Check for
Updates

Volume Probes: Interactive Data Exploration on Arbitrary Grids

Don Speray
The University of Texas at Austin, Dept. of Computer Sciences
The Computational Mechanics Company, Inc.

Steve Kennon
The Computational Mechanics Company, Inc.

Abstract

A taxonomy of computational grids used in scientific
and engineering practice is presented and a technique
for cutting them by, and displaying data on, 2D surfaces
is developed. When sliced by a surface, these grids give
rise to a graph G(C,F) where C, the nodes, are the inter-
sected cells and ', the arcs, are their connectivity across
faces. Starting from any cell known to be intersected by
the surface (a seed), G is traversed breadth-first and is
constructed locally on the fly, that is, only the spread-
ing “front” explicitly exists at any time. Only sliced
cells are visited, shared computed values such as edge
intersections are passed to neighbors, and most of the
geometric work is done via table lookup. A seed cell is
found by fence-hopping from any cell to a distinguished
point on the surface.

This means of slicing grids is then utilized in an effective
visualization tool. Concentrating on planar surfaces,
local coordinate systems are defined for constructing
clipping windows and linear transformations within the
planes which further reduces display time and allows
effects such as zooming within the windows. Several
of these planar windows are then organized into vari-
ous objects, called probes, that can exploit the mind’s
“retinal memory” when repeatedly swept through amor-
phous data.

CR Categories and Subject Descriptors: 1.3.3
[Computer Graphics]: Picture/Image Generation —
Display algorithms; 1.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling — Geo-
metric algorithms; 1.3.6 [Computer Graphics]: Meth-
odology and Techniques - Inferaclion Technigues

Additional Keywords:
probes, retinal memory

slicing, post—-processing,

Permission to copy without fee all or purt of this material is granted provided that the copies
are not made or distributed for direct commercial advantage, the ACM copyright notice and the
tile of the publication and its date appear, and notice is given that copying is by permission
of the Association for Computing Machinery. To copy otherwise, or 1o republish, requires a fee
andfor specific permission.

©1990 ACM 0-89791-417-1/90/0012/000551.50

Introduction

Slicing will remain one of the fastest volume display
methods for s¢alar fields for the same reason that it com-
plements other common techniques. It shows a limited
(one might say infinitesimal) subset of the volume per
slice and displays the full range of data existing there.
Contrast this with contouring or ray casting where a
limited range of data is shown throughout the full vol-
ume. These techniques benefit from « prieri knowledge
of the data for selecting contour or opacity values, say,
to arrive at the desired image. Since slices can be gen-
erated quickly, data exploration with slicing would be a
useful first step in many analysis regimens.

In many applications, however, these other methods are
inadequate or inappropriate. Choosing a set of distin-
guished values to display may be undesirable and it
doesn’t take many nested colored transparent surfaces
before confusion ensues. They also suffer when noise
or high frequency behavior is present in the data near
values of interest, showing up as “fragmentation” (float-
ing gravel), confusing surface classification algorithms,
or simply taking longer to render. Acquired data is
rarely smooth and computational results are seldom as
smooth as one wishes (especially in modeling turbulence
[7] 1). Slicing is less susceptible, but not immune, to
these problems. It is hard to imagine comprehensible
3D versions of the gas jet displays of Norman [10] and
Winkler [9] that attempt to convey an equivalent level
of information.

Another issue is the time it takes to ray-cast a volume,
or trace out a complete contour and photorealistically
render the result. There is a place in a researcher’s
armamentarium for simple and fast display, especially
in light of the fact that these methods may be slower in
the context of the grids to be discussed.

Finally, planar slices open up volume data analysis to
researchers without late-model workstations. The re-
sults may be displayed in 2D with line countours or filled
polygons, perhaps accompanied with a low bandwidth
3D display to orient the slice in the volume.

