
interface

Jonathan Grudin

Aarhus University (on leave from MCC)
Computer Science Department
Ny Munkegade Bygning 540
XKKI Aarhus C Denmark

“Terror. You have to confront the documentation. You have to learn a
whole new language. Did you ever use the word ‘interface’ before you
started using a computer?”

-- Advertising executive Arthur Einstein’

interface: . . . a: the place at which independent systems meet and
act upon or communicate with each other b: the means by which
interaction or communication is efected at an interface

-- Webster’s Seventh New Collegiate Dictionary

INTRODUCTION

This is an essay on “the user interface” to a computer and “the computer interface” to a
user or users. It also addresses “a user’s interface” (or “a group’s interface”) to a computer
and “a computer’s interface” to a user or users. After noting the further distinction of
users’ interfaces to their work, it concludes with a discussion of “the designer” and
designers’ “models of users.”

The goal is not to split semantic hairs. “At a certain stage in the development of every
science a degree of vagueness is what best consists with fertility,” wrote William James
(1890), and the field of human-computer interaction has not yet advanced beyond that
stage. The goal is to show that the way we use these words conceals important changes
in our field. The term “user interface” came into use when our field was very different
than it is now. At that time, it served a useful purpose. Most of us now feel quite
comfortable with it, although we may not use it entirely consistently. This paper details
the possibilities for confusion and misdirection in our use of this and related terms in the
changing environment of computer design and use. Perpetuating the current usage may
reenforce and bind us to an obsolete perspective. The power of words is not total, but
they may subtly and indirectly inhibit the adoption of new areas of research and
approaches to development.

The term “user interface” originated in the engineering environment. Virtually all
computer users had been engineers and programmers, but a new kind of user was
emerging: the non-programming user.. These users often reacted more negatively to
difficulties in dealing with the machine. Easier forms of interaction were needed, a new

CSCW 90 Proceedings October 1990

269

http://crossmark.crossref.org/dialog/?doi=10.1145%2F99332.99360&domain=pdf&date_stamp=1990-09-01

interface -- attention flowed to “the user interface.” In the next section, the word “user,”
which was helpful in early engineering environments, is shown to be problematic in
today’s broader context. Then the term “interface” is explored, noting that a user’s
interface to a computer does not match or complement a computer’s interface to a user.
“User interface” is often used to describe a computer’s interface to the user, rather than a
user’s interface to the computer. Finally, the static concept of “the interface designer” is
contrasted with the radically changing roles of actual system designers. All three analyses
support one conclusion: our use of terms that originated in the engineering environment
systematically obscures changes that have occurred in how interfaces are designed and
used. Of particular concern is the concealment of aspects of the environments in which
computers am now used -- work environments that are usually very unlike the engineering
environment. This distortion is unfortunate because understanding these work
environments is increasingly important in computer systems development.

1. “USER”

Ironically, “user interface” is a technology-centered term. The interface is between users
and computers. We have asymmetrically abridged “user-computer interface,” retaining the
name of only one of the two actors. The computer is assumed, the user must be
specified. There was a good reason for this: In the engineering environment, a
computer’s architecture includes many internal “interfaces.” The interface to the user was
one of many interfaces that had to be discussed, so labelling it “the user interface” was an
obvious and noncontroversial choice. There was no need to call it the “user-computer”
interface, because in the engineering environment, the computer could indeed be safely
assumed! But while “user” was a convenient identifier among engineers, its use has
spread beyond the engineering environment, creating confusion in several ways.

Computer users don’t consider themselves “users.” Terms such as “user manual” were
initially resisted, in part because some people associated “user” with “drug user.” In
contrast, similar manuals for automobiles are called “owner’s manuals”; they have little
to do with the rights and responsibilities of car ownership, but their readers typically do
identify themselves as owners, As computer use becomes more commonplace, people
who happen to spend some time working with computers are less likely to identify
themselves naturally as “users.”

