
Support for Change in RPDEa

Harold Ossher and William I-Tarrison
IBM T..J. Watson Research Center

Abstract: RI’DE” is a framework for building envi-
ronments. Great emphasis has been placed on sup-
porting changes of various kinds, such as extensions
to existing environments and creation of new envi-
ronments by adapting existing environments. We
have a three-pronged approach to supporting change:
(1) use of a central framework providing key services
is a uniform fashion, (2) an extended object-oriented
programming paradigm supporting fine-grained
changes by addition of small code fragments, and (3)
st.ructured represcnt.ation of program material facili-
tati.ng sophisticated language-sensitive processing.
RPJX” has been used on a daily basis for its own
development for about three years now, and during
that time has undergone extensive change.. This ex-
perience has indicated strongly that our approach to
supporting change is effective, and has ide,ntiGed ex-
tensions to it that should make it more effective still.
This paper describes the approach and, primarily, our
experience.

Successful environments are long-lived, being used by
a number of people over an extended period of time
for the development and maintenance of a variety of
software systems. Developers’ tastes and styles vary.
fiifferences in systems impost different requircmcnts
on the environment. New techniques, new tools, new
needs, and new hardware must be supported. Ac-
cordingly, adaptability and extensibility are essential
feat.ures of a modern environment.
Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission,
@ 1990 ACM O-89791-41 8-X/90/001 2-0218...$1.50

RI’DE3 is a framework for building integrated,
direct-manipulation environments. Entities manipu-
lated by the environments are reprcscnted as objects.
The user sees a display of objects on the screen, and
can interact with them directly. When the cursor is
positioned on an object, the user can issue any com-
mand appropriate for that object, irrespective of the
“environment” or “tool” to which the command be-
longs. In fact, though we think and speak of multiple
environments for convenience, all the environments
are really part of a single, int.egrated environment.
As the user moves to different objects, different com-
mands become available without any explicit mode
change or tool selection. ‘l’his makes for seamless
integration despite a possibly wide diversity of ob-
jects.

A major design goal of RPDI“!” was to support adap-
tation and extension of its environments while prc-
serving the uniformity and integration just described.

For approximately three years now, RI’I’>E3 environ-
ments have been used on a daily basis by our group
for the dcveiopment and maintenance of RPDE3 it-
self. During this period also, two other groups in
TBM ada.pted one of our environments to their needs.
A great deal of change and evolution have occurred.
The primary kinds of change and a few spcciftc ex-
amples are:

. ExIending func1ion. Providing grcatcr
functionality within an existing cnvironmcnt. For
example, we added dcf-use resolution to an edit-
ing environment for programs, introduced
hypertext-iikc links t.hat can IX used bctwecn ar-

bitrary objects in existing environments, and in-
troduced a version object that can maintain
multiple versions of arbitrary objects.

0 Extencihg t/w dnta domain. Lxtcnding the exist-
ing functionality provided by an environment to

a wider selection of data (objects). For cxamylc,

2x3

http://crossmark.crossref.org/dialog/?doi=10.1145%2F99277.99297&domain=pdf&date_stamp=1990-10-01

we adapted a structural editing environment for
Pascal programs to structural editing environ-
mcnts for other domains, including a specifica-
tion language [3.], grid structure specifications
[16.1, Unix(TM) d ocumentation and simple
box-and-arrow diagrams.

Su~porlilz~ new larzgunges, and a mix of lan-
guages, for software development. We adapted
the environment for programming using PC
Pascal to the VS Pascal dialect and to C. Other
groups within IlZM adapted it to two different
dialects of K/l. We now have an integrated
programming environment. supporting all these
languages.

InZegrating separate environments, allowing
RI’D~~3 environments developed separately to
be integrated after the fact.’ We integrated our
environmenls for programming in Pascal and C
with those developed elsewhere for dialects of
PI.,/ 1. Though we all started from the same base,
thcrc was considerable divergence during the
course of development.

Supporting new hardware/operating systems, al-
lowing environments to be ported to new plat-
forms. We used RI’DE” to port itself from the
IBM PC under DOS to the PC and PS/2 under
OS/2 and the RT under AIX. Our environments
now run on all three platforms, and data cx-
change among them is supported.

Many of these changes were straightforward, con-
firming our claim that RPDE” supports change effcc-
tivcly. Others were more difficult, leading to insights
and improvements that should make similar changes
easier in future.

