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Abstract: RI’DE” is a framework for building envi- 
ronments. Great emphasis has been placed on sup- 
porting changes of various kinds, such as extensions 
to existing environments and creation of new envi- 
ronments by adapting existing environments. We 
have a three-pronged approach to supporting change: 
(1) use of a central framework providing key services 
is a uniform fashion, (2) an extended object-oriented 
programming paradigm supporting fine-grained 
changes by addition of small code fragments, and (3) 
st.ructured represcnt.ation of program material facili- 
tati.ng sophisticated language-sensitive processing. 
RPJX” has been used on a daily basis for its own 
development for about three years now, and during 
that time has undergone extensive change.. This ex- 
perience has indicated strongly that our approach to 
supporting change is effective, and has ide,ntiGed ex- 
tensions to it that should make it more effective still. 
This paper describes the approach and, primarily, our 
experience. 

Successful environments are long-lived, being used by 
a number of people over an extended period of time 
for the development and maintenance of a variety of 
software systems. Developers’ tastes and styles vary. 
fiifferences in systems impost different requircmcnts 
on the environment. New techniques, new tools, new 
needs, and new hardware must be supported. Ac- 
cordingly, adaptability and extensibility are essential 
feat.ures of a modern environment. 
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RI’DE3 is a framework for building integrated, 
direct-manipulation environments. Entities manipu- 
lated by the environments are reprcscnted as objects. 
The user sees a display of objects on the screen, and 
can interact with them directly. When the cursor is 
positioned on an object, the user can issue any com- 
mand appropriate for that object, irrespective of the 
“environment” or “tool” to which the command be- 
longs. In fact, though we think and speak of multiple 
environments for convenience, all the environments 
are really part of a single, int.egrated environment. 
As the user moves to different objects, different com- 
mands become available without any explicit mode 
change or tool selection. ‘l’his makes for seamless 
integration despite a possibly wide diversity of ob- 
jects. 

A major design goal of RPDI“!” was to support adap- 
tation and extension of its environments while prc- 
serving the uniformity and integration just described. 

For approximately three years now, RI’I’>E3 environ- 
ments have been used on a daily basis by our group 
for the dcveiopment and maintenance of RPDE3 it- 
self. During this period also, two other groups in 
TBM ada.pted one of our environments to their needs. 
A great deal of change and evolution have occurred. 
The primary kinds of change and a few spcciftc ex- 
amples are: 

. ExIending func1ion. Providing grcatcr 
functionality within an existing cnvironmcnt. For 
example, we added dcf-use resolution to an edit- 
ing environment for programs, introduced 
hypertext-iikc links t.hat can IX used bctwecn ar- 

bitrary objects in existing environments, and in- 
troduced a version object that can maintain 
multiple versions of arbitrary objects. 

0 Extencihg t/w dnta domain. Lxtcnding the exist- 
ing functionality provided by an environment to 

a wider selection of data (objects). For cxamylc, 
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we adapted a structural editing environment for 
Pascal programs to structural editing environ- 
mcnts for other domains, including a specifica- 
tion language [3.], grid structure specifications 
[ 16.1, Unix(TM) d ocumentation and simple 
box-and-arrow diagrams. 

Su~porlilz~ new larzgunges, and a mix of lan- 
guages, for software development. We adapted 
the environment for programming using PC 
Pascal to the VS Pascal dialect and to C. Other 
groups within IlZM adapted it to two different 
dialects of K/l. We now have an integrated 
programming environment. supporting all these 
languages. 

InZegrating separate environments, allowing 
RI’D~~3 environments developed separately to 
be integrated after the fact.’ We integrated our 
environmenls for programming in Pascal and C 
with those developed elsewhere for dialects of 
PI.,/ 1. Though we all started from the same base, 
thcrc was considerable divergence during the 
course of development. 

Supporting new hardware/operating systems, al- 
lowing environments to be ported to new plat- 
forms. We used RI’DE” to port itself from the 
IBM PC under DOS to the PC and PS/2 under 
OS/2 and the RT under AIX. Our environments 
now run on all three platforms, and data cx- 
change among them is supported. 

Many of these changes were straightforward, con- 
firming our claim that RPDE” supports change effcc- 
tivcly. Others were more difficult, leading to insights 
and improvements that should make similar changes 
easier in future. 

