
Volume Probes : Interactive Data Exploration on Arbitrary Grid s

Don Speray
The University of Texas at Austin, Dept . of Computer Sciences

The Computational Mechanics Company, Inc .

Steve Kennon
The Computational Mechanics Company, Inc .

Abstract

A taxonomy of computational grids used in scientifi c
and engineering practice is presented and a techniqu e
for cutting them by, and displaying data on, 2D surface s
is developed . When sliced by a surface, these grids giv e
rise to a graph G(C,F) where C, the nodes, are the inter-
sected cells and F, the arcs, are their connectivity acros s
faces . Starting from any cell known to be intersected b y
the surface (a seed), G is traversed breadth-first and i s
constructed locally on the fly, that is, only the spread-
ing "front" explicitly exists at any time . Only sliced
cells are visited, shared computed values such as edg e
intersections are passed to neighbors, and most of th e
geometric work is done via table lookup . A seed cell i s
found by fence-hopping from any cell to a distinguished
point on the surface .

This means of slicing grids is then utilized in an effectiv e
visualization tool . Concentrating on planar surfaces ,
local coordinate systems are defined for constructin g
clipping windows and linear transformations within th e
planes which further reduces display time and allows
effects such as zooming within the windows . Several
of these planar windows are then organized into vari-
ous objects, called probes, that can exploit the mind' s
"retinal memory" when repeatedly swept through amor-
phous data .

CIt Categories and Subject Descriptors : 1.3 . 3
[Computer Graphics] : Picture/Image Generation –
Display algorithms ; I .3.5 [Computer Graphics] :
Computational Geometry and Object Modeling – Geo-
metric algorithms ; I .3.6 [Computer Graphics] : Meth-
odology and Techniques -- Interaction Technique s

Additional Keywords :

	

slicing, post–processing ,
probes, retinal memor y

Permission to copy without fee all or part of this material is granted provided that the copie s
are not made or distributed for direct commercial advantage, the ACM copyright notice and th e
tide of the publication and its date appear, and notice is given that copying is by permissio n
of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission .

1990 ACM 0-89791-4 1 7-1/9 0/00 1 210005 5 1 .50

Introductio n

Slicing will remain one of the fastest volume displa y
methods for scalar fields for the same reason that it com -
plements other common techniques . It shows a limite d
(one might say infinitesimal) subset of the volume pe r
slice and displays the full range of data existing there .
Contrast this with contouring or ray casting where a
limited range of data is shown throughout the full vol-
ume. These techniques benefit from a priori knowledge
of the data for selecting contour or opacity values, say ,
to arrive at the desired image . Since slices can be gen-
erated quickly, data exploration with slicing would be a
useful first step in many analysis regimens .

In many applications, however, these other methods are
inadequate or inappropriate . Choosing a set of distin-
guished values to display may be undesirable and i t
doesn't take many nested colored transparent surface s
before confusion ensues. They also suffer when nois e
or high frequency behavior is present in the data nea r
values of interest, showing up as "fragmentation" (float-
ing gravel), confusing surface classification algorithms ,
or simply taking longer to render . Acquired data i s
rarely smooth and computational results are seldom a s
smooth as one wishes (especially in modeling turbulenc e
[7] I) . Slicing is less susceptible, but not immune, t o
these problems. It is hard to imagine comprehensibl e
3D versions of the gas jet displays of Norman [10] an d
Winkler [9] that attempt to convey an equivalent leve l
of information .

Another issue is the time it takes to ray-cast a volume ,
or trace out a complete contour and photorealisticall y
render the result . There is a place in a researcher' s
armamentarium for simple and fast display, especiall y
in light of the fact that these methods may be slower i n
the context of the grids to be discussed .

Finally, planar slices open up volume data analysis t o
researchers without late-model workstations . The re-
sults may be displayed in 2D with line countours or fille d
polygons, perhaps accompanied with a low bandwidt h
3D display to orient the slice in the volume .