This paper gives a brief overview of the RI’I>l?j
technology for supporting change, a.nd then discusses
our cxpcricnce with a rcprescntativc selection of the
changes f.hat. have occurred during the life of
RJ’1>E3. The manner in which the RPDI!” architcc-
ture facilitated the changes is explained. Other con-
clusions drawn from this cxpericncc can be found in
CC;.] and [13.1.

l’ecilllolagy

Support for change in RPD11” rests on three pillars:

0 Framework architecture. The central RJ’DE3
framework [7.] provides a collection of impor-
tant services to all RPDE3 environmcnt.s. These
include an object repository, command and key-
stroke management, display construction, infor-
mation propagation around object networks,
object-based mark/move/copy and an undo fa-
cility. This reduces work in building or extend-
ing an environment, is key to ensuring
uniformity and integration, and hides the details
of hardware and operating system from individ-
ual environments.

l Extended object-oriented technology. ,411 envi-
ronment is built by defining object types appro-
priate to the domain of the environment. These
types must supply methods required by the
RPL>IZ” framework, and they make use of the
services provided by the framework. We use the
standard object-oriented polymorphic method
call, and reuse through inheritance. Ilowcver, we
have extended the object-oriented paradigm in a
number of ways to allow greater reuse and
inheritance at finer lcvcls of granularity than is
usually available. This is key to facilitating
adaptability and extensibility, allowing most
changes to be made by adding new code in sep-
arate, small fragments rather than by modifying
existing code.

l Structured representation of programs. All pro-
gram material, whether the system being devel-
opcd using an RI’DE” environment or the code
and definitions making up the RPDEn frame-
work and object types themselves, is rcprcsentcd
as structured objects rather than text. This
greal.ly facilitates sophisticated language-sensitive
processing, which is key to supporting new and
mixed languages and language-related ftrnction.

i~xatnplcs of how these aspects of the R1’1>173 archi-
tecture support change will bc given in Section 3.
Details of semantics and implementation are beyond
the scope of this paper, but are given in a number of
other publications [6., 7., 8., 9., IO., Il., 12., 17.1.

I Foreign Cools, those not. using the RPD17” persistent ohjecl store, are coupled into the RPDR” environment by

wiling import or export filters. The existing prot01ype has commands for generating compilable source text, or

parsing existing Pascat programs.

219

Expcricnce

This section describes our experience with a repre-
sentative selection of instances of the various kinds
of change listed in Section 1.

The oldest RPDE” environment is one for Pascal
programming using refinement. All Pascal constructs,
such as procedures, declarations and statements, are
rcprcsented as objects. The core of this environment
permits editing of these objects and generation of
textual Pascal in the PC Pascal dialect for submission
to a compiler. A number of extensions have been
built upon this core including def-use resolution,
which will be further extended to full static-semantic
checking.

Def-use resolution was implemented by providing
commands “definition” and “nextuse” for finding the
definition and next use of a symbol. Both commands
respect the scoping structure of Pa.scal. These com-
mands were built by associating handler-s for them
with object types that can contain symbols, such as
expressions and statements. The ha.ndIers are meth-
ods, implemented using structure-bound messages
[IO.] that navigate the object representation of the
program to find the site of the definition or next use.
A key feature of structure-bound messages is that they
facilitate communication between far-flung objects
without the involvement of those objects that happen
to be between them; default routing specifications
control how messages navigate past uninterested ob-
jects. Thus only objects defining scopes (such as
procedures and modules) and objects representing
dcclarationa and symbol tables needed to handic the
defuse messages. In all, defuse resolution was im-
piementcd by adding 6 command handlers, 4 message
types, and 10 message handlers. Note tha.t addition
of code fragments sufficed; no code had to be modi-
fred .

Hypertext

gate those links. We wished to do this in a general
way without having to make detailed modifications
to existing objects or object types and without dis-
rupting existing or future environment functionality,
yet with the abi1it.y to link arbitrary objects.

We accomplished this extension by introducing some
new object types. “Envelope” objects can be placed
around arbitrary objects while containing additional
data. Linking is done by means of new “link” objects
that are placed in the additional data fields of envel-
opes surrounding the objects to be hnked.

Envelopes are objects that are almost always ttans-
parent. They achieve this transparency by passing on
method calls unchanged to the objects they surround.
Ifowever, they have the freedom to trap any desired
calls, and process them before, after or instead of the
surrounded object. For exam& the envelopes con-
taining hypertext links handle calls to do with linking,
usually by passing them to the link objects, but pass
all other calls through to the surrounded object un-
touched. Ail objects used in our environments
maintain explicit pointers to their parents and com-
ponents, making it possible to surround any object
with an envelope. Envelopes thus provide a way of
extending the functionality and even the state of an
object without modifying the tcprescntation or code
of the object itself. They can bc, and have been, used
in many ways in addition to hypertext, such as to at-
tach annotations and compilation error messages to
objects and to record the files to which tcxtud pro-
gram code is to hc generated.