This paper gives a brief overview of the RI’I>l?j 
technology for supporting change, a.nd then discusses 
our cxpcricnce with a rcprescntativc selection of the 
changes f.hat. have occurred during the life of 
RJ’1>E3. The manner in which the RPDI!” architcc- 
ture facilitated the changes is explained. Other con- 
clusions drawn from this cxpericncc can be found in 
CC;.] and [ 13.1. 

l’ecilllolagy 

Support for change in RPD11” rests on three pillars: 

0 Framework architecture. The central RJ’DE3 
framework [7.] provides a collection of impor- 
tant services to all RPDE3 environmcnt.s. These 
include an object repository, command and key- 
stroke management, display construction, infor- 
mation propagation around object networks, 
object-based mark/move/copy and an undo fa- 
cility. This reduces work in building or extend- 
ing an environment, is key to ensuring 
uniformity and integration, and hides the details 
of hardware and operating system from individ- 
ual environments. 

l Extended object-oriented technology. ,411 envi- 
ronment is built by defining object types appro- 
priate to the domain of the environment. These 
types must supply methods required by the 
RPL>IZ” framework, and they make use of the 
services provided by the framework. We use the 
standard object-oriented polymorphic method 
call, and reuse through inheritance. Ilowcver, we 
have extended the object-oriented paradigm in a 
number of ways to allow greater reuse and 
inheritance at finer lcvcls of granularity than is 
usually available. This is key to facilitating 
adaptability and extensibility, allowing most 
changes to be made by adding new code in sep- 
arate, small fragments rather than by modifying 
existing code. 

l Structured representation of programs. All pro- 
gram material, whether the system being devel- 
opcd using an RI’DE” environment or the code 
and definitions making up the RPDEn frame- 
work and object types themselves, is rcprcsentcd 
as structured objects rather than text. This 
greal.ly facilitates sophisticated language-sensitive 
processing, which is key to supporting new and 
mixed languages and language-related ftrnction. 

i~xatnplcs of how these aspects of the R1’1>173 archi- 
tecture support change will bc given in Section 3. 
Details of semantics and implementation are beyond 
the scope of this paper, but are given in a number of 
other publications [6., 7., 8., 9., IO., Il., 12., 17.1. 

I Foreign Cools, those not. using the RPD17” persistent ohjecl store, are coupled into the RPDR” environment by 

wiling import or export filters. The existing prot01ype has commands for generating compilable source text, or 

parsing existing Pascat programs. 
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Expcricnce 

This section describes our experience with a repre- 
sentative selection of instances of the various kinds 
of change listed in Section 1. 

The oldest RPDE” environment is one for Pascal 
programming using refinement. All Pascal constructs, 
such as procedures, declarations and statements, are 
rcprcsented as objects. The core of this environment 
permits editing of these objects and generation of 
textual Pascal in the PC Pascal dialect for submission 
to a compiler. A number of extensions have been 
built upon this core including def-use resolution, 
which will be further extended to full static-semantic 
checking. 

Def-use resolution was implemented by providing 
commands “definition” and “nextuse” for finding the 
definition and next use of a symbol. Both commands 
respect the scoping structure of Pa.scal. These com- 
mands were built by associating handler-s for them 
with object types that can contain symbols, such as 
expressions and statements. The ha.ndIers are meth- 
ods, implemented using structure-bound messages 
[IO.] that navigate the object representation of the 
program to find the site of the definition or next use. 
A key feature of structure-bound messages is that they 
facilitate communication between far-flung objects 
without the involvement of those objects that happen 
to be between them; default routing specifications 
control how messages navigate past uninterested ob- 
jects. Thus only objects defining scopes (such as 
procedures and modules) and objects representing 
dcclarationa and symbol tables needed to handic the 
defuse messages. In all, defuse resolution was im- 
piementcd by adding 6 command handlers, 4 message 
types, and 10 message handlers. Note tha.t addition 
of code fragments sufficed; no code had to be modi- 
fred . 

Hypertext 

gate those links. We wished to do this in a general 
way without having to make detailed modifications 
to existing objects or object types and without dis- 
rupting existing or future environment functionality, 
yet with the abi1it.y to link arbitrary objects. 

We accomplished this extension by introducing some 
new object types. “Envelope” objects can be placed 
around arbitrary objects while containing additional 
data. Linking is done by means of new “link” objects 
that are placed in the additional data fields of envel- 
opes surrounding the objects to be hnked. 