Computer Graphics * Volume 24 ¢« Number 5 » November 1990/5

http://crossmark.crossref.org/dialog/?doi=10.1145%2F99307.99310&domain=pdf&date_stamp=1990-11-01

We further believe that slicing can be effective in show-
ing total data behavior when several slices sweep the
volume in concert and quickly enough to build and re-
inforce a mental image. We begin by discussing the grids
in use today, follow with an efficient algorithm for slic-
ing them, and end with an application of the algorithm
that satisfies most of the issues raised.

Computational Grids for Graphi-
cists

The following taxonomy of grids will suflice for our dis-
cussion; see, for example, [1, 11, 14] for more informa-
tion. They are presented in order of increasing general-
ity (and complexity). With each type is the required in-
dexing to find a point’s world coordinates. Neighboring
points delineate subvolumes known as cells or elements.

cartesian (1,7, k)
This is typically a 3D matrix with no intended
world coordinates, so subscripts map identically
to space. If the cells are small and numerous (as
to be almost atomic in practice, like 2D pixels),
then it is known as a voxel grid; however, the
term is often loosely applied.

regular (ixdz,j*dy k xdz)
Cells are identical rectangular prisms (bricks)
aligned with the axes.

rectilinear (2[7], y[J], 2[k])
Distances between points along an axis are arbi-

trary. Cells are still rectangular prisms and axis-
aligned. See figure 1 for a simple 2D example.

structured (2[4, 5, k], y[e, 4, k], 2[7, 4, k])

This type, also known as curvilinear, allows non-
boxy volumes to be gridded. Logically, it is a
cartesian grid which is subjected to non-linear
transformations so as to fill a volume or wrap
around an object. Cells are hexahedra (warped
bricks). These grids are commonly used in com-
putational fluid dynamics (CFD). See figure 2.

block structured (z;[Z, 7, k], w7, 7, k), z0[2, 7, k)

Recognizing the convenience of structured grids,
but the limited range of topologies that they han-
dle, researchers may choose to use several struc-
tured grids (blocks) and sew them together to fill
the volume of interest.

6/Computer Graphics * Volume 24 * Number 5 « November 1990

Figure 1: Rectilinear

unstructured (z[7], y[z], z[7])
Unlike the previous types, where connectivity is
implicit, there is no geometric information im-
plied by this list of points and edge/face/cell con-
nectivity must be supplied in some form. Cells
may be tetrahedra, hexahedra, prisms, pyramids,
etc., and they may be linear (straight edges, pla-
nar faces) or higher-order (eg. cubic edges, with
two interior points on each edge). Tetrahedral
grids are particularly useful because they allow
better boundary fitting, can be built automati-
cally, and are often simpler to work with, graph-
ically. Unstructured grids are standard in finite-
element (FEA) and finite-volume analysis (FVA)
and are becoming common in CFD. See figure 3.

hybrid

It may occasionally be desirable to use structured
and unstructured grids together, putting each
where their fitting and computational strengths
are most beneficial. See figure 4, but note that
the structured layer is exaggerated. At this scale,
it would appear as a thick black line.

In addition to the three coordinates, there may be sev-
eral physical quantities computed at each point. The
size of grids can range from a few thousand elements
for simple FEA problems to a several million for com-
plex CFD studies and the trend in CFD is to use grids
that challenge each new generation of supercomputer.

Computational grids are designed to minimize numeri-
cal error and this usually means many small cells are lo-
cated where “interesting things” happen in the volume.
Unfortunately, a fixed grid must anticipate where these
oceur throughout the duration of a time-varying phe-
nomenon and the result is a dense grid requiring more

I 177

{

ANEAVIR

IR

[

)

I

T

SIS A

Figure 2: Structured

Figure 4: Hybrid

&Azu:.’.-ﬂfi\,,
0 /// D O
/ ,/II)//E ""’I‘:t;:;“

ya—aaad Q 1

%
'l l{llln': '"n]
h

'
\ ‘ llm
“‘ “ “:: B\\\f ",/

“'l’ll

Figure 5: Simple 3D structured grid

computation than might be necessary at any given time
step. Consequently, adaptive refinement of grids is be-
coming more popular.