The hypertext extension, including cnveiopcs, was
implemcntcd using 10 new object types. Of these 10,
only 2 were novel enough to require building display
or other housekeeping methods, of which 14 were
built. The remaining operations were built using in-
herited methods, tailored to define initialization or
display behavior with 16 option packages. The
hypertext extensions also called for 5 new command
handhng methods and 5 new message handling
methods for the 3 new message types introduced. In
addition, the introduction of the hypertext extcnsjons
created 8 new operations for which 23 methods were
provided in connection with other pre-existing object
types to simplify future extcnsioti.

Given a number of existing environments, such as the
environment for Pascal programtning, we desired the
ability to establish links among objects and to navi-

220

Structural Editing Environment for Grid Specifications

A major part of the RFD@ Pascal environment is
support for the basic structural editing functions:
reading and saving files, display, structural navigation,
text entry, text locate, and so on. These functions are
available for the set of object types making up the
Pascal environment. Building structural editing envi-
ronments for other domains can therefore be seen as
extending this function to new kinds of data. This
sect.ion discusses the case of grid structure specifica-
tions.

The grid [I6.1 is a mechanism for specifying the
structure of large, layered systems. It organizes pro-
gram units in a two-dimensional matrix. The dimen-
sions usually represent system component. and layer
The syst,em components and layers (matrix rows and
columns) are organized in hierarchies called directo-
ries. SpecljTers and qualifiers in the directories are
used to specify formally permitted interactions among
units. Grid specifications are best rendered graph-
ically. We built a structural editor for grid specifica-
tions that represents the various components of a
specification (matrix, directories, specifiers, etc.) as
objects, displays them graphically and permits the
user to edit them.

Most of the structural editing operations are imple-
mented centrally in the framework or in system com-
mands (such as the “locate” command). The
implementations call methods for object-specific
processing. The methods are generally much simpler
than the central code. The advantage of this standard
object-oriented approach is that the complex func-
tions arc automatically extended to any new object
type that supports the simpler methods.

Support for methods is usually prnviclcd, at least to
sotne extent, through reuse. WC have an evcr-
increasing library of object types, most general pur-
pose, sotne specific to particular environments. There
are a number of ways in which this library can be
exploited when implementing a new type. They are
listed here in increasing order of the amount of work
required:

0 Inherirance. In the vast majority of cases, a
method can sitnply be inherited from the super-
type. One of our object-oriented extensions,
called options [8.1, greatly increases the frequency

with which this works. A pack of options is a
collection of constants defined and referenced by
a method, but associated with an object type.
They tailor the behavior of the method. It is
often possible to inherit the code and tailor it to
new requirements merely by changing the
options. Such tailoring is much easier and more
intuitive than writing code, and lends itself to a
direct manipulation, visual interface. In the case
of the grid environtnent, the directories were built
entirely from subclasses of exist.ing box-like, list,
text and link objects, tailored using options. No
new method code was written for the directories.

. Direct reuse. In some cases, the method associ-
ated with the supertype is not suitable, but an-

other method in the system is. That method can
be named and used. As in the case of inheritance,
tailoring can be performed using options. The
applicability of this approach is increased by the
association of instance variable declarations with
methods rather than type definitions, lessening
the dependence between the method code and
the object representation [Il.].

l Components. Most objects contain components.
It is often possible to implement an operation
simply by passing it on to the appropriate com-
ponent. This leads to a design. approach in which
an object is given functionality by giving it suit-
able components rather than by implementing
the functionality directly for the object itself. For
example, specifiers in the grid environment are
basically annotated links between directory
nodes. We implemented them using link objects
frotn the hypertext environment as components,
rather than providing the specifiers with link
functionality directly.

When an object receives a structure-bound mes-
sage, it can route it to any or all of its compo-
nents easily. When a command is issued or a
method is called, however, routing to a compo-
nent must be done by explicit code. Our experi-
ence has idcntilied the need for simple routing
mechanisms in these cases also. They should not
be difficult to implement.

. Rework (white-box reztse). Even if a method im-
plementation does not currently exist that can

be tailored through options to produce the dc-
sired result, it is often possible to find a similar
implementation and rework it. The result might
be a new, special purpose implementat.ion. Of-
ten, however, the result is a more general imple-

221

rnentation that can now he tailored to both the
old uses and the new one through options.

The portion of the grid envir.onment that did not

closely resemble any existing objects was the
matrix. The approach of “building witlh compo-
nents” was used heavily. Since most grid matrices
are very sparse, a linked representation was used.
This enabled dimensions to be represented as
lists of slices, and slices as lists of entries, using
variants of existing list objects. Much ‘of the be-
havior of these lists was inherited, but some of
it, especially display-related behavior, had to be
coded. The approach to writing the methods was
always to rework the method that would have
been inherited. The extent of the changes varied
considerably, but in all cases some of the original
code was left, and using it as a starting point was
a significant help. The matrix and ma.trix entry
types themselves were built from scratch. Even
here, however, existing method implementations
were used as the starting point for each new one.