The term “user” retains and reenforces an engineering perspective. “Casual users” is a
term often used to describe managers and executives -- who are often not “casual” at all!
“Novice” or “naive” users are often expert or sophisticated at their jobs -- while the
expertise of “expert users” may not extend beyond computer use. These terms simply
assume that everything is in reference to a computer. This systematically distorts our
perception of the user-computer partnership (Bannon, 1990). This is unfortunate because
attention to the work environment of computer users is a critical element of interface
design, and our terminology conceals the variability in users’ environments by selectively
focusing on that which is shared: computer use. For example, it might be helpful for
designers to think of the people at the terminals as “skilled nurses” or “experts at writing”
rather than as “naive” or “casual” users. 2 Gaines and Shaw (1986) identify other examples
of problematic terminology: “non-professional user” and “non-specialist user” (meaning
not computer professionals or specialists; again, assuming computers to be the domain of
importance). They note that this perspective can create an unfortunate attitude toward
users, exemplified by a paper describing “idiot-proof programs.”

The term “user” suggests that there exists a typical user or range of users. When we catch
ourselves talking about “the user,” we may hastily remind ourselves that there are
different kinds of users -- novice, casual, and expert, for example (!!) -- but even then we
may envisage a static cross-section or range of computer users. However, the user
population has been changing radically. The first computer users were engineers and
programmers. In the past decade, non-programmers, or so-called “end users” (yet another

CSCW 90 Proceedings October 1990

270

term rooted in the engineering perspcctive),3 have become the principal computer users.
And another shift in the target of computer design is gathering momentum, as the CSCW
conference series itself indicates -- the shift toward regarding a group or organization as a
collective computer user. The term “user interface” conceals this change. Computers
have always had interfaces to their users, but the term was not used when all users were
programmers and engineers, and will be awkward for systems that are designed for groups.
Malone (1985) has suggested a new term, “organizational interface,” to capture this
second shift toward collective support.

There is a fundamental continuity of interface development that is obscured by
segmenting history into “programmer interface, ” “user interface,” and “organizational
interface” periods. If one considers instead the L‘~omp~ter interface” to the user and the
world, a smooth progression emerges. The computer interface to its environment has
moved steadily away from the hardware of the computer itself, out into the environment --
first to the software, then to the individual at the terminal, and now to the work group
(Friedman, 1989; Grudin, 1990a). The history of interface development appears more
coherent if we position ourselves at a distance and think of this “computer interface” to
the world. This perspective affords us a single view that takes in the period before the
term “user interface” was used and extends more gracefully into a future of widespread
computer support for groups and organizations.

Should we abandon the use of “user interface” and adopt “computer interface”? Perhaps
not, for we shall see that each of these terms has its uses. But when no compelling
reason exists for doing otherwise, neutral terms such as “the interface,” “the human-
computer interface,” or “human-computer interaction” seem preferable. And there is value
in sometimes thinking in terms of the “computer interface” -- taking users as a given, for
a change. It removes one from the engineering context and naturally guides one to regard
computers from the perspectives of their users. Consider the following exercise: Describe
the human-computer interface to “non-technical” people, neutrally avoiding specific
terms, and then ask, “Which term best captures what I have described: the user interface or
the computer interface?” Not surprisingly, I find that they choose the latter.

2. “INTERFACE”

Following a recent talk, someone observed that I had not explicitly defined “interface,”
noting that to him, the word signified the segment of the software program that handled
dialogue with users, We generally do identify “the user interface” with the software that
controls I/O devices and processes. This is reflected in the name “User Interface
Management System,” for example. Similarly, the “User Interface Group” of a
development project may consist entirely of Software Engineers. This view of the
interface is captured in Figure 1.

Consider the two faces to the user-computer interface. Is a user’s interface to a computer
the mirror image of the computer’s interface to the user? It may seem that it should be,
but on reflection it is not, unless one defines “interface” extremely narrowly. The user’s
interface to the computer may center on the software-controlled dialogue, but it also
includes any documentation and training that are part of using the computer. It includes
colleagues, consultants, system administrators, customer support and field service
representatives, when they are available. These artifacts, processes, and people are so
significant in shaping our interactions with a computer that it is myopic not to see them
as part of a user’s interface to the computer (e.g., Clement, 1990). In fact, those
responsible for documentation and training overwhelmingly feel that these should be
developed in concert with the software interface, however infrequently this occurs in
practice (Grudin and Poltrock, 1989).

CSCW 90 Proceedings October 1990

271

Figure 1. A computer’* interf4ce to l wer

A User u
Figure 2. A ueer’e interface to l computer

Figure 2 illustrates a user’s interface to a computer. The user consults documentation, is
trained, and solicits advice from colleagues, system administrators, and others. The
system administrator may modify the system on behalf of the user. Following a hardware
failure (a less frequent part of the user-computer interaction as hardware reliability
improves), a field service engineer may directly modify the system. These activities
shape the nature of the interaction that takes place through the input and output devices.