Computer Graphics • Volume 24 • Number 5 • November 1990/5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F99307.99310&domain=pdf&date_stamp=1990-11-01

We further believe that slicing can be effective in show-
ing total data behavior when several slices sweep th e
volume in concert and quickly enough to build and re-
inforce a mental image . We begin by discussing the grids
in use today, follow with an efficient algorithm for slic-
ing them, and end with an application of the algorithm
that satisfies most of the issues raised .

Computational Grids for Graphi-
cists

The following taxonomy of grids will suffice for our dis-
cussion ; see, for example, [1, 11, 14] for more informa-
tion . They are presented in order of increasing general-
ity (and complexity) . With each type is the required in-
dexing to find a point's world coordinates . Neighborin g
points delineate subvolumes known as cells or elements .

cartesian (i, j, k)

This is typically a 3D matrix with no intende d
world coordinates, so subscripts map identicall y
to space . If the cells are small and numerous (as
to be almost atomic in practice, like 2D pixels) ,
then it is known as a voxel grid ; however, th e
term is often loosely applied .

regular (i * dx, j * dy, k * dz)

Cells are identical rectangular prisms (bricks)
aligned with the axes .

rectilinear (x[i], y[j], z[k])

Distances between points along an axis are arbi-
trary . Cells are still rectangular prisms and axis -
aligned. See figure 1 for a simple 2D example .

structured (x[i, j, k] y[i, j, k], z[i, j, k])

This type, also known as curvilinear, allows non-
boxy volumes to be gridded . Logically, it is a
cartesian grid which is subjected to non-linea r
transformations so as to fill a volume or wrap
around an object . Cells are hexahedra (warpe d
bricks) . These grids are commonly used in com-
putational fluid dynamics (CFD) . See figure 2 .

block structured (xb[i, j, k], yb [i, j, k], zb[i, j, k])

Recognizing the convenience of structured grids ,
but the limited range of topologies that they han-
dle, researchers may choose to use several struc-
tured grids (blocks) and sew them together to fil l
the volume of interest .

Figure 1 : Rectilinear

unstructured (x[i], y[i], z[i])

Unlike the previous types, where connectivity is
implicit, there is no geometric information im-
plied by this list of points and edge/face/cell con-
nectivity must be supplied in some form . Cells
may be tetrahedra, hexahedra, prisms, pyramids ,
etc ., and they may be linear (straight edges, pla-
nar faces) or higher-order (eg . cubic edges, wit h
two interior points on each edge) . Tetrahedral
grids are particularly useful because they allow
better boundary fitting, can be built automati-
cally, and are often simpler to work with, graph-
ically . Unstructured grids are standard in finite -
element (PEA) and finite-volume analysis (FVA)
and are becoming common in CFD . See figure 3 .

hybri d

It may occasionally be desirable to use structured
and unstructured grids together, putting eac h
where their fitting and computational strength s
are most beneficial . See figure 4, but note tha t
the structured layer is exaggerated . At this scale ,
it would appear as a thick black line .

In addition to the three coordinates, there may be sev-
eral physical quantities computed at each point . The
size of grids can range from a few thousand element s
for simple PEA problems to a several million for com-
plex CFD studies and the trend in CFD is to use grids
that challenge each new generation of supercomputer .

Computational grids are designed to minimize numeri-
cal error and this usually means many small cells are lo-
cated where "interesting things" happen in the volume .
Unfortunately, a fixed grid must anticipate where thes e
occur throughout the duration of a time-varying phe-
nomenon and the result is a dense grid requiring mor e

6/Computer Graphics • Volume 24 • Number 5 • November 1990

Figure 2 : Structure d

Figure 3 : Unstructure d

Figure 4 : Hybrid

Figure 5 : Simple 3D structured gri d

computation than might he necessary at any given tim e
step . Consequently, adaptive refinement of grids is be -
coming more popular .

