessor~based equipment is an in-
valuable and cost-effective teaching aid. While
lectures present a broad range of knowledge, a lab-
oratory experience permits practical application

and in-depth examination of the course material at

a very practical level.

STRUCTURE

Should microprocessor education be formalized
as a new subject, or should the content of existing
courses be modified to include this new material?
This decision is as much political as it is prag-

matic; a given department's investment in equipment

172

or personnel may make the question moot. However,
in the absence of extenuating circumstances, a new
course offers both the greatest challenge to the
designer as well as the maximum potential benefit
to the student. Certainly there is no lack of
material to f£fill a one-semester course! See
"Course Outline".

Faced with a variety of educational goals and
student backgrounds (CS majors and non-majors,
engineers and non-engineers, graduate and under-
graduate, full-time resident and part~time indust-
rial), can a microprocessor course be structured
to provide something of benefit to everyone? A
possible solution is the use of variable credit.
This technique enables each student to contract
for the amount of work he or she is willing to
perform in exchange for a proportional amount of
academic credit. One option attempted was to
structure the course in three parts: required
lecture, including homeworks and exams; optional
lab; and optional project. Lecture-only was chosen
by those who needed or wanted only a survey know-
ledge of the subject; typical of this category is
the student about to graduate in a related disci-
pline who wants to round out his educational back-
ground before seeking jobs in industry. The
lecture/lab combination was popular with those who
found the hands-on experience exciting and challeng-
ing, but whose course load that semester prohibited
undertaking an additional project. Lecture-
project was useful to those who were already work-
ing in a related area, or who were contemplating
future research work with microprocessors; double
benefits were obtained by applying the project
portion of the course to a research task. Finally,
the lecture/lab/project combination was student-
rated as the "most valuable" of the four options
because it provided such an intense learning ex-
perience. As expected, it also demanded consider-
able (perhaps too much) time and dedication on the
part of the student.

The remaining sections of this paper summar-
ize three semesters of experience in teaching a
microprocessor course at the University of Illincis
and the University of Virginia. Suggestions and
observations are made concerning course content,

homeworks, laboratory exercises, projects, and a

suggested course outline,

CONTENT

Lecture content can and should be varied to
accommodate subjects of mutual instructor-student
interest. One set of topics which adequately (per-
haps abundantly) filled 45 lecture hours included
the following.
(1) Motivation. The first two lectures consisted
entirely of examples of contemporary MiCcroprocessor
utilization. Tying the course immediately to real
life set a tone of relevance which enhanced student
motivation.

(2) In-depth example. Next was the intensive pre-

sentation of one microprocessor (Intel 8080), in-

cluding hardware characteristics, instruction set,
avallable software, and architectural advantages/
disadvantages. The chip was examined from the in-
side out, starting with its finite-state machine
design and working outward, through its instruction
sel, to its real-world interface signals. A simple
microcomputer system using minimal components
(microprocessor, clock, bus driver, memory, and I/0
port) was designed on the blackboard.

(3) Manufacturer-supplied software. Everyone in

the course would eventually program a microprocessor
and either simulate via interactive cross-software
(in homeworks) or observe (in lab) the execution of
their programs. Some time was spent describing

the peculiarities of the main cross-software pro-

a discussion

vided by the manufacturer. For the 8080,

of MAC-80, INTERP~-80, PL/M, and library prograns
was appropriate.

(4) Course projects. Two additional lectures were

devoted to discussion of acceptable course projects.
Allowable projects included hardware design, soft-
ware implementation, language design, and library
research. Each student was allowed to pick one of
the proposed projects or suggest his own. No stu-
dent was allowed to continue the course until his
project proposal had been edited sufficiently to
gain the instructor's approval. This is of parti-
cular importance when specifying how much hardware
and/or software, or how much design and/or imple-
mentation, is finally required.

(5) Comparative architecture. Other microproces-

sors were examined as in (2), but in less detail to
(2),

MOS

prevent boredom. If the 8080 was used in then
a lock at two or more of the Motorola 6800,

Technology 650x, Zilog Z~80, or TI 9900 would be

173

instructive,

(6) Support software. Similarly to (3), we ex-

amined the manufacturer-supplied resident and
cross-software supplied for each machine presented
in (5). Also introduced at this point was the
concept of "universal" cross~software, including
assemblers and simulators [5,6]

(7) Microprogramning. The theory of micropro-

gramming [7] was covered, followed by its imple-

mentation in the micro world (e.g., Intel 3000,

AMD 2901). A case study of its use in a multiple-
precision arithmetic unit was presented.

(8) Real world applications. Applications, as in

(1), were re-introduced here to reinforce motiva-
tion after mid-semester. Also, details of imple-
mentation can now be expanded. At this point the
student has enough background to appreciate some
technical examples, such as microprocessor uses

in industrial process control, electronic naviga-
tion,

and medical instrumentation, and can appre-

ciate a case study, such as replacement of discrete
logic with microprocessor software in a peripheral
device controller.