Another means to reduce error in unstructured grids
is to use higher-order isoparametric elements. These
shape functions and cell geometries also permit larger,
hence fewer cells. An analysis code using them would
supply the functions for performing interior interpola-
tion, which involves solving several simultaneous non-
linear equations. It is reasonable to place the burden
of such interpolation on the analysis code, which could
refine an element into a number of smaller linear el-
ements for display, or provide a simple mechanism to
do so, and we will assume this. Incidentally, iterative
techniques are used for this, even for the trilinear case.
For rectilinear grids trilinear interpolation is equivalent
to seven lincar interpolations, whereas this is no longer
true for general hexahedra, and iterative methods lever-
age the work to compute one point for quick convergence
at nearby points.

In CFD, grids extend beyond the region of study solely
to eliminate boundary-induced numerical artifacts in
the results, so much of the volume may be of no inter-
est at all, though general features are grasped by seceing
its entirety. On the other hand, quite dramatic behav-
ior can occur in small, tightly meshed regions. This
grid-driven changing scale of focus is characteristic of
interactive CFD graphies [12].

The 3D grid in figure 5 is used for later illustration of
various aspects of the slicing algorithm. This is a struc-
tured spherical coordinate grid over a hemisphere with
latitudes near both poles missing. It contains hexahe-
dral cells and has a non-convex boundary consisting of
the inner sphere, the polar cones, two “wings” of con-
stant longitude, and an outer sphere which is not drawn.
A few inner grid surfaces of constant longitude and con-
stant latitude are shown.

Computer Graphics * Volume 24 « Number 5 « November 1990/7

It is the intention of this section to raise the literacy of
the graphics community about what is encountered in
scientific and engineering practice. Only the final four
grid types handle arbitrary volumes and are the most in
need of interactive display techniques. It is hoped that
more graphics researchers will find computational fluid
dynamics and finite-element analysis to be sources of
interesting challenges. A source of ideas in CI'D might
be further generalizations and idealizations, as are par-
ticle traces and flow ribbons, of what is actually done
in windtunnels [8].

Slicing

Slicing amounts to identifying intersected cells and dis-
playing data within the region of intersection of each
with the surface. Our goal is to slice any grid with user-
defined surfaces at any position and orientation in the
volume.

The orderliness of a grid and the shape of the surface,
of course, have an impact on finding intersected cells.
This is important since relatively few cells are actu-
ally cut. For example, a voxel grid sliced by the plane
az + by + ¢z + d = 0 has sliced cells with the following
points as vertices:

(i,j, I_'—(ai + b.] + d)/CJ)) (7).7) ['"(a'i + b] + d)/c])

This 1s an over-simplified characterization of sliced cells,
but it can be seen that speed is achieved by directly
computing cell locations and by-passing a search,

With a structured grid it is common to fix one subscript
and display the resulting surface, allowing for interme-
diate positions by using a non-integral “subscript” and
interpolating. This 1s fast because it slices the 3D array
(in IJK space) with a plane parallel to one of the sub-
script planes. Of course, the shape and position of the
slice follow the grid in world coordinates, as with the
inner surfaces in figure 5.

Others have sliced unstructured grids but have used ex-
haustive search of the grid for intersected cells [4, §, 13].
The present technique avoids a search by utilizing cell
connectivities and the continuity of the surface to follow
the surface through intersected cells. The emphasis in
this paper is on the issues of determining the intersec-
tions and not on how one might display the results.

A cutting surface may be either open or closed, dividing
space into two parts. Let the surface be defined by the
characteristic function

. | 1 if(=,y,2) is in the positive hall space
Sy, 2) = { 0 otherwise

8/Computer Graphics » Volume 24 « Number § * November 1990

Figure 6: Surface polygons

Surfaces are assumed to be approximately planar within
cells for the purposes of determining edge and face in-
tersections, that is, faces may be cut only once. This
assumption also places a requirement on cell faces: ide-
ally, faces would be planar, but are often only approx-
imately so. In practice, nearly-planar faces have not
been a problem; further cell refinement is possible, per-
haps at the cost of interior interpolation.