Much of our current and future resca.rch is di-
rected at the probletns of finding appropriate
methods to rework [IS., 17.) and at performing
the rework in a way that leads to reusable ab-
stractions and that keeps track of the relation-
ships between the fragments of code involved so
as to cope elegantly with subsequent changes.

In all, the grid environment was implemented using
41 new object types. Of these 41, only 4 were novel
enough to require building display or other housc-
keeping m&hods, of which 36 were built. Three ot.her
types required the building or reuse of a single method
in addition to inherited methods. The remaining op-
erations were built using inherited methods, tailored
to define initialization or display behavior with option
packages. The hypertext extensions also ca.lled for 8
new command handling methods for the 100 new
commands introduced, and 5 new message handling
methods for 5 new message types introduced.

An important issue in extending the data domain is
whether a new type of object will fit gracefully itI ex-
isting contexts. For example, the envelopes support-
ing hypertext and the version objects mentioned
earlier are int.ended for use in existing environments.
Jf one of these objects is inserted by t.he u:scr in the
midst of, say, a program, it must not cause the exist-

ing environment for manipulating the program to
break. We support the ability to UFC new objects in

existing contexts, or to use objects in unanticipated
contexts, primarily through:
l Structure-bound tnessagcs, which successfully

pass by objects that know nothing about them.

l Use of roles [12.]. A role is a collection of oper-
ation interfaces, and is analogous to an abstract
type in Emerald [I .I. When specifying what kind
of object is needed in a particular context, such
as in a particular instance variable or parameter,
we specify a role rather than a specific type. Any
type that supports the role, by providing imple-
mcntations for the operations in the role, is ac-
ceptable. The types supporting a role can be
widely scattered across the inhcritancc hierarchy,
so roles are more flexible than abstract or virtual
classes [4., 2 1.1

. Use of standard roles. Many functions are itn-
plemented only in terms of the operations in a
few standard roles that are supported by all ob-
jcct types in our system. Such functions are
therefore universally applicable.

. Avoiding code that queries the type of an object
directly. Type natnes cannot be used as literals in
the code so that objects do not. become depend-
ent on the types of their components or con-
tainers. Code can query role support or
properties of objects, but these can be supported
by multiple types.

It should be clear from the examples above that add-
ing new function and adding new data often go to-
gether. Adding hypertext functiona1it.y required
introducing a number of new object types. The grid
cnvirontnent as built and described added no new
function, but the next step in building a full grid en-
vironment would be to add interaction checking.
Most enhancements thus involve addition of some

new object types and some new functionality.

Program material in RI’DE3 environments is rcpres-
ented as objects in a database rather than as col-
lections of files. When source code is generated from
the object representation for processing by foreign
tools, however, it must be stored in files. We surround
objec1.s whose source code must go in a separate file
by an envelope called a “sourcepackage”. This envel-
ope contains the tile name and controls the source-
code generation process.

222

Normally, sourcepackage envelopes are visible to the
user when browsing a program. They can create con-
siderable clultcr, however, that is of no interest when
one is dealing with program logic. Accordingly, we
provide a display perspective in which the
sourcepackages are not displayed. The user specifies
the perspective desired by setting an environment
variable. The al&native perspectives are implemented
by using another of our object-oriented extensions,
called subdivisions [9.]. Our support for method call
can select the appropriate method to execute at call
time based not only on object type but also on an-
other, programmer-specified criterion. In the case of
display-related methods, this criterion is the value of
the perspective variable. Most objects display iden-
tically in the default and nopackaging perspectives, so
the nopackaging subdivision, simply inherits the de-
fault implementations. or& the two variants of
sourcepackage objects display differently. Even these
do not require override methods; they inherit the code
but set two options differently in the two subdivi-
sions.

Alternative perspectives have been used in like man-
ner in other contexts, such as “browse” and
“button” perspectives for user-interface buttons.
Browse perspective hides the script associated wit.h
buttons, whereas button perspective display it. The
difference, once again, is controlled by two simple
options. Since just display perspective is involved, the
functionality of the buttons is not changed at all. This
allows the user to change and test the button script
wit.hout repeatedly changing modes.

Further delails of perspectives and their implementa-
tion by means of subdivisions are given in [9., 17.1.

We adapted the J’ascal programming environment to
environments for other procedural languages, a.nd
then integrated these into a single mixed-language
environment. ‘J‘his s&ion describes the evolution of
these environments.