The computer’s interface to users, on the other hand, is quite reasonably defined as being
the software controlling the dialogue -- the engineering perspective shown in Figure 1.
Unlike its users, the computer does not consult with nearby people or objects. (Or does
so relatively little. A system administrator who sets up an environment for a user is part
of the computer’s interface to that user, just as someone who advises a user is part of that
user’s interface to the computer.) In conclusion, our equation of “the user interface” to
software and I/O devices means that “user interface” denotes the computer’s interface to
the user (Figure l), not the user’s interface to the computer (Figure 2). A good
demonstration of our acceptance of this circumscribed use of the term “user interface” is in
Gould’s (1988) excellent chapter on “designing for usability.” He also emphasizes the
importance to “usability” of documentation, training, field support, etc., but he restricts
the use of the term “user interface” to I/O devices. Again, the original engineering
perspective is perpetuated in our use of terms. And once again, this may subtly
discourage a “user perspective” -- a focus on the users, their work, and their environments.

In her book Through the Interface, Bodker (1990) observes that computers are a tool
through which people interface with their work. Sayeki (1989) also distinguishes
between the human-computer interface and the interface between the human working with
the computer and the world. He illustrates this aspect of tool use by considering a blind
man with a cane. The handle of the cane is one interface. The point of the cane is
another, providing contact with the world. The former is important for the quality of
access it provides to the latter -- the interface to the world is a tool user’s principal
concern. Our use of the word “interface” is restricted to the interface to the tool, instead,
which rightly or wrongly tends to be a tool developer’s principal concern.

CSCW 90 Proceedings October 1990

272

As more advanced computers appear, the computer interface to users is changing. The
computer interface may expand to include on-line documentation, on-line help, and on-
line training, reducing the need for mediators. More reliable hardware eliminates other
intermediaries. Better software -- and interfaces -- reduce our reliance on system
administrators and consultants. These advances offer the hope that the computer interface
and the user interface may come into closer alignment, as shown in Figure 3. In this
optimistic view, the computer has assumed many of the support roles, even summoning
hardware support directly when needed. Colleagues may always play a role, although
perhaps focused more exclusively on higher-level aspects of a user’s tasks. But the time
when a user’s interface meshes with the computer’s interface is not yet here. We need to
use all the means at our disposal to focus on the work environments of computer users,
loosening our ties to the engineering perspective that served us well in the past and that
lives on in our patterns of speech and thought.

Field 0 support

.

1
.

Figure 3. A user's interface to a hypothetical future computer

3. “DESIGNER”

Finally, consider our colleagues, interface designers. We have noted that the terms “user”
and “interface” inadvertently establish an engineering focus. The term “designer” more
naturally evokes the engineering context, of course, but its use, too, has gradually come
to disguise a changed reality. In brief, it encourages a view of “the designer” as an
individual who assumes (or should assume) responsibility for all aspects of an interface
design, bringing together broad knowledge of computer users and systems. This view,
perhaps once valid, conceals the cumulative and collaborative nature of most system
design today. By reenforcing an obsolete perspective, researchers’ use of terminology
puts them at risk of misdirecting their efforts.

Many researchers, concerned with deep issues of representation, have addressed designers’
cognitive or “mental” models of computer systems and computer users. Some wrote
before the changes in the field noted here took place and perhaps all would agree with the

CSCW 90 Proceedings October 1990

273

conclusions of this paper. Their central points may be valid -- but the precedents they
established for the use of terminology should be examined.

In a seminal work on mental models in the context of computing, Moran (1981) proposed
that “to design the user interface of a system is to design the user’s model. The designer
needs to understand... what knowledge goes into the user’s conceptual model.” Young
(1983) asked whether “the Designer should be encouraged to share the... User’s conceptual
model (of the system)” or whether “the Designer will need to employ a cruder User’s
conceptual model...” Carroll (1984) distinguished “the designer’s model (that is, the
understanding that the analyst develops of what it is that the user knows)” from the user’s
model. In a similar vein, Norman (1986) described “the generalized ‘typical user’ model
that is what the designer develops to help in the formulation of the... conceptual model
(of the system) held by the designer.” In a tour de force treatment, Streitz (1988) reviews
these works and devises a formalism for representing models. For example, D&J(f))
represents “the designer’s conceptualization of the user’s mental model (of the
functionality of a system).” A yet more complex elaboration is proposed by Nielsen
(1990), in which a “user description model (or) type DU model (is often) whatever the
designer is thinking about the users.”