As in marching cubes [6], each vertex of a cell is assigned
a bit position within an index and S(z,y, z) provides
the bit value. This index identifies, in a precomputed
table, the intersected edges and faces in polygon order.
In our implementations, we deal only with tetrahedral
and hexahedral cells. The table of 14 cases for tetrahe-
dra was built by hand. The hexahedral table was built
by software that inspected each of the 254 candidate
cases by walking across faces, following edge intersec-
tions, until an impossible or disallowed situation was
encountered. There are 63 unique valid configurations
and each appears twice in the table because flipping bits
makes no difference. The table was verified by using the
Ho-Kashyap procedure [2] to linearly separate the ver-
tices of a cube and by checking the twelve extra cases,
due to twisting, by hand. These tables could be used to
verify the integrity of a grid by sweeping it with a plane
to cut cells and seek impossible vertex configurations.

Given a sliced cell, its table entry lists the faces to move
through to follow the surface. Except for the first “seed”
cell, then, the search is table-driven. The following scc-
tion will deal with finding this seed.

Intuitively, a cutting surface is covered by a network of
polygons resulting from being cut by cell faces. An ex-
ample is figure 6, which shows a nearly horizontal plane
cutting the sample grid. (Ignore the heavy rectangle, for
now.) The dual graph of the network is G(C,F) where
C, the nodes, is the set of polygons (intersected cells, in
3D) and F, the arcs, are their connectivities across edges
(cell faces, in 3D). A breadth-first traversal of G, start-

ing from the seed, is appealing for three reasons. First,
only the nodes on the traversal front need to be known
so G may be built locally and on the {ly. Second, it al-
lows maximum sharing of computed results across faces
since a cell’s “more distant” neighbors are all added to
the front at the same time. Finally, rules to terminate
the traversal, such as clipping on the cutting surface
or reaching a threshold value in the data, are easy to
implement.

The traversal is performed using a queue, initialized
with the seed. In each cell entry are the S values for
each vertex, interpolated values along each intersected
edge, pointers to entries of neighboring cells (which also
serve as face markers), bitimaps to tell what info is cur-
rently known, and a unique id. The queue head (current
cell) is processed as follows:

1. compute missing S values and do the lockup

2. compute missing edge intersections, for both spa-
tial and data values

3. for each sliced unmarked face with an unqueued
neighbor, append the neighbor to the queue

4. for all neighbors in the queue, pass shared infor-
mation and mark their adjoining face pointer so
as to ignore the current cell when they queue their
neighbors.

5. output display info

The potentially time-consuming part is searching the
queue for neighbors in steps 3 and 4. A cell may have
several “closer” neighbors; any one of which will process
first and queue it. In general, the others have no way of
knowing this has happened.

The simplest solution, when memory is available, is to
mark each queued cell in an auxilliary list with the cur-
rent slice number and its entry’s address. This list has
a slot for each cell in the grid and uses whatever cell ad-
dressing is natural to the grid. Searching is eliminated
by comparing a cell’s recorded slice number with the
current slice. The list need be reset only when the slice
number wraps around, relative to the word-length allo-
cated for them. With this list, face marking in step 4 is
not required since this list serves as a global memory of
processing.

Alternatively, the queue may be partitioned into eight
smaller lists by noting that the seed cell divides a vol-
ume into octants. Each cell is located by either the
world coordinates of a distinguished vertex or, for struc-
tured grids, its subscripts. These locate it relative to
the sced and determine its octant list. This partition-
ing only affects searches through the single queue. Since

Figure 7: Traversal generations

the traversal front surrounds the seed, at least four of
these lists become populated and they assist in reducing
queue searching.