Dialects of Pascal

We ported RPDE3 from the IBM PC supporting PC
Pascal to the RT supporting VS J>ascal. This port
involved many of the usual porting activities, such as
rewriting low-level layers of t.he framework. We em-

ployed version objects at both the module and the
detailed code level to maintain these different versions
within a single, integrated, object representation of the
system. The most. interesting aspect of the port,
however, was coping with the substantially different
dialects of Pascal. In this context, it was not sufficient
to provide a separate environment for writing VS
Pascal programs. We needed to be able to generate
VS Pascal source code from our cxist,ing object rep-
resentation of some 30,000 lines of PC Pascal code,
and then to maintain both versions in parallel.

Our approach was to introduce the capability to gen-
erate both PC and VS Pascal source from the same
objects. At a high level, this was easy to do in
RPDE3. The generation of source code is done by
“code-generate” methods. An initial set, highly
option-driven, generated PC Pascal code. Uy intro-
ducing an environment variable called “target-
language” and subdividing the code-generate
operation on its value, we created the ability to gen-
erate different source code for different target lan-
guages. It is worth noting that subdividing an
operation in this fashion in no way invalidates exist-
ing methods. The original methods become the de-
fault ones, and apply to all subdivisions unless
overridden. For those constructs that look different in
VS Pascal, subdivision overrides were therefore
needed. There are 60 types of objects for which code
can be generated in Pascal, For 11 of these types of
objects, the method for code generation was used
unchanged and unparameterized. For the remaining
49 types of objects, only 4 new methods were written,
12 existing methods were employed using different
options, and (because of the similarities in the two
Pascals) 33 methods were employed with identical
options.

Generating the different dialects for structured con-
structs like procedures, condit.ionals and loops was
especially easy. Not so the handling of assignment
sta.temcnts and cxprcssions. For example, different
names arc used for the same builtins in the t.wo dia-
lects, and the maximum length of symbol names dif-
fcrs. A simple symbol parser and translator, invoked
by the code-generate method of statement and ex-
pression objects, served to deal with this. Greater dif-
ficulties were caused by the fact that VS J’ascal is a
weaker dialect than PC Pascal in some ways. For ex-
ample, it does not have “short-circuit” conditionnl
expressions, and it does not permit ciereferencing of
the return values of functions. We provide these fea-
tures in our environment by performing transforma-

223

tions involving temporary variables and additional
statements. A few features, such as the PC Pascal
“retype” function for type coercion, proved to be
tnore difJicult to support than we thought worth-
while. We discourage use of these features in our
environment, requiring the user to employ alterna-
tives if the code is to be portable.

The features of RI’DE3 that contributed most to the
implementation of the integrated PC/X Pascai envi-
ronment were the structured representation of pro-
gram material and the subdivision and option
mechanisms. These can also be used to support lan-
guage extensions. New objects can be defined to
represent new language constructs. Their graphical
syntax is specified by their display methods and
options. Their semantics is specified by code-
generation methods and options.

c

We also adapted the Pascal programming environ-
ment to an environment for C programmi,ng. Since
the structure of Pascal and C is quite similar, our ap-
proach was to keep substantially the same object
types but to generate C source code from them. Un-
like the case of the two Pascal dialects, we do not at-
tempt to transform assignment statements and
expressions. The user of the C environment enters
these in C, and they are generated unchanged. Some
detailed changes were made to type declarations to
take account of the different data types supported by
C. These changes were tnade with options.

The semantics of some constructs are different in C
from Pascal. For example, the C “switch” allows
control to fall through to the cases following the se-
lected one, whereas the Pascal “case” allows exactly
one case to be executed. LJsing t,he same construct for
such different semantics would bc confusing to the
user. Accordingly, we introduced a new object type
for “switch”, available in the C environment,. We also
allow the Pascal-style “case” to be used in the C en-
vironment, gcnerat.ing C source code that correctly
realizes the Pascal semantics. There are allso some
additional constructs available in C but not in Pascal,
such as the C looping construct. They are represented
by 11 new object types i.n all.

The Pascal and C environments thus share many ob-
ject types, a great deal of code and many options, but
there are many differences in options and some dif-
ferences in object types. The subdivision mechanism

is used to select which alternative to use in each case.
In addition to the “target-language” environment
variable mentioned above, there is also a “source-
language” environment variable that the user can set.
Object initialization and much option retrieval are
subdivided on the contents of source-language. Cer-
tain commands are specific to source-language also,
such as the command to convert a statement to a
switch. The RI’DE” command handler supports
command filtering: the ability to restrict the availabil-
ity of a command based on object-specific criteria,
such as source-language.

In fact, there are 64 types of objects for which code
can be generated in C. For 11 of these types of ob-
jects, the method for code generation was used un-
changed and unparameterized. For the remaining 53
types of objects, only 2 new methods were writ.ten.
They, along with a few of the earlier code-generation
methods, were reused 51 times with different options
producing different behavior.