The “interface designer” described in such papers is typically regarded as designing only
the software dialogue (although including off-line documentation in Norman, 1986 and
Nielsen, 1990, and training in Streitz, 1988). This again obscures the context of use and
reenforces the engineering perspective, “the computer’s interface to the user.” But a more
significant problem is that a focus on “the designer’s model of the user” obscures design
contexts. To begin with, just as variability in work contexts leads to differences among
users, development contexts vary enormously, which strongly influences design practice
(Grudin, 1990b). In addition, an image is suggested of “the designer” working in
isolation. This conception of “the interface designer” was once relatively veridical -- each
interactive system or application required a software interface and the programmer started
with a more or less blank slate. But this no longer resembles typical design practice:
designers do not work in a vacuum. Speaking of “the designer,” while not entirely
illegitimate, obscures the forces separating designers in many design contexts from the
need to work with such “user models.”

Design knowledge is cumulative and often implicit. Although some interface design
knowledge is “retired” by advances in technology, we do learn from our collective
experience. A substantial body of interface lore has been accumulated through research
and trail-and-error development. Even without the conservative pressures of the “installed
base,” we have reason to stand on the shoulders of those who came before us. The well-
known SRI and Xerox PARC antecedents of the innovative Macintosh interface illustrate
the continuity of interface development. And designers often use precedent without
absorbing an underlying knowledge or model. For example, one can make use of a pair
of contrasting colors that have proven effective without knowing the model of human
color vision that first generated them (or, for that matter, whether they were first
discovered through trial and error instead).

Interface design responsibilities are distributed. Interfaces have become too complex for
one person to manage well. In a large product development company, product marketing
may define some of a new product’s interface features, software engineers may do the bulk
of the interface design, with human factors engineers contributing to some features and
graphic or industrial design engineers contributing to others. If the entire “users’ interface
to the computer” is considered, technical writers may be responsible for the
documentation, an education group may develop training, and so forth. They all
contribute to the interface design. They may become involved at different times and may
not even communicate with one another (Grudin and Poltrock, 1989). Interface design
specialization continues: professionals in linguistics, video, sound, and other areas are

CSCW 90 Proceedings October 1990

274

more frequently consulted. Smaller development organizations, lacking the resources to
employ specialists, may have to hire consultants -- or simply license or “borrow”
interface concepts in circulation.

“New” interfaces are constrained by existing interfaces. Computer users are increasingly
likely to have habits or expectations that cannot be ignored. For example, a new
spreadsheet design for PCs that incorporates dialogue conflicting with that of Lotus l-2-3
has severely limited chance of acceptance. The growing tendency of vendors to seek a
“consistent look and feel” within a product family further encourages the borrowing of
design elements. Hardware and software advances that facilitate platform-independent
software and isolate aspects of interface code makes such “reuse” easier. Formal and de
facto standards make it necessary. A design can be borrowed without a complete
understanding of the original underlying model, if one even existed. The risk of
unexpected consequences in the new setting may be reduced through acquiring such an
understanding, of course. But that risk is not always great and may also be handled
through prototyping and iterative design practices.

In summary, each designer at most contributes incrementally to a large enterprise, helping
to refine a collective design. It is a poor choice of words to say, “it is still the designer
who does the implementation” and “all models... are ‘in the head’ of a person,” (Streitz,
1988). Modem interfaces incorporate a tremendous amount of implicit knowledge of
computer users -- their perceptual psychology, motor coordination, cognitive psychology,
even a little social psychology -- but the totality of this knowledge is held by no one
individual. In general, while an individual can make a difference, the design of human-
computer interfaces evolves under the pressures of technological and social change, which
act through designers as a group, distributed over space and time. The fiction of “the
interface designer” focuses our attention on the small part of the human-computer
interface managed and understood by one person. It diminishes our appreciation of the
continuous growth of implicit understanding of human psychology and work organization
represented in the design of computer systems.