The search time may be reduced further by exploiting
the structure of the queue (and each octant list). De-
fine generation Gy 41 to be the set of newly-encountered
neighbors of all cells in G, where Gg is the seed cell.
Unfortunately, in general, these sets are not disjoint.
At any moment the queue consists of a shrinking pop-
ulation of Gy at the front and a growing population of
Gr41 at the rear. If a neighbor is already on the queue,
it is more likely to be in Gy 4.1 so the search begins there.
It is guaranteed to be there for a cartesian grid and a
planar surface, and Gy is the set of sliced cells with
Manhattan distance & from the seed. Figure 7 is a rep-
resentation of the traversal process. A cutting plane
is nearly parallel to the rcar boundary “wings” and the
seed cell is at the lone white polygon. Each generation
1s marked by a different shade of gray, modulo a small
number of shades. The nature of the spreading front
shows clearly.

Informally, with a grid of N cells, the queue length is
O(N'Y3), since queued cells form the circumference of
an area on the surface.

Clipping

Limiting the cutting surface to a-neighborhood of the
hot spot can focus the user’s attention by eliminating
irrelevant parts of the volume and, by terminating the
graph traversal, their computation time. Further, if the
shape of the clip region can be controlled, then several
such clipped surfaces may be combined into objects that
convey more information than a single surface. A later

Computer Graphics * Volume 24 * Number 5 * November 1990/9

=S
]

NN sy
NS
\@@/ 9

TR
i
/]

Figure 8: Clipped window

section describes such objects that assume rectangular
clip windows on planar surfaces.

When a surface cuts a cell’s face and enters a neighbor
cell, the intersection becomes an edge on the surface
which separates two polygons. If the edge is completely
clipped away, the neighbor is not queued. If the edge
is partially clipped then the window-edge endpoint of
the edge lies on the face of a cell and linear interpola-
tion between the original endpoints provides its value.
This is Gouraud, not bilinear, interpolation and is quite
sufficient. The four corner points of a rectangular clip
window are interior points of cells and the analysis code
can be called on to compute their values. Depending on
the grid resolution and needs, the four corner polygons
could be ignored, eliminating significant computational
machinary for four points, out of perhaps many thou-
sands. Figure 8 shows clipping applied to figure 6 and
the curtailment of the traversal.

Seeding the Slice

A target point (hot spot) on the surface serves to find
the seed cell and any solution to the point-containment
problem will work. We don’t accelerate the search by
preprocessing because in the context of interactive slic-
ing, our method is not a bottleneck. It .amounts to line-
of-sight fence-hopping (face-hopping) from a known cell
to the point and works well when the surface and its hot
spot move smoothly through the grid.

Starting at a point in any cell (the previous seed is an
ideal choice), a line is constructed with parameter ¢ to
the target point such that ¢ = 0 is the start point and
t = 1 is the target. Next, intersections of this line with
each face of the start cell are computed in terms of ¢.
Faces are treated as having infinite extent. The line
exits the cell on the face with the least positive value of
t. Unlike ray tracing, we don’t care if a face is actually

10/Computer Graphics * Yolume 24 « Number 5 * November 1990

intersected — we know that one of them is.

The line enters the adjoing cell and the process repeats.
Eventually, a cell is reached where all candidate inter-
sections have ¢ > 1 and this is the seed. For the second
and subsequent cells, the new start point may be repo-
sitioned away from the edges of the entry face to avoid
looping around edges or vertices. This strategy also
adds robustness in case of nearly-planar faces.

As a cutting surface is driven interactively by a user,
the hot spot moves incrementally through the grid and
little work is required to update the seed cell. When
the hot spot is driven “out of sight” (the line of sight
exits, then re-enters, a non-convex grid domain) of the
starting point or out of the grid, we apply the heuristic
of starting over from another region of the grid. For
example, in a structured grid the center cell on each
of the six grid boundaries usually provide good vantage
points. If it still isn’t located, it is reasonable to assume
it is out of the grid. One could define alternate hot
spots, refuse to move it out of the grid, or simply ask
the user to return it.