Envelopes are objects that are almost always ttans- 
parent. They achieve this transparency by passing on 
method calls unchanged to the objects they surround. 
Ifowever, they have the freedom to trap any desired 
calls, and process them before, after or instead of the 
surrounded object. For exam& the envelopes con- 
taining hypertext links handle calls to do with linking, 
usually by passing them to the link objects, but pass 
all other calls through to the surrounded object un- 
touched. Ail objects used in our environments 
maintain explicit pointers to their parents and com- 
ponents, making it possible to surround any object 
with an envelope. Envelopes thus provide a way of 
extending the functionality and even the state of an 
object without modifying the tcprescntation or code 
of the object itself. They can bc, and have been, used 
in many ways in addition to hypertext, such as to at- 
tach annotations and compilation error messages to 
objects and to record the files to which tcxtud pro- 
gram code is to hc generated. 

The hypertext extension, including cnveiopcs, was 
implemcntcd using 10 new object types. Of these 10, 
only 2 were novel enough to require building display 
or other housekeeping methods, of which 14 were 
built. The remaining operations were built using in- 
herited methods, tailored to define initialization or 
display behavior with 16 option packages. The 
hypertext extensions also called for 5 new command 
handhng methods and 5 new message handling 
methods for the 3 new message types introduced. In 
addition, the introduction of the hypertext extcnsjons 
created 8 new operations for which 23 methods were 
provided in connection with other pre-existing object 
types to simplify future extcnsioti. 

Given a number of existing environments, such as the 
environment for Pascal programtning, we desired the 
ability to establish links among objects and to navi- 
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Structural Editing Environment for Grid Specifications 

A major part of the RFD@ Pascal environment is 
support for the basic structural editing functions: 
reading and saving files, display, structural navigation, 
text entry, text locate, and so on. These functions are 
available for the set of object types making up the 
Pascal environment. Building structural editing envi- 
ronments for other domains can therefore be seen as 
extending this function to new kinds of data. This 
sect.ion discusses the case of grid structure specifica- 
tions. 

The grid [ I6.1 is a mechanism for specifying the 
structure of large, layered systems. It organizes pro- 
gram units in a two-dimensional matrix. The dimen- 
sions usually represent system component. and layer 
The syst,em components and layers (matrix rows and 
columns) are organized in hierarchies called directo- 
ries. SpecljTers and qualifiers in the directories are 
used to specify formally permitted interactions among 
units. Grid specifications are best rendered graph- 
ically. We built a structural editor for grid specifica- 
tions that represents the various components of a 
specification (matrix, directories, specifiers, etc.) as 
objects, displays them graphically and permits the 
user to edit them. 

Most of the structural editing operations are imple- 
mented centrally in the framework or in system com- 
mands (such as the “locate” command). The 
implementations call methods for object-specific 
processing. The methods are generally much simpler 
than the central code. The advantage of this standard 
object-oriented approach is that the complex func- 
tions arc automatically extended to any new object 
type that supports the simpler methods. 

Support for methods is usually prnviclcd, at least to 
sotne extent, through reuse. WC have an evcr- 
increasing library of object types, most general pur- 
pose, sotne specific to particular environments. There 
are a number of ways in which this library can be 
exploited when implementing a new type. They are 
listed here in increasing order of the amount of work 
required: 

0 Inherirance. In the vast majority of cases, a 
method can sitnply be inherited from the super- 
type. One of our object-oriented extensions, 
called options [ 8.1, greatly increases the frequency 

with which this works. A pack of options is a 
collection of constants defined and referenced by 
a method, but associated with an object type. 
They tailor the behavior of the method. It is 
often possible to inherit the code and tailor it to 
new requirements merely by changing the 
options. Such tailoring is much easier and more 
intuitive than writing code, and lends itself to a 
direct manipulation, visual interface. In the case 
of the grid environtnent, the directories were built 
entirely from subclasses of exist.ing box-like, list, 
text and link objects, tailored using options. No 
new method code was written for the directories. 

. Direct reuse. In some cases, the method associ- 
ated with the supertype is not suitable, but an- 

other method in the system is. That method can 
be named and used. As in the case of inheritance, 
tailoring can be performed using options. The 
applicability of this approach is increased by the 
association of instance variable declarations with 
methods rather than type definitions, lessening 
the dependence between the method code and 
the object representation [ Il.]. 

l Components. Most objects contain components. 
It is often possible to implement an operation 
simply by passing it on to the appropriate com- 
ponent. This leads to a design. approach in which 
an object is given functionality by giving it suit- 
able components rather than by implementing 
the functionality directly for the object itself. For 
example, specifiers in the grid environment are 
basically annotated links between directory 
nodes. We implemented them using link objects 
frotn the hypertext environment as components, 
rather than providing the specifiers with link 
functionality directly. 