Another means to reduce error in unstructured grid s
is to use higher-order isoparametric elements . These
shape functions and cell geometries also permit larger ,
hence fewer cells . An analysis code using them woul d
supply the functions for performing interior interpola-
tion, which involves solving several simultaneous non-
linear equations . It is reasonable to place the burden
of such interpolation on the analysis code, which coul d
refine an element into a number of smaller linear el-
ements for display, or provide a simple mechanism t o
do so, and we will assume this . Incidentally, iterative
techniques are used for this, even for the trilinear case .
For rectilinear grids trilinear interpolation is equivalen t
to seven linear interpolations, whereas this is no longe r
true for general hexahedra, and iterative methods lever -
age the work to compute one point for quick convergenc e
at nearby points .

In CFD, grids extend beyond the region of study solel y
to eliminate boundary-induced numerical artifacts i n
the results, so much of the volume may be of no inter-
est at all, though general features are grasped by seeing
its entirety . On the other hand, quite dramatic behav-
ior can occur in small, tightly meshed regions . Thi s
grid-driven changing scale of focus is characteristic of
interactive CFD graphics [12] .

The 3D grid in figure 5 is used for later illustration of
various aspects of the slicing algorithm . This is a struc-
tured spherical coordinate grid over a hemisphere wit h
latitudes near both poles missing . It contains hexahe-
dral cells and has a non-convex boundary consisting of
the inner sphere, the polar cones, two "wings" of con-
stant longitude, and an outer sphere which is not drawn .
A few inner grid surfaces of constant longitude and con-
stant latitude are shown .

Computer Graphics • Volume 24 • Number 5 • November 1990/7

It is the intention of this section to raise the literacy o f
the graphics community about what is encountered i n
scientific and engineering practice. Only the final fou r
grid types handle arbitrary volumes and are the most i n
need of interactive display techniques . It is hoped tha t
more graphics researchers will find computational flui d
dynamics and finite-element analysis to be sources o f
interesting challenges . A source of ideas in CFD migh t
be further generalizations and idealizations, as are par-
ticle traces and flow ribbons, of what is actually don e
in windtunnels [8] .

Slicing

Slicing amounts to identifying intersected cells and dis-
playing data within the region of intersection of eac h
with the surface . Our goal is to slice any grid with user-
defined surfaces at any position and orientation in th e
volume .

The orderliness of a grid and the shape of the surface ,
of course, have an impact on finding intersected cells .
This is important since relatively few cells are actu-
ally cut . For example, a voxel grid sliced by the plan e
ax + by + cz + d = 0 has sliced cells with the followin g
points as vertices :

(i , j, L—(ai + bj + d)/c]), (i , j, [— (a
.i
+ bj + d)/c])

This is an over-simplified characterization of sliced cells ,
but it can be seen that speed is achieved by directly
computing cell locations and by-passing a search .

With a structured grid it is common to fix one subscrip t
and display the resulting surface, allowing for interme-
diate positions by using a non-integral "subscript" an d
interpolating. This is fast because it slices the 3D array
(in IJK space) with a plane parallel to one of the sub-
script planes . Of course, the shape and position of the
slice follow the grid in world coordinates, as with th e
inner surfaces in figure 5 .

Others have sliced unstructured grids but have used ex-
haustive search of the grid for intersected cells [4, 5, 13] .
The present technique avoids a search by utilizing cel l
connectivities and the continuity of the surface to follo w
the surface through intersected cells . The emphasis in
this paper is on the issues of determining the intersec-
tions and not on how one might display the results .

A cutting surface may be either open or closed, dividin g
space into two parts . Let the surface be defined by the
characteristic function

S(x, y, z) —

	

1 if (x, y, z) is in the positive half space
0 otherwise

Figure 6 : Surface polygon s

Surfaces are assumed to be approximately planar withi n
cells for the purposes of determining edge and face in-
tersections, that is, faces may be cut only once. This
assumption also places a requirement on cell faces : ide-
ally, faces would be planar, but are often only approx-
imately so . In practice, nearly-planar faces have no t
been a problem ; further cell refinement is possible, per-
haps at the cost of interior interpolation .