Probes

We now turn to an application of the slicing algorithm
which uses plane surfaces. A probe is a collection of
planar cutting surfaces, rvefered to as sheets to imply
they may have limited extent. It has a local coordinate
system defined by the linear transformation to_probe
which maps world coordinates to the probe’s. Likewise,
each of its sheets, s, has a local coordinate system de-
fined by to_sheets which maps from the probe to the
sheet. A sheet’s cutting surface is its z = 0 plane which
conveniently defines the two halfspaces for the charac-
teristic function S. Its origin is a simple choice for hot
spot and the world coordinates are the bottom row (as-
suming transforms post-multiply points) of

(to-probe * to_sheetg) ™"

Each sheet also has a special-effects transform fxg and
a map to the unit cube to-cubeg. fxg provides zoom-
ing and panning (parallel or normal to the xy plane).
to.cubeg maps a selected region of the sheet containing
the hot spot into the unit cube for clipping, although
for this application clipping applies to the unit square.
The complete transformation from world coordinates to
each sheet is

to_probe x to_sheetg * fxg * to.cubeg
The inverse mapping is

(to-probe x to_sheetg * to_cubeg) ™!

Y
Y

2477
S
5 2%

%

2

Y

T
AL
2

Figure 9: Paddlewheel probe

and is just a modeling transform to the host graphics
system, that is, there is no execution overhead. fxg does
not participate in the inverse so that its effects remain
for display.

The entire probe is driven by manipulating only
to_probe. Probes are designed by specifying each
to_sheetg. The simplest probe has a single sheet and,
with its varying clip window and zooming, resembles a
magnifying glass roaming through the data. 'Two other
designs are

trihedral: This probe uses three orthogonal sheets and
provides good three-dimensional information near
their intersection. Such “corner” views are com-
mon with voxel-based tools, but this probe is eas-
ily rotated to any orientation.

paddlewheel: Several sheets touch along an axis and
are separated by at least 60°, less if transparency
is used to avoid obscured sheets. When rotated
about the axis, the paddlewheel sweeps out a re-
gion. A complete revolution may be faked by film
looping the sweep between consecutive vanes. Fig-
ure 9 shows a 3-vane paddlewheel.

The potential for probes lies in the speed in which a
volume may be swept by multiple surfaces. When they
are swept rapidly, smoothly, and repeatedly through the
volume, using nothing more than color-encoding of the
data and Gouraud polygon fill, the effect can be like a
continuum of contour shells. Experience with multiple
TJK slices of structured grids, as described earlier, on
16mm film showed that “retinal memory” is a powerful
mechanism for grasping the whole of a volume.T Probes
provide additional structure to the slices and suggest
ways of sweeping, as in the paddlewheel. With today’s

t Work done by Robert Smith, Eric Everton, and one of the
authors (DS) at NASA Langley Rescarch Center, starting in 1982,
and described briefly in [3].

top-end workstations, and whatever the future holds,
this effect is within reach of interactive use. Of course,
it could also work for other volume display methods,
though slicing holds the earliest promise for the first
reason mentioned in the introduction.

Extensions

We have two planned extensions for probes. The first
will incorporate contouring within the neighborhood of
a shect. By moving a (2D) pointer along the surface of
a sheet, the user will be selecting the data value at that
point. Its contour will then be built within the sheet’s
clipping box. By varying the probe’s position and size of
the box, users will see contours in any region of interest
without an exhaustive search through the entire grid.