(9) Automatic generation of software. We briefly

investigated and discussed the formal techniques
for describing digital systems and current progress
toward automatic generation of assemblers, simula-
tors, and loaders from an architectural descrip-
tion [5,6].

(10)

Put it all tcgether., A case study of a real

world design problem is appropriate as a final

topic. Important considerations include the
specification of the problem itself, the selection
of an appropriate microprocessor and support hard-
ware, the actual system design and interface with
existing equipment, production of the resident

software, and the hardware/software trade-offs

encountered during the design phase.

HOMEWORKS

Homeworks should enhance subjects introduced
in lecture or encourage independent exploration of
areas not suitable for, or time limited by, a
lecture-style presentation. Some suggestions:

(1) Research report. Conduct a library search

for documentation on a current use of micro-
f

computers, ILxamples: point-~of-sale terminals,

home appliances, video games.

(2) Hardware design. Design a microprocessor-—

based system to recognhize sequential input from a
numeric keypad and display same on a seven-segment
LED display.

(3) Software design. Write the software which

would turn (2) into a running machine, Assemble and
simulate using supplied cross—-software.

(4) Hardware replacement. Given the functional

description of a simple hardware module, write a
functionally equivalent software package (subroutine)
which could replace it.

(5) Comparison of assembly language vs. high-level

language. Given a simple software task, implement
its solution first in assembly language {(e.g., MAC-
80), and then in a high-level language (e.g., PL/M).
Gather statistics on program development time, pro-—
gram debug time, efficiency of the generated code,
memory space required, and execution time of the final
code. Draw conclusions concerning the conditions

under which each type of programming is appropriate.

PROJECTS
Projects could be chosen larxgely at the student's
discretion. One month into the semester a contract
was signed between instructor and student which
clearly specified what was to be accomplished. Pro-
jects, dependihg upon complexity, could be accomp-
lished individually or in teams of two (maximum).
The acceptable level of complexity for a project
was a function of the student's level (graduate,
undergraduate) and his background. Thus, the
selection of a project was a highly individual
process. Some of the more interesting projects
completed included:
(1) traffic control systen
(2) audio cassette interface
(3) acoustic digitizer
(4) building an 8080 system from the chip set
(5) interfacing a KIM-1 to a Baudot TTY
(6) design and construction of a serial 1I/0
card
(7) design of a high-level language especially
for micros
(8) implementation of a microprocessor-
controlled music box
(9) floppy disk controller (2 semesters)
(10) software for floppy disk filing system

(11} floating point software package

174

(12) controller for heating/cocling system

(13) graphic display controller

(14) design of an "optimal" microprocessor
instruction set

(15) implementation of a 2-80 assembler and
simulator

{16) anesthesia monitor

LABORATORY

The lab was the vehicle for implementing
topics first introduced in lecture. The hardware
support necessary is an assembled microcomputer
system {(e.g., IMSAI 8080) or an equivalent
locally-developed system (e.g., MUMS [3]). Emphasis
was on gaining familiarity with microprocessors,
learning their software, and interfacing their
hardware (in that order). Students working in teams
of two in an open lab (lab stations were scheduled
for convenience but no minimum or maximum number of
hours was imposed) were able to accomplish the
following six exercises:

(1) Write a simple program to create a specific
display pattern (e.g., a left-shifting 1) on an
output LED register, Assemble the code by hand
and load the program in binary using toggle
switches.

(2) Repeat (1) using a supplied cross—-assembler
and a supplied monitor for loading.

(3) Write an absolute loader for object code on
paper tape. Include a simple teletype monitor for
commands (start, stop, restart) and check-sum error
detection for each load block.

(4) Design a teletype software interface using
double buffering. Implement it first using polling,
then repeat with an interrupt-~driven schene.

(5) Design and build the hardware necessary to
interface the microprocessor to a Tektronix display,
using two D/A converters. Demonstrate correctness
by running the hardware with instructor-supplied
software.

(6) Design and implement the software package
necessary to accept line definitions (two (x,Vy)
endpoints) from a TTY and display that line on the
CRT screen. Add a simple display file manager to
permit definition and display of figures containing

multiple lines.