As in marching cubes [6], each vertex of a cell is assigne d
a bit position within an index and S(x, y, z) provides
the bit value . This index identifies, in a precompute d
table, the intersected edges and faces in polygon order .
In our implementations, we deal only with tetrahedral
and hexahedral cells . The table of 14 cases for tetrahe-
dra was built by hand. The hexahedral table was buil t
by software that inspected each of the 254 candidat e
cases by walking across faces, following edge intersec-
tions, until an impossible or disallowed situation was
encountered . There are 63 unique valid configurations
and each appears twice in the table because flipping bit s
makes no difference . The table was verified by using th e
I-lo-Kashyap procedure [2] to linearly separate the ver-
tices of a cube and by checking the twelve extra cases ,
due to twisting, by hand . These tables could be used t o
verify the integrity of a grid by sweeping it with a plan e
to cut cells and seek impossible vertex configurations .

Given a sliced cell, its table entry lists the faces to move
through to follow the surface . Except for the first "seed "
cell, then, the search is table-driven . The following sec-
tion will deal with finding this seed .

Intuitively, a cutting surface is covered by a network o f
polygons resulting from being cut by cell faces . An ex-
ample is figure 6, which shows a nearly horizontal plan e
cutting the sample grid . (Ignore the heavy rectangle, fo r
now .) The dual graph of the network is G(C,F) wher e
C, the nodes, is the set of polygons (intersected cells, in
3D) and F, the arcs, are their connectivities across edge s
(cell faces, in 3D) . A breadth-first traversal of G, start -

8/Computer Graphics • Volume 24 • Number 5 • November 1990

ing from the seed, is appealing for three reasons . First ,
only the nodes on the traversal front need to be know n
so G may be built locally and on the fly . Second, it al -
lows maximum sharing of computed results across face s
since a cell's "more distant" neighbors are all added t o
the front at the same time . Finally, rules to terminate
the traversal, such as clipping on the cutting surfac e
or reaching a threshold value in the data, are easy to
implement .

The traversal is performed using a queue, initialized
with the seed. In each cell entry are the S values fo r
each vertex, interpolated values along each intersecte d
edge, pointers to entries of neighboring cells (which als o
serve as face markers), bitmaps to tell what info is cur-
rently known, and a unique id . The queue head (current
cell) is processed as follows :

1. compute missing S values and do the lookup

2. compute missing edge intersections, for both spa-
tial and data value s

3. for each sliced unmarked face with an unqueue d
neighbor, append the neighbor to the queu e

4. for all neighbors in the queue, pass shared infor-
mation and mark their adjoining face pointer s o
as to ignore the current cell when they queue their
neighbors .

5. output display info

The potentially time-consuming part is searching th e
queue for neighbors in steps 3 and 4 . A cell may have
several "closer" neighbors, any one of which will process
first and queue it . In general, the others have no way o f
knowing this has happened .

The simplest solution, when memory is available, is t o
mark each queued cell in an auxilliary list with the cur -
rent slice number and its entry's address . This list has
a slot for each cell in the grid and uses whatever cell ad -
dressing is natural to the grid . Searching is eliminate d
by comparing a cell's recorded slice number with th e
current slice . The list need be reset only when the slice
number wraps around, relative to the word-length allo-
cated for them. With this list, face marking in step 4 i s
not required since this list serves as a global memory o f
processing .

Alternatively, the queue may be partitioned into eigh t
smaller lists by noting that the seed cell divides a vol-
ume into octants . Each cell is located by either the
world coordinates of a distinguished vertex or, for struc-
tured grids, its subscripts . These locate it relative t o
the seed and determine its octant list . This partition-
ing only affects searches through the single queue . Since

Figure 7 : Traversal generation s

the traversal front surrounds the seed, at least four o f
these lists become populated and they assist in reducing
queue searching .