IJialects of I’LlI

While the RPDE3 group was enhancing the frame-
work and various environments, two other groups
successively built environments for two dialects of
PI-,/l, based upon an isolated copy of our Pascal en-
vironment. About a year after exporting the copy,
we took the second of these PI ,/ I environments and
reintegrated it into our system. Subdivisions were a
major factor in the reintegration effort, allowing the
PI ,/ 1 additions to be kept. separate from our code, and
yet be incorporated into our system. I’hc separation
of framework frotn object types also stood us in good
stead. We had made substantial cnhanccmcnts to the
framework, including porting it from one platform to
another as described earlier. Once the PI ,I I changes
were integraled, the environment ran successfully un-
der the new fratncwork.

In fact, there are 70 types of objcct,s for which code
can be generated in the Pi.,/1 dialect. For 11 of these
types of objects, the method for code gcncration was
used unchanged and unparameterizcd. For the re-
tnaining 59 types of objects, only 15 old methods
were renamed and reintegrated. The remaining 44
objects employed exist.ing methods, using oplions to
provide the appr0priat.e behavior.

Our main lesson from this experience was that it is
not wise to allow in-place modification of copies of
the system, because they become dinicult to dist.in-

224

guish and reintegrate a.fterwards. Rather, if a person
or group wishes to implement environment X, it is
better to provide a copy of the current system with x
subdivisions defined, and with a distinguished name
space for x types, options and methods. Implemen-
tation of x then proceeds entirely by adding object
types and by adding options and code in the x sub-
divisions. I3ecause of the distinguished name space,
most reintegration becomes trivial.

There remain three aspects of reintegration that are
not trivial:

l Changes to the framework. Fortunately, most
environment designers do not make such
changes, and as the framework becomes more
advanced and stable, they are needed less and
less. I Iowever, cooperation with the controlling
group is definitely desirable in the case of such
changes.

l

.

Changes to existing types. When this involves
mere addition of methods, it presents no prob-
lem. When it involves modification, however, the
result is difficult to integrate because of possible
clashes with parallel modifications made else-
where. When it involves modification of the rep-
resentation, existing instances in repositories
becotne invalid and must be upgraded. Passing
instance variables to methods indirectly is one
way of alleviating this problem, as is described in
[l i.].

Inappropriate creation of new types. If new types
are created where existing ones, perhaps ex-
tended, would suffice, it becomes difftcult to
combine these types later. I3y that time, in-
stances of both the old and new types exist, so
both representation upgrading and detailed code
integration are required. Creating new types is
thus not an effective solution to dealing with the
difficulty of changing existing types if recombi-
nation is anticipated. The new and old variants
can coexist, but result in similar material being
represented in more than one way.

Coordinating and integrating changes made by diffcr-
ent groups is important in the successful reintegration
of divergent software, as is described in C19.3.

lowing them to import the same data declarations.
I Iowever, data declarations differ substantially in dif-
ferent languages. In our progratnming environtncnts,
this was manifest as substantial differences in decla-
ration options and commands. LJsers of the different
environments were effectively working with diffcrcnt
declarations even at the object level, and each could
generate source code in only one target language.

We unified the clecfarations across all the languages
by producing a restricted standard suhsct of declara-
tions that can generate successfully all the target lnn-
guages supported. Language-specilic variants remain
available. I>ifferent language-specific declarations for
the same data item can be included within version
objects discriminated on “target-language”.

llnifying the declarations i.nvolved extensive exam-
ination and manipulation of options. Supporting
generation of all the target languages frotn each dec-
laration involved supplying different code-generation
options in the subdivision for each language. The
language-specific variants are available through com-
mands that are filtered according to
“source-language”.

Analysis of about half the RI’DE” system revealed
that only 3% of existing declarations were not in the
standard subset. IIalf of these were strings, which are
treated differently in Pascal and C, and the others
were Pascal subranges, which are not supported in C
but can usually be rendered as the base types. This
result encourages us to believe that the standard sub-
set has real utility.

The possibility of generating include files for tnultiple
languages from the same symbol table poses a
configuration-managetnent problem: how to name
and where to put them. We devised conJiRuration
description objects to be associated with source pack-
ages, by tneans of hypertext links. They enumerate
all the target languages that can bc generated from t.he
contents of the package, and for each one give details
such as path, file name prefix and extension, and ver-
sion.

Rclatcd Work
Cbwnon Declarations

In mixed-language programs, it is often necessary for
procedures written in diffcrcnt languages to manipu-
late the same data. This is best accotnplished by al-

Related work falls primarily into two categories: en-
vironment generators and object-oriented application
frameworks and toolkits.