COURSE QUTLINE

I. Architecture of microprocessors

1. Characteristics of microprocessors

. Limitations implied by (1)

. Memories (RAM, ROM, PROM)

. Support chips (e.g., clocks, bus drivers,
buffers, UARTs, interrupt and DMA con-
trollers)

5. Survey of some currently available micro-

processors (e.g., Intel 8080, Motorola

6800, MOS Technology 6502, Texas Instru-

ments 9900, Zilcg Z-80, Intel 3000, AMD

2901)

Interrupt structure

Direct memory access

Complete vs. bit-slice CPUs

MOS vs. bipolar technology

10. Input/output facilities, capabilities,

and limitation

Sow N

[Neloa JaEN o)

II. Software Systems

Software constraints duec to time and space
Manufacturer-supplied ROM utility programs
Cross-assenblers and cross-—compilers
Designing microcomputer software systems
Case study: a "universal" assembler
Programming microcoded systems

[e) I 7 N OV SR

ITI. Architecture of microcomputer systems

Peripheral interfacing

Communications

. Configuring a bare~bones system

Configuring a modular system (MUMS)

Configuring a network

Microprogramming

. Matching the architecture to the
application

8. Choosing a "home" computer system

N

N o W
N

IV. Real world applications

1. Replacing random logic with software
2. Industrial process control
3. OEM equipment
4, Mass markets
LABORATORY

Lab exercises will stress:
bones system; input/output; communications with peri-
pherals; communications protocols; peripheral device
hardware/software interface; loaders; downlcoaders;
writing and running assembly language programs; high-
level languages for microprocessors; comparison of

assembled vs compiled code.

PROJECT
The course project is expected to be a non-
trivial software, hardware, or hybrid project, chosen

individually by each student and approved by the

175

cold start of a bare-

instructor. Projects may be cross-software systems
(e.qg., assembler, emulator, definition of an inter-
mediate text for a "universal" assembler), resident
software systems (e.g., peripheral device software
interface, inter-processor communication, new video
game), or hardware development (e.g., hardware
peripheral device interface, design of new micro-
processor, implementation of an industrial process

control problem).

OBSERVATIONS

The course style (lecture, homeworks, exams,
lab, and project) was very well received and highly
pralsed by student evaluations. The course content
was judged "exceptionally good" overall, but
suffered more variance in the ratings due primarily
to the diversity of the audience. For instance,
third-vear undergraduates were "snowed" by the
introduction of microprocessor applications to
industrial process control, while Ph.D. candidate
graduate students were bored by the discussing of
nicroprogramming, a conceplt which they already
understood well. Limiting the diversity of the
audience, particularly by strict enforcement of the
prerequisites, seems to be the only practical
solution to this problem.

Persons taking the "full load" (homeworks,
exams, project, and lab) rightfully complained of
overwork; all, however, were excited by the intense
experience. Students desiring only a survey XKnow-
ledge reported the accomplishment of that goal with
a minimal investment of time outside the classroomn.
The lab experience was unanimously reported to be
an essential ingredient for thorough understanding.
Most students who undertook a course project also
elected to participate in the lab. Using teams of
two in the lab (primarily a concession to the
amount of hardware available) reduced the individual
workload somewhat without any apparent degradation
in the learning experience.

No textbook was used since no one book con-
tained all the desired subject matter; instead, a
large number of handouts throughout the semester
provided lecture documentation. While the use of
handouts is necessary to supplement weakly-
docunented areas, one or two carefull% selected

textbooks would have eased the burden of preparation.

Several appropriate textbooks [7,8,9,10,11] are now

available.

REFERENCES

(1)

(2)

(4)

(6)

(7)

(8)

Weaver, Alfred C., "A Graphically-Programmed,
Microprocessor-Based Industrial Controller,”
Ph,D. Thesis, Department of Computer Science
report no. UIUCDCS-R-77-865, University of
Illinois, Urbana, Illinois 61801, May 1977.
Weaver, Alfred C., "A Graphically-Programmed,
Microprocessor—-Based Industrial Controller,"
Proceedings of the Rocky Mountain Symposium on
Microcomputers, Fort Collins, Colorado, August
1977, p. 240-260,

Faiman, Michael, Weaver, A. C., and Catlin, R.
W., "MUMS - A Reconfiqurable Microprocessor
Architecture", IEEE COMPUTER, January 1977,

p. 11-17.

Faiman, M., Catlin, R. W., and Weaver, A. C.,
"A Mcodular, Unified Microprocessor System
(MUMS) ," Proceedings of the DISE Workshop on
Microprocessors and Education, Fort Collins,
Colorado, August 1976, p. 1-5.

Kominczak, Charles P., "A Univyersal Cross-
Assembler", Department of Computer Science
report no. UIUCDCS-R-76-803, University of
Illinois, Urbana, Illinois 61801, May 1976,
Johnson, Gearold R., and Mueller, Robert A.,

"Automated Generation of Cross-System Software

for Microcomputers", IEEE COMPUTER, January 1977,

p. 23-31.

Tanenbaum, Andrew S., Structured Computer

Organization, Prentice-Hall, 1976.
Hilburn, John L., and Julich, Paul N., Micro-

computers/Microprocessors, Prentice-Hall, 1976.

Soucek, Branko, Microprocessors & Micro=-

computers, John Wiley and Sons, 1976.

Peatman, John B., Microcomputer-based Design,

McGraw-Hill, 1977.

Klingman, Edwin E., Microprocessor Systems

Design, Prentice-Hall, 1977,

176