The search time may be reduced further by exploitin g
the structure of the queue (and each octant list) . De-
fine generation G k + 1 to be the set of newly-encountere d
neighbors of all cells in Gk , where Go is the seed cell .
Unfortunately, in general, these sets are not disjoint .
At any moment the queue consists of a shrinking pop-
ulation of G k at the front and a growing population o f
Gz+1 at the rear . If a neighbor is already on the queue ,
it is more likely to he in G~.+1 so the search begins there .
It is guaranteed to be there for a cartesian grid and a
planar surface, and G k is the set of sliced cells wit h
Manhattan distance k from the seed . Figure 7 is a rep-
resentation of the traversal process . A cutting plane
is nearly parallel to the rear boundary "wings" and the
seed cell is at the lone white polygon . Each generation
is marked by a different shade of gray, modulo a smal l
number of shades . The nature of the spreading fron t
shows clearly .

Informally, with a grid of N cells, the queue length i s
D(N 1/3), since queued cells form the circumference of
an area on the surface .

Clipping

Limiting the cutting surface to a neighborhood of th e
hot spot can focus the user's attention by eliminatin g
irrelevant parts of the volume and, by terminating th e
graph traversal, their computation time . Further, if th e
shape of the clip region can he controlled, then several
such clipped surfaces may be combined into objects that
convey more information than a single surface . A later

Computer Graphics • Volume 24 • Number 5 • November 1990/9

Figure 8 : Clipped windo w

section describes such objects that assume rectangula r
clip windows on planar surfaces .

When a surface cuts a cell's face and enters a neighbo r
cell, the intersection becomes an edge on the surfac e
which separates two polygons . If the edge is completely
clipped away, the neighbor is not queued . If the edg e
is partially clipped then the window-edge endpoint of
the edge lies on the face of a cell and linear interpola-
tion between the original endpoints provides its value .
This is Gouraud, not bilinear, interpolation and is quit e
sufficient . The four corner points of a rectangular cli p
window are interior points of cells and the analysis code
can be called on to compute their values . Depending on
the grid resolution and needs, the four corner polygons
could be ignored, eliminating significant computationa l
machinary for four points, out of perhaps many thou -
sands . Figure 8 shows clipping applied to figure 6 an d
the curtailment of the traversal .

Seeding the Slice

A target point (hot spot) on the surface serves to fin d
the seed cell and any solution to the point-containmen t
problem will work . We don't accelerate the search b y
preprocessing because in the context of interactive slic-
ing, our method is not a bottleneck . It amounts to line-
of-sight fence-hopping (face-hopping) from a known cel l
to the point and works well when the surface and its ho t
spot move smoothly through the grid .

Starting at a point in any cell (the previous seed is an
ideal choice), a line is constructed with parameter t to
the target point such that t = 0 is the start point and
t = 1 is the target . Next, intersections of this line wit h
each face of the start cell are computed in terms of t .
Faces are treated as having infinite extent . The line
exits the cell on the face with the least positive value o f
t . Unlike ray tracing, we don't care if a face is actually

intersected - we know that one of them is .

The line enters the adjoing cell and the process repeats .
Eventually, a cell is reached where all candidate inter -
sections have t > 1 and this is the seed . For the second
and subsequent cells, the new start point may be repo-
sitioned away from the edges of the entry face to avoi d
looping around edges or vertices . This strategy als o
adds robustness in case of nearly-planar faces .

As a cutting surface is driven interactively by a user ,
the hot spot moves incrementally through the grid an d
little work is required to update the seed cell . When
the hot spot is driven "out of sight" (the line of sigh t
exits, then re-enters, a non-convex grid domain) of th e
starting point or out of the grid, we apply the heuristi c
of starting over from another region of the grid . For
example, in a structured grid the center cell on eac h
of the six grid boundaries usually provide good vantag e
points . If it still isn't located, it is reasonable to assume
it is out of the grid . One could define alternate ho t
spots, refuse to move it out of the grid, or simply ask
the user to return it .