When an object receives a structure-bound mes- 
sage, it can route it to any or all of its compo- 
nents easily. When a command is issued or a 
method is called, however, routing to a compo- 
nent must be done by explicit code. Our experi- 
ence has idcntilied the need for simple routing 
mechanisms in these cases also. They should not 
be difficult to implement. 

. Rework (white-box reztse). Even if a method im- 
plementation does not currently exist that can 

be tailored through options to produce the dc- 
sired result, it is often possible to find a similar 
implementation and rework it. The result might 
be a new, special purpose implementat.ion. Of- 
ten, however, the result is a more general imple- 
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rnentation that can now he tailored to both the 
old uses and the new one through options. 

The portion of the grid envir.onment that did not 

closely resemble any existing objects was the 
matrix. The approach of “building witlh compo- 
nents” was used heavily. Since most grid matrices 
are very sparse, a linked representation was used. 
This enabled dimensions to be represented as 
lists of slices, and slices as lists of entries, using 
variants of existing list objects. Much ‘of the be- 
havior of these lists was inherited, but some of 
it, especially display-related behavior, had to be 
coded. The approach to writing the methods was 
always to rework the method that would have 
been inherited. The extent of the changes varied 
considerably, but in all cases some of the original 
code was left, and using it as a starting point was 
a significant help. The matrix and ma.trix entry 
types themselves were built from scratch. Even 
here, however, existing method implementations 
were used as the starting point for each new one. 

Much of our current and future resca.rch is di- 
rected at the probletns of finding appropriate 
methods to rework [IS., 17.) and at performing 
the rework in a way that leads to reusable ab- 
stractions and that keeps track of the relation- 
ships between the fragments of code involved so 
as to cope elegantly with subsequent changes. 

In all, the grid environment was implemented using 
41 new object types. Of these 41, only 4 were novel 
enough to require building display or other housc- 
keeping m&hods, of which 36 were built. Three ot.her 
types required the building or reuse of a single method 
in addition to inherited methods. The remaining op- 
erations were built using inherited methods, tailored 
to define initialization or display behavior with option 
packages. The hypertext extensions also ca.lled for 8 
new command handling methods for the 100 new 
commands introduced, and 5 new message handling 
methods for 5 new message types introduced. 

An important issue in extending the data domain is 
whether a new type of object will fit gracefully itI ex- 
isting contexts. For example, the envelopes support- 
ing hypertext and the version objects mentioned 
earlier are int.ended for use in existing environments. 
Jf one of these objects is inserted by t.he u:scr in the 
midst of, say, a program, it must not cause the exist- 

ing environment for manipulating the program to 
break. We support the ability to UFC new objects in 

existing contexts, or to use objects in unanticipated 
contexts, primarily through: 
l Structure-bound tnessagcs, which successfully 

pass by objects that know nothing about them. 

l Use of roles [12.]. A role is a collection of oper- 
ation interfaces, and is analogous to an abstract 
type in Emerald [I .I. When specifying what kind 
of object is needed in a particular context, such 
as in a particular instance variable or parameter, 
we specify a role rather than a specific type. Any 
type that supports the role, by providing imple- 
mcntations for the operations in the role, is ac- 
ceptable. The types supporting a role can be 
widely scattered across the inhcritancc hierarchy, 
so roles are more flexible than abstract or virtual 
classes [4., 2 1.1 

. Use of standard roles. Many functions are itn- 
plemented only in terms of the operations in a 
few standard roles that are supported by all ob- 
jcct types in our system. Such functions are 
therefore universally applicable. 

. Avoiding code that queries the type of an object 
directly. Type natnes cannot be used as literals in 
the code so that objects do not. become depend- 
ent on the types of their components or con- 
tainers. Code can query role support or 
properties of objects, but these can be supported 
by multiple types. 

It should be clear from the examples above that add- 
ing new function and adding new data often go to- 
gether. Adding hypertext functiona1it.y required 
introducing a number of new object types. The grid 
cnvirontnent as built and described added no new 
function, but the next step in building a full grid en- 
vironment would be to add interaction checking. 
Most enhancements thus involve addition of some 

new object types and some new functionality. 