225

Environment generators, such as the Cornell
Synthesizer [20.] and Ganddf [S.], follow the ap-
proach of processing an environment definition, usu-
ally some form of attribute grammar to generate an
environment. Since the same genera.tor is used for all
environments, a framework/environment split related
to ours is achieved. Program material is us,ually re-
presented in structured form as abstract syntax trees.
It is usually presented to the user textually rather than
graphically, but structured operations are supported.

The main difference between the environment gencr-
ators and RF’DE3 is in the manner of making exten-
sions and adaptations. In the case of environment
generators, this is done by modifying the environment
definition and regenerating the environment, Since
this is essentially a declarative approach, it stems ap-
pealing, but it does have drawbacks. Environment
definitions are tong and complex and often
intertwined, especially when the att.ributes of attribute
grammars are considered. For example, adding a new
attribute for performing some additional checking can
require changes to attribute equations across much
of the environment definition. Some kinds of changes
tend to he localkcd and easy, such as adding a new
alternative to a syntactic construct or changing the
unparsing scheme to support a new dialect. Others,
however, present major problems. For example, the
addition of constructs like hypertext envellopes or
version objects that can be used anywhere present
major problems. Integrating extensions made inde-
pendently is also no simple matter. Any change
clearly requires access to the source of the environ-
ment definition, so that the changes can be made to
it and the environment regenerated.

The main advantage we claim over the environment
generators is that our use of subdivisions, options,
structure-bound messages and roles ma.ke extension
and adaptation of environments easier. The changes
can be made by adding fragments of code, often just
a few small fragments. This does not interfere with
existing functionality, and does not even require ac-
cess to the source code of existing fragments. Exten-
sions are usually independent or nearly so, so that
integration becomes easier.

Object-oriented application frameworks, suc’h as the
Smalltalk Model-View-Controller [4.], and toolkits
such as Interviews [14.1 and Andrew [2. J follow the
object-oriented approach of growing systems by sub-
classing. They therefore have many of the advantages
we claim for RI’DlT” with respect, to extensibility.

Thcrc arc some important differences, however. The
separation between framework and domain objects is
usually not clear-cut. The framework is usually spec-
ified as high-level classes that are inherited by domain
classes. This means that, though it does not have to
be separately written, framework functionality ends
up being m.ixcd with domain functionality. Inherited
methods can be overridden. While this allows greater
flexibility, it means that the framework no longer
guarantees uniformity and that changes to the frame-
work can have a serious effect on existing applica-
tions. At a minimum, recompilation is required.
Worse, user overrides might no longer work, and ex-
isting objects might have incompatible representa-
tions.

Unlike the generated environments, the application
frameworks and toolkits do not usually employ a
structured representation of programs below t.he
tnodulc level. The class hierarchy tends to be treated
structurally through a hierarchy browser, but code is
treated as text. This makes language-sensitive proc-
essing more difficult to accomplish. Finally, our ex-
perience has demonstrated that our extensions to the
object-oriented paradigm are important, permitting
greater reuse and easier tailoring than is available in
conventional object-oriented systems.

The research issues being pursued in connection with
Garden [18.1 are similar to those of interest to us in
building and using RI’DE 3. l3oth systems employ a
substantial functional framework of services, with an
object-orient definition of conceptual language struc-
tures on top. The dcvclopers of Garden have cm-
ployed it to explore graphical programming, the
creation of user concept structures, and visual output.
We have employed RPDE3 to explore ways of ex-
ploiting the structure of professionally developed
software to solve in-the-large programming problems.
We have also devised and demonstrated the usefulness
of some extensions to the object-oriented paradigm.
RPIX3 is also successfully used for its own dcvelop-
ment on an ongoing basis.

Summary and Conclusions

We have described the RI’I>E3 approach to support-
ing change, and our experience with many different
kinds of change as RI’IIE3 has evolved.

Our key contribution is the three-pronged approach
to cnvironmcnt construction:

226

The framework architecture. This permits uni-
formity and integration despite diversity of do-
main, and allows changes to be made to central
services without affecting domain-related code.
Throughout the framework, t.hc introduction of
object-t.ype dependent controls like command
filtering and the display construction protocols
were used to permit flexible USC of a consistent
point-of-view.

Object-oriented extensions supporting fine-
grained reuse, extension by addition, and inte-
gration of extensions:

. Subdivisions, permitting a single object type
to have separate implementations of a single
operation for different situations. New cases
can be added without affecting existing
cases. Defaults are inherit.ed.

. Options, permitting inherited methods to be
tailorcci in a simple, declarative manner.

. St,ructurc-bound messages, pertnitl.itig com-
mu.nicat.ion between far-flung objects with-
out the involvement of the objects that
happen to be between them.