Probes

We now turn to an application of the slicing algorith m
which uses plane surfaces . A probe is a collection o f
planar cutting surfaces, refered to as sheets to imply
they may have limited extent . It has a local coordinat e
system defined by the linear transformation to_probe
which maps world coordinates to the probe's . Likewise ,
each of its sheets, s, has a local coordinate system de -
fined by to_sheets which maps from the probe to th e
sheet . A sheet's cutting surface is its z = 0 plane whic h
conveniently defines the two halfspaces for the charac-
teristic function S. Its origin is a simple choice for ho t
spot and the world coordinates are the bottom row (as-
suming transforms post-multiply points) o f

(to_probe * to_sheets) - 1

Each sheet also has a special-effects transform fxs an d
a map to the unit cube to_cubes . fxs provides zoom-
ing and panning (parallel or normal to the by plane) .
to_cubes maps a selected region of the sheet containin g
the hot spot into the unit cube for clipping, althoug h
for this application clipping applies to the unit square .
The complete transformation from world coordinates t o
each sheet i s

to_probe * to_sheets * fxs * to_cube s

The inverse mapping i s

(to_probe * to_sheets * to_cubes) - 1

10/Computer Graphics • Volume 24 • Number 5 • November 1990

Figure 9 : Paddlewheel prob e

and is just a modeling transform to the host graphics
system, that is, there is no execution overhead . fxs doe s
not participate in the inverse so that its effects remain
for display .

The entire probe is driven by manipulating onl y
to_probe. Probes are designed by specifying each
to_sheets . The simplest probe has a single sheet and ,
with its varying clip window and zooming, resembles a
magnifying glass roaming through the data . Two othe r
designs are

trihedral : This probe uses three orthogonal sheets an d
provides good three-dimensional information nea r
their intersection . Such "corner" views are com-
mon with voxel-based tools, but this probe is eas-
ily rotated to any orientation .

paddlewheel: Several sheets touch along an axis an d
are separated by at least 60°, less if transparency
is used to avoid obscured sheets . When rotated
about the axis, the paddlewheel sweeps out a re-
gion . A complete revolution may be faked by fil m
looping the sweep between consecutive vanes. Fig-
ure 9 shows a 3-vane paddlewheel .

The potential for probes lies in the speed in which a
volume may be swept by multiple surfaces . When they
are swept rapidly, smoothly, and repeatedly through the
volume, using nothing more than color-encoding of th e
data and Gouraud polygon fill, the effect can be like a
continuum of contour shells . Experience with multipl e
IJK slices of structured grids, as described earlier, o n
16mm film showed that "retinal memory" is a powerfu l
mechanism for grasping the whole of a volume . t Probes
provide additional structure to the slices and sugges t
ways of sweeping, as in the paddlewheel . With today's

t Work done by Robert Smith, Eric Everton, and one of the
authors (DS) at NASA Langley Research Center, starting in 1982 ,
and described briefly in N .

top-end workstations, and whatever the future holds ,
this effect is within reach of interactive use . Of course ,
it could also work for other volume display methods ,
though slicing holds the earliest promise for the firs t
reason mentioned in the introduction .

Extensions

We have two planned extensions for probes . The firs t
will incorporate contouring within the neighborhood o f
a sheet . By moving a (2D) pointer along the surface o f
a sheet, the user will be selecting the data value at tha t
point . Its contour will then be built within the sheet's
clipping box . By varying the probe's position and size o f
the box, users will see contours in any region of interes t
without an exhaustive search through the entire grid .

The second extension is for vector fields . By adding
to the scalar display, on sheets, lattices of points from
which vectors or particles may launch, probes becom e
devices that vary continuously from "tuft screens" [8]
to particle rakes . Tufts are pieces of yarn which blo w
in the direction of flow and are idealized in graphics b y
variable length vectors (and are not to be confused wit h
"hedge-hogs," which display surface normals) . A vecto r
is essentially a single time-step particle trace . This de-
vice gives the user control over its size, lattice density ,
and the number of time steps (and their direction i n
time) to trace particles .