Program material in RI’DE3 environments is rcpres- 
ented as objects in a database rather than as col- 
lections of files. When source code is generated from 
the object representation for processing by foreign 
tools, however, it must be stored in files. We surround 
objec1.s whose source code must go in a separate file 
by an envelope called a “sourcepackage”. This envel- 
ope contains the tile name and controls the source- 
code generation process. 
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Normally, sourcepackage envelopes are visible to the 
user when browsing a program. They can create con- 
siderable clultcr, however, that is of no interest when 
one is dealing with program logic. Accordingly, we 
provide a display perspective in which the 
sourcepackages are not displayed. The user specifies 
the perspective desired by setting an environment 
variable. The al&native perspectives are implemented 
by using another of our object-oriented extensions, 
called subdivisions [9.]. Our support for method call 
can select the appropriate method to execute at call 
time based not only on object type but also on an- 
other, programmer-specified criterion. In the case of 
display-related methods, this criterion is the value of 
the perspective variable. Most objects display iden- 
tically in the default and nopackaging perspectives, so 
the nopackaging subdivision, simply inherits the de- 
fault implementations. or& the two variants of 
sourcepackage objects display differently. Even these 
do not require override methods; they inherit the code 
but set two options differently in the two subdivi- 
sions. 

Alternative perspectives have been used in like man- 
ner in other contexts, such as “browse” and 
“button” perspectives for user-interface buttons. 
Browse perspective hides the script associated wit.h 
buttons, whereas button perspective display it. The 
difference, once again, is controlled by two simple 
options. Since just display perspective is involved, the 
functionality of the buttons is not changed at all. This 
allows the user to change and test the button script 
wit.hout repeatedly changing modes. 

Further delails of perspectives and their implementa- 
tion by means of subdivisions are given in [9., 17.1. 

We adapted the J’ascal programming environment to 
environments for other procedural languages, a.nd 
then integrated these into a single mixed-language 
environment. ‘J‘his s&ion describes the evolution of 
these environments. 

Dialects of Pascal 

We ported RPDE3 from the IBM PC supporting PC 
Pascal to the RT supporting VS J>ascal. This port 
involved many of the usual porting activities, such as 
rewriting low-level layers of t.he framework. We em- 

ployed version objects at both the module and the 
detailed code level to maintain these different versions 
within a single, integrated, object representation of the 
system. The most. interesting aspect of the port, 
however, was coping with the substantially different 
dialects of Pascal. In this context, it was not sufficient 
to provide a separate environment for writing VS 
Pascal programs. We needed to be able to generate 
VS Pascal source code from our cxist,ing object rep- 
resentation of some 30,000 lines of PC Pascal code, 
and then to maintain both versions in parallel. 

Our approach was to introduce the capability to gen- 
erate both PC and VS Pascal source from the same 
objects. At a high level, this was easy to do in 
RPDE3. The generation of source code is done by 
“code-generate” methods. An initial set, highly 
option-driven, generated PC Pascal code. Uy intro- 
ducing an environment variable called “target- 
language” and subdividing the code-generate 
operation on its value, we created the ability to gen- 
erate different source code for different target lan- 
guages. It is worth noting that subdividing an 
operation in this fashion in no way invalidates exist- 
ing methods. The original methods become the de- 
fault ones, and apply to all subdivisions unless 
overridden. For those constructs that look different in 
VS Pascal, subdivision overrides were therefore 
needed. There are 60 types of objects for which code 
can be generated in Pascal, For 11 of these types of 
objects, the method for code generation was used 
unchanged and unparameterized. For the remaining 
49 types of objects, only 4 new methods were written, 
12 existing methods were employed using different 
options, and (because of the similarities in the two 
Pascals) 33 methods were employed with identical 
options. 

Generating the different dialects for structured con- 
structs like procedures, condit.ionals and loops was 
especially easy. Not so the handling of assignment 
sta.temcnts and cxprcssions. For example, different 
names arc used for the same builtins in the t.wo dia- 
lects, and the maximum length of symbol names dif- 
fcrs. A simple symbol parser and translator, invoked 
by the code-generate method of statement and ex- 
pression objects, served to deal with this. Greater dif- 
ficulties were caused by the fact that VS J’ascal is a 
weaker dialect than PC Pascal in some ways. For ex- 
ample, it does not have “short-circuit” conditionnl 
expressions, and it does not permit ciereferencing of 
the return values of functions. We provide these fea- 
tures in our environment by performing transforma- 
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tions involving temporary variables and additional 
statements. A few features, such as the PC Pascal 
“retype” function for type coercion, proved to be 
tnore difJicult to support than we thought worth- 
while. We discourage use of these features in our 
environment, requiring the user to employ alterna- 
tives if the code is to be portable. 