The second extension is for vector fields. By adding
to the scalar display, on sheets, lattices of points from
which vectors or particles may launch, probes become
devices that vary continuously from “tuft screens” [§]
to particle rakes. Tufts are pieces of yarn which blow
in the direction of flow and are idealized in graphics by
variable length vectors (and are not to be confused with
“hedge-hogs,” which display surface normals). A vector
is essentially a single time-step particle trace. This de-
vice gives the user control over its size, lattice density,
and the number of time steps (and their direction in
time) to trace particles,

Conclusion

We have presented an algorithm for slicing the compu-
tational grids commonly used today. [t maximizes the
use of local knowledge, at each sliced cell, of the behav-
ior of the slice in order to eliminate global search and
redundant calculations. Using it for planar surfaces,
we next constructed probes of several planes for use in
scalar fields. Probes may be used to show total data
behavior in a volume by exploiting the mind’s ability to
accumulate an image by repeated exposure to pieces of
it.

Two simple extensions are described for merging slicing
with contouring and for examining vector fields. The
characterization of all the tools discussed is that they
have user-defined extent and six-degrees-of-freedom mo-
bility, emphasizing their role in exploring data.

Acknowledgements

We appreciate the helpful discussions with Chris Berry,

Computer Graphics ¢ Volume 24 » Number 5 © November 1990/11

Olivier Hardy, and C. Y. Huang of The Computational
Mechanics Company, K. R. Subramanian and Chris
Buckalew of U'T’s Computer Sciences Department, and
Lee Metrick of Schlumberger’s Austin System Center.
Keith Waters of Schlumberger’s Lab for Computer Sci-
ences provided help in making a video at a crucial point
and C. Y. Huang provided the images of 2D grid types.

References

(1]

[10]

[11]

Computational I'lurd Dynamaics, Office of the Chief
Scientist, NASA Langley Research Center, un-
dated.

Duda, R., Hart, P., Pattern Classification and
Scene Ancalysis, John Wiley & Sons, 1973,

Gregory, T., Carmichael, R., “Interactive Com-
puter Graphics: Why’s, Wherefore’s, and Exam-
ples,” Astronautics & Aeronautics, April 1983,

Ho, S. H., “Visualization of 3D Solid IFinite Ele-
ment Meshes by the Method of Sectioning,” Com-
pulers & Structures, Vol. 35, No. 1, pp. 63-68,
1990.

Lohner, R., Parikh, P., Gumbert, C., “Some Al-
gorithmic Problems of Plotting Codes for Unstrue-
tured Grids,” Proceedings of the AIAA 9** Com-

putational Fluid Dynamics Conference, June 1989,
ATAA-89-1981.

Lorensen, W., Cline, H., “Marching Cubes: A High
Resolution 3D surface Construction Algorithm,”
Computer Graphics, Vol. 21, No. 4, 1987.

Mandelbrot, B., The Fractal Geometry of Nature,
W. H. Freeman & Co., 1983.

Merzkirch, W., Flow Visualization, 2"% edition,
Academic Press, Inc., 1987.

Neal, M., “What’s Going On Up There 77, Applica-
tion Briefs, Computer Graphics and Applicalions,
July 1987, p. 8.; also in “Visualization in Scientific
Computing,” SIGGRAPH Video Review 28.

Norman, M., in “Visualization in Scientific Com-
puting,” SIGGRAPH Video Review 28.

Sengupta, S., Hauser, J., Eiseman, P., Thompson,
J. (eds.), Numerical Grid Generation in Computa-
tional Fluid Mechanics °88, Pineridge Press Ltd.,
1988.

Watson, V., Buning, P., Choi, D., Bancroft, G.,
Merritt, F., Rogers, S., “Use of Computer Graph-
ics for Visualization of Flow Fields”, State of the

12/Computer Graphics ¢ Yolume 24 * Number 5 + November 1990

[13]

(14]

Art in Data Visualization, SIGGRAPH ’89 Course
#28 Notes, July 1989; also in ATAA Aerospace En-
gineering Conference, Febh 1987.

Winget, J., “Advanced Graphics Hardware for Ii-
nite Element Results Display,” Advanced Topics in
Finite Elemeni Analysis, ASME Pressure Vessels
and Piping Conference, 1988, PVP Vol. 143.

Zienkiewicz, O., Taylor, R., The Finite Element
Method, 41" ed., vol. 1, McGraw-Hill, 1989,