Conclusio n

We have presented an algorithm for slicing the compu-
tational grids commonly used today . It maximizes th e
use of local knowledge, at each sliced cell, of the behav-
ior of the slice in order to eliminate global search an d
redundant calculations . Using it for planar surfaces ,
we next constructed probes of several planes for use i n
scalar fields . Probes may be used to show total dat a
behavior in a volume by exploiting the mind's ability t o
accumulate an image by repeated exposure to pieces o f
it .

Two simple extensions are described for merging slicin g
with contouring and for examining vector fields . The
characterization of all the tools discussed is that they
have user-defined extent and six-degrees-of-freedom mo-
bility, emphasizing their role in exploring data .

Acknowledgement s

We appreciate the helpful discussions with Chris Berry ,

Computer Graphics • Volume 24 • Number 5 • November 1990/11

Olivier Hardy, and C . Y. Huang of The Computationa l
Mechanics Company, K. R . Subramanian and Chri s
Buckalew of UT's Computer Sciences Department, an d
Lee Metrick of Schlumberger's Austin System Center .
Keith Waters of Schlumberger's Lab for Computer Sci-
ences provided help in making a video at a crucial poin t
and C . Y . Huang provided the images of 2D grid types .

References

[1] Computational Fluid Dynamics, Office of the Chief
Scientist, NASA Langley Research Center, un-
dated .

[2] Duda, R., Hart, P ., Pattern Classification and
Scene Analysis, John Wiley & Sons, 1973 .

[3] Gregory, T ., Carmichael, R., "Interactive Com-
puter Graphics : Why's, Wherefore's, and Exam-
ples," Astronautics & Aeronautics, April 1983 .

[4] Ho, S. H ., "Visualization of 3D Solid Finite Ele-
ment Meshes by the Method of Sectioning," Corn-
pu.ters ff Structures, Vol . 35, No . 1, pp . 63-68 ,
1990 .

[5] Ldhner, R., Parikh, P., Gumbert, C ., "Some Al-
gorithmic Problems of Plotting Codes for Unstruc-
tured Grids," Proceedings of the AIAA 9 th Corn-
putational Fluid Dynamics Conference, June 1989 ,
AIAA-89-1981 .

[6] Lorensen, W ., Cline, H ., "Marching Cubes : A High
Resolution 3D surface Construction Algorithm,"
Computer Graphics, Vol . 21, No. 4, 1987 .

Mandelhrot, B ., The Fractal Geometry of Nature ,
W. H . Freeman & Co ., 1983 .

Merzkirch, W ., Flow Visualization, 2"d edition ,
Academic Press, Inc ., 1987 .

Neal, M ., "What's Going On Up There ?", Applica-
tion Briefs, Computer Graphics and Applications ,
July 1987, p . 8 . ; also in "Visualization in Scientific
Computing," SIGGRAPH Video Review 28 .

[10] Norman, M., in "Visualization in Scientific Com-
puting," SIGGRAPH Video Review 28 .

[11] Sengupta, S ., Hauser, J ., Eiseman, P ., Thompson ,
J . (eds .), Numerical Grid Generation in Computa-
tional Fluid Mechanics '88, Pineridge Press Ltd . ,
1988 .

[12] Watson, V ., Buning, P ., Choi, D ., Bancroft, G . ,
Merritt, F ., Rogers, S ., "Use of Computer Graph-
ics for Visualization of Flow Fields", State of the

Art in Data Visualization, SIGGRAPH '89 Cours e
#28 Notes, July 1989; also in AIAA Aerospace En-
gineering Conference, Feb 1987 .

[13] Winget, J ., "Advanced Graphics Hardware for Fi-
nite Element Results Display," Advanced Topics i n
Finite Element Analysis, ASME Pressure Vessel s
and Piping Conference, 1988, PVP Vol . 143 .

[14] Zienkiewicz, 0 ., Taylor, R ., The Finite Element
Method, 4 th ed ., vol . 1, McGraw-Hill, 1989 .

[7]

[8]

[9]

12/Computer Graphics • Volume 24 • Number 5 • November 1990