The features of RI’DE3 that contributed most to the 
implementation of the integrated PC/X Pascai envi- 
ronment were the structured representation of pro- 
gram material and the subdivision and option 
mechanisms. These can also be used to support lan- 
guage extensions. New objects can be defined to 
represent new language constructs. Their graphical 
syntax is specified by their display methods and 
options. Their semantics is specified by code- 
generation methods and options. 

c 

We also adapted the Pascal programming environ- 
ment to an environment for C programmi,ng. Since 
the structure of Pascal and C is quite similar, our ap- 
proach was to keep substantially the same object 
types but to generate C source code from them. Un- 
like the case of the two Pascal dialects, we do not at- 
tempt to transform assignment statements and 
expressions. The user of the C environment enters 
these in C, and they are generated unchanged. Some 
detailed changes were made to type declarations to 
take account of the different data types supported by 
C. These changes were tnade with options. 

The semantics of some constructs are different in C 
from Pascal. For example, the C “switch” allows 
control to fall through to the cases following the se- 
lected one, whereas the Pascal “case” allows exactly 
one case to be executed. LJsing t,he same construct for 
such different semantics would bc confusing to the 
user. Accordingly, we introduced a new object type 
for “switch”, available in the C environment,. We also 
allow the Pascal-style “case” to be used in the C en- 
vironment, gcnerat.ing C source code that correctly 
realizes the Pascal semantics. There are allso some 
additional constructs available in C but not in Pascal, 
such as the C looping construct. They are represented 
by 11 new object types i.n all. 

The Pascal and C environments thus share many ob- 
ject types, a great deal of code and many options, but 
there are many differences in options and some dif- 
ferences in object types. The subdivision mechanism 

is used to select which alternative to use in each case. 
In addition to the “target-language” environment 
variable mentioned above, there is also a “source- 
language” environment variable that the user can set. 
Object initialization and much option retrieval are 
subdivided on the contents of source-language. Cer- 
tain commands are specific to source-language also, 
such as the command to convert a statement to a 
switch. The RI’DE” command handler supports 
command filtering: the ability to restrict the availabil- 
ity of a command based on object-specific criteria, 
such as source-language. 

In fact, there are 64 types of objects for which code 
can be generated in C. For 11 of these types of ob- 
jects, the method for code generation was used un- 
changed and unparameterized. For the remaining 53 
types of objects, only 2 new methods were writ.ten. 
They, along with a few of the earlier code-generation 
methods, were reused 51 times with different options 
producing different behavior. 

IJialects of I’LlI 

While the RPDE3 group was enhancing the frame- 
work and various environments, two other groups 
successively built environments for two dialects of 
PI-,/l, based upon an isolated copy of our Pascal en- 
vironment. About a year after exporting the copy, 
we took the second of these PI ,/ I environments and 
reintegrated it into our system. Subdivisions were a 
major factor in the reintegration effort, allowing the 
PI ,/ 1 additions to be kept. separate from our code, and 
yet be incorporated into our system. I’hc separation 
of framework frotn object types also stood us in good 
stead. We had made substantial cnhanccmcnts to the 
framework, including porting it from one platform to 
another as described earlier. Once the PI ,I I changes 
were integraled, the environment ran successfully un- 
der the new fratncwork. 

In fact, there are 70 types of objcct,s for which code 
can be generated in the Pi.,/1 dialect. For 11 of these 
types of objects, the method for code gcncration was 
used unchanged and unparameterizcd. For the re- 
tnaining 59 types of objects, only 15 old methods 
were renamed and reintegrated. The remaining 44 
objects employed exist.ing methods, using oplions to 
provide the appr0priat.e behavior. 

Our main lesson from this experience was that it is 
not wise to allow in-place modification of copies of 
the system, because they become dinicult to dist.in- 
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guish and reintegrate a.fterwards. Rather, if a person 
or group wishes to implement environment X, it is 
better to provide a copy of the current system with x 
subdivisions defined, and with a distinguished name 
space for x types, options and methods. Implemen- 
tation of x then proceeds entirely by adding object 
types and by adding options and code in the x sub- 
divisions. I3ecause of the distinguished name space, 
most reintegration becomes trivial. 