. IJsing roles and avoiding the mention of
specific types in code. This permits the
substitution of one object for another in any
context provided both support the oper-
ations required by that context. Objects can
often be used successfully in unanticipated
contexts.

. Decoupling of instance variable declarations
from type definitions, permitting wider reuse
of method code unconstrained by the
inheritance hierarchy.

Structured representation of programs. This fa-
cilitates sophisticated language-sensitive proccss-
ing and the ability to handle multiple languages
in an integrated fashion.

Our cxpericncc has shown that this approach is cf-
fcctive in supporting the many kinds of change that
confront a modern environment, and has identified
improvements and extensions that should make it
more

Refcrcnccs

1. I?lack A., Iiutchinson N., .Iul E., Levy M., Carter
L., Distribution and Abstmct Types in Emerald,

2. norenstein, Nathaniel S., Multimedia Applica-
tions Development with the Andrew Toolkit,
Pentice I-Iall, 1990. ISBN 0- 13-036633 1.

3 . . Fern K., “Mondrian:
Graphical Specification
ming l’,nvironment”,
Massachusetts Institute
19X8.

A Two-Dimensional
and Design Frogram-

Master’s thesis,
of Technology, May

4. Goldberg A., Robson D., SmaIltalk-80, The
Language and Its Implementation, Addison
Wesley, Reading, Ma., 1983.

5. I-Iabermann A. N., Notkin D., Gandalf: Software
Development Environments, 11X1%, Transactions
on Software Engineering, December 1986, pp.
1117-1127.

6. Ilarrison W., Building Extendible Tools and
Applications From Small Fragments, 113M Re-
search Report RC 14533, March 1989.

7. IIarrison W.H., The RI’DE3 Environment - A
Framework for Integrating Tool Fragments,
IERII Software, November 1987.

8.

9.

IO.

11.

12.

13.

Ilarrison W., RPIX13 - An Environment
Framework for Integrating Tool Fragments,
IBM Research Report RC 12646, April 1987.

IIarrison W. and Ossher H., Subdivided Froce-
durcs: A Language Extension Supporting
Extensible Programming, Proceedings of the
IEEE Computer Society 1990 International
Conference on Computer Languages, March
1990.

Harrison W. and Ossher H., Structure-bound
Messages, IBM Research Report RC 15539,
March, 1990.

I-larrison W. and Ossher I-I., Attaching Instance
Variables to Method Realizations Instead of
Classes, IBM Research Report RC 15538,
March, 1990.

IIarrison W., Ossher I I., Checking Evolving
Interfaces in the Presence of Persistent Objects,
Il3M Research Report RC 15520, February,
1990.

IIarrison W., Shilling .I., and Sweeney P., Good
News, Bad News: Experience building a Soft-
ware Development Environment t Jsing the
Object-Oriented Paradigm, Proceedings of the
1989 Conference on Object-Oriented Program-

IEEE Transactions on Software Engineering,
Vol. SO13 No. I, .lanuary 1987, pp. 65-76.

227

ming: Systems, Languages, and Applications,
October 1989.

14. Linton M., Vlissides .J., Caldcr I’., Composing
IJser Interfaces with Interviews, IEE~E Com-
puter Magazine, February, 1989.

15. Maarek Y. and Smadja F., Full Text Indexing
Based on Jxxical Relations. An Application:
Software Libraries, Proceedings of SIGIR ‘89,
12th International Conference on Research and
Development in Information Retrieval, June
1989.

16. Ossher IT, A Mechanism for Specifying the
Structure of Large, Layered Systems, in Bruce
Shriver and Peter Wegner, editors, Research 1%
rections in Object-Oriented Programming, pp.
219-252, MIT Press, 1987.

17. Ossher II., Multi-Dimensional Organization and
Browsing of Object-Oriented Systems. I’ro-
ceedings of the ICEI? Computer Society 1990

International Conference on Computer Lan-
guages, March 1990.

18. Rciss S.,Working in the Garden ITnvironment for
Conceptual Programming, IEJZ Software, No-
vember 1987.

19. Reps T., Ilorwitz S., I’rins J., Support for Inte-
grating Program Variants in an Environment for
Programming in the I,arge, I’rocecdings of the
International Workshop on Software Version
and Configuration Control, Tcubner Verlag,
Stuttgart, .January 1988.

20. Reps T., Teitelbaum T., The Synthesizer Gen-
erator, Proceedings of ACM
SlGSOF’I‘/SIGI’I,AN Symposium on Practical
Software Development Environments, April
1984, pp. 42-48.

21. Stroustrup J3., The C + + Programming Ian-
guage, Addison Wesley, Reading, Ma., 1986.

228