There remain three aspects of reintegration that are 
not trivial: 

l Changes to the framework. Fortunately, most 
environment designers do not make such 
changes, and as the framework becomes more 
advanced and stable, they are needed less and 
less. I Iowever, cooperation with the controlling 
group is definitely desirable in the case of such 
changes. 

l 

. 

Changes to existing types. When this involves 
mere addition of methods, it presents no prob- 
lem. When it involves modification, however, the 
result is difficult to integrate because of possible 
clashes with parallel modifications made else- 
where. When it involves modification of the rep- 
resentation, existing instances in repositories 
becotne invalid and must be upgraded. Passing 
instance variables to methods indirectly is one 
way of alleviating this problem, as is described in 
[l i.]. 

Inappropriate creation of new types. If new types 
are created where existing ones, perhaps ex- 
tended, would suffice, it becomes difftcult to 
combine these types later. I3y that time, in- 
stances of both the old and new types exist, so 
both representation upgrading and detailed code 
integration are required. Creating new types is 
thus not an effective solution to dealing with the 
difficulty of changing existing types if recombi- 
nation is anticipated. The new and old variants 
can coexist, but result in similar material being 
represented in more than one way. 

Coordinating and integrating changes made by diffcr- 
ent groups is important in the successful reintegration 
of divergent software, as is described in C19.3. 

lowing them to import the same data declarations. 
I Iowever, data declarations differ substantially in dif- 
ferent languages. In our progratnming environtncnts, 
this was manifest as substantial differences in decla- 
ration options and commands. LJsers of the different 
environments were effectively working with diffcrcnt 
declarations even at the object level, and each could 
generate source code in only one target language. 

We unified the clecfarations across all the languages 
by producing a restricted standard suhsct of declara- 
tions that can generate successfully all the target lnn- 
guages supported. Language-specilic variants remain 
available. I>ifferent language-specific declarations for 
the same data item can be included within version 
objects discriminated on “target-language”. 

llnifying the declarations i.nvolved extensive exam- 
ination and manipulation of options. Supporting 
generation of all the target languages frotn each dec- 
laration involved supplying different code-generation 
options in the subdivision for each language. The 
language-specific variants are available through com- 
mands that are filtered according to 
“source-language”. 

Analysis of about half the RI’DE” system revealed 
that only 3% of existing declarations were not in the 
standard subset. IIalf of these were strings, which are 
treated differently in Pascal and C, and the others 
were Pascal subranges, which are not supported in C 
but can usually be rendered as the base types. This 
result encourages us to believe that the standard sub- 
set has real utility. 

The possibility of generating include files for tnultiple 
languages from the same symbol table poses a 
configuration-managetnent problem: how to name 
and where to put them. We devised conJiRuration 
description objects to be associated with source pack- 
ages, by tneans of hypertext links. They enumerate 
all the target languages that can bc generated from t.he 
contents of the package, and for each one give details 
such as path, file name prefix and extension, and ver- 
sion. 

Rclatcd Work 
Cbwnon Declarations 

In mixed-language programs, it is often necessary for 
procedures written in diffcrcnt languages to manipu- 
late the same data. This is best accotnplished by al- 

Related work falls primarily into two categories: en- 
vironment generators and object-oriented application 
frameworks and toolkits. 
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Environment generators, such as the Cornell 
Synthesizer [20.] and Ganddf [S.], follow the ap- 
proach of processing an environment definition, usu- 
ally some form of attribute grammar to generate an 
environment. Since the same genera.tor is used for all 
environments, a framework/environment split related 
to ours is achieved. Program material is us,ually re- 
presented in structured form as abstract syntax trees. 
It is usually presented to the user textually rather than 
graphically, but structured operations are supported. 

The main difference between the environment gencr- 
ators and RF’DE3 is in the manner of making exten- 
sions and adaptations. In the case of environment 
generators, this is done by modifying the environment 
definition and regenerating the environment, Since 
this is essentially a declarative approach, it stems ap- 
pealing, but it does have drawbacks. Environment 
definitions are tong and complex and often 
intertwined, especially when the att.ributes of attribute 
grammars are considered. For example, adding a new 
attribute for performing some additional checking can 
require changes to attribute equations across much 
of the environment definition. Some kinds of changes 
tend to he localkcd and easy, such as adding a new 
alternative to a syntactic construct or changing the 
unparsing scheme to support a new dialect. Others, 
however, present major problems. For example, the 
addition of constructs like hypertext envellopes or 
version objects that can be used anywhere present 
major problems. Integrating extensions made inde- 
pendently is also no simple matter. Any change 
clearly requires access to the source of the environ- 
ment definition, so that the changes can be made to 
it and the environment regenerated. 

The main advantage we claim over the environment 
generators is that our use of subdivisions, options, 
structure-bound messages and roles ma.ke extension 
and adaptation of environments easier. The changes 
can be made by adding fragments of code, often just 
a few small fragments. This does not interfere with 
existing functionality, and does not even require ac- 
cess to the source code of existing fragments. Exten- 
sions are usually independent or nearly so, so that 
integration becomes easier. 

Object-oriented application frameworks, suc’h as the 
Smalltalk Model-View-Controller [4.], and toolkits 
such as Interviews [ 14.1 and Andrew [ 2. J follow the 
object-oriented approach of growing systems by sub- 
classing. They therefore have many of the advantages 
we claim for RI’DlT” with respect, to extensibility. 

Thcrc arc some important differences, however. The 
separation between framework and domain objects is 
usually not clear-cut. The framework is usually spec- 
ified as high-level classes that are inherited by domain 
classes. This means that, though it does not have to 
be separately written, framework functionality ends 
up being m.ixcd with domain functionality. Inherited 
methods can be overridden. While this allows greater 
flexibility, it means that the framework no longer 
guarantees uniformity and that changes to the frame- 
work can have a serious effect on existing applica- 
tions. At a minimum, recompilation is required. 
Worse, user overrides might no longer work, and ex- 
isting objects might have incompatible representa- 
tions. 

Unlike the generated environments, the application 
frameworks and toolkits do not usually employ a 
structured representation of programs below t.he 
tnodulc level. The class hierarchy tends to be treated 
structurally through a hierarchy browser, but code is 
treated as text. This makes language-sensitive proc- 
essing more difficult to accomplish. Finally, our ex- 
perience has demonstrated that our extensions to the 
object-oriented paradigm are important, permitting 
greater reuse and easier tailoring than is available in 
conventional object-oriented systems. 

The research issues being pursued in connection with 
Garden [ 18.1 are similar to those of interest to us in 
building and using RI’DE 3. l3oth systems employ a 
substantial functional framework of services, with an 
object-orient definition of conceptual language struc- 
tures on top. The dcvclopers of Garden have cm- 
ployed it to explore graphical programming, the 
creation of user concept structures, and visual output. 
We have employed RPDE3 to explore ways of ex- 
ploiting the structure of professionally developed 
software to solve in-the-large programming problems. 
We have also devised and demonstrated the usefulness 
of some extensions to the object-oriented paradigm. 
RPIX3 is also successfully used for its own dcvelop- 
ment on an ongoing basis. 

Summary and Conclusions 

We have described the RI’I>E3 approach to support- 
ing change, and our experience with many different 
kinds of change as RI’IIE3 has evolved. 

Our key contribution is the three-pronged approach 
to cnvironmcnt construction: 
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The framework architecture. This permits uni- 
formity and integration despite diversity of do- 
main, and allows changes to be made to central 
services without affecting domain-related code. 
Throughout the framework, t.hc introduction of 
object-t.ype dependent controls like command 
filtering and the display construction protocols 
were used to permit flexible USC of a consistent 
point-of-view. 

Object-oriented extensions supporting fine- 
grained reuse, extension by addition, and inte- 
gration of extensions: 

. Subdivisions, permitting a single object type 
to have separate implementations of a single 
operation for different situations. New cases 
can be added without affecting existing 
cases. Defaults are inherit.ed. 

. Options, permitting inherited methods to be 
tailorcci in a simple, declarative manner. 

. St,ructurc-bound messages, pertnitl.itig com- 
mu.nicat.ion between far-flung objects with- 
out the involvement of the objects that 
happen to be between them. 

. IJsing roles and avoiding the mention of 
specific types in code. This permits the 
substitution of one object for another in any 
context provided both support the oper- 
ations required by that context. Objects can 
often be used successfully in unanticipated 
contexts. 

. Decoupling of instance variable declarations 
from type definitions, permitting wider reuse 
of method code unconstrained by the 
inheritance hierarchy. 

Structured representation of programs. This fa- 
cilitates sophisticated language-sensitive proccss- 
ing and the ability to handle multiple languages 
in an integrated fashion. 

Our cxpericncc has shown that this approach is cf- 
fcctive in supporting the many kinds of change that 
confront a modern environment, and has identified 
improvements and extensions that should make it 
more 
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