The researchers quoted above were addressing this complexity of design, but their use of
terms may have diminished their own effectiveness. For example, Moran’s (1981)
framework was established to help designers focus systematically on different interface
“levels” and predated most existing work on interface design. Today, the image of “the
designer” working at all interface levels may encourage researchers to overemphasize low-
level issues that are more tractable but that are increasingly standardized and ignored by
real design teams (Grudin, 1989). Similarly, Barnard and Harrison (1989) proposed a
framework for developing a formal, cumulative model of computer users and tasks with
the commendable aim of freeing designers from having to keep all relevant information
“in the head.” The goal is a simulation model that is “a means of encapsulating designer
hypotheses about how the user perceives the system,” with structures that “will vary
depending on which theories are in the designer’s mind about the potential use of the
system.” But for the low-level tasks illustrated in the paper, today’s interface designers
may keep little of this information in mind, and may do little such hypothesizing.
Therefore, such a model may be of limited utility in real design environments. Although
these papers note that designers must address a range of interface issues, from “low-level”
perceptual-motor to “higher” cognitive and even social aspects of human-computer
interaction, each has led to a research paradigm that focuses selectively on the “low” end
of the spectrum. This choice may in part be due to the greater tractability of low-level
issues, but may be further encouraged by the misleading images of “the designer” and “the
user” removed from their real work contexts. Research at these lower levels has made a
scientific contribution, but its significance for systems development can only be assessed
in the actual design and use environments that the terminology obscures.

CSCW 90 Proceedings October 1990

275

Streitz (1988) suggests that “the user also makes inferences about the designer’s
conceptual model,” and “the user (asks) him or herself such questions as ‘what might the
designer have had in mind when designing the sequence of interaction this way?“’ I am
not sure that users do ask such questions, but if they do, they may be wrong to do so.
They might better ask, metaphorically or anthropomorphically, “why did the computer do
that? What does it have in mind?”

The anthropomorphic view of the computer is just one view, bringing with it some
unwanted baggage. But it has the virtue of identifying computer systems as highly
complex artifacts with independent existence in the world, products of a continuous design
process that has engaged countless individuals over decades, during which time an
impressive level of implicit understanding of people and their work has been incorporated.
The terminology brought forward from the field’s origins in engineering can obscure this
history and can obscure the need to maintain and even strengthen the focus on human
psychology and work.

l Quoted in Wright (1990).

2 Of course, developers should consider the experience level of the eventual users of a
system. But this will follow inevitably from acquiring a deep understanding of the users’
work environments, whereas the converse is not true: little about the work environment
is necessarily learned through following general advice to “consider the needs of novice,
casual, and experienced users.”

3 Don Norman pointed out the following passage from Liddle (1989): “...We don’t think
about the end user, in terms of their job. Most of us don’t like to pay much attention to
end users at all. And we certainly don’t know what they want to do in their job. I mean
they’re not even in the computer industry! End users, in fact, are really interesting. ‘End
users’ is a term I like, originally coined by IBM. ‘End users’ is a retronym. . . . A
retronym is a word that used to have a perfectly good meaning and now has to be
retrofitted by a leading adjective. Like an analog watch, You know, (a watch) used to be
this thing with hands that went around, and then this miraculous thing, the digital watch
appeared. And now all watches are digital. So if you happen to have one like this, you
have to say that it’s analog. ‘Human-readable’ falls into this category. Anyway, we call
them end users because ‘Oh, you mean the end! Oh, that guy out there! I thought you
meant the MIS guy that’s more reasonable and rational. God! The end user?“’

ACKNOWLEDGMENT

Members of the Aarhus University Information and Media Sciences Department inspired
this paper by probing my use of these terms. Phil Barnard, Susanne Baker, Tom
Erickson, Hiroshi Ishii, John Bowers, Allan MacLean and Jakob Nielsen provided helpful
suggestions.

CSCW 90 Proceedings October 1990

276

REFERENCES

Bannon, L., 1990. From human factors to human actors. In J. Greenbaum and M. Kyng
(Eds.), Design at work. Hillsdale, NJ: Lawrence Erlbaum Associates.

Barnard, P. and Harrison, M., 1989. Integrating cognitive and system models in human
computer interaction. In A. Sutcliffe and L. Macaulay (Eds.) People and
computers V. Cambridge: Cambridge University Press, 87- 103.

Bodker, S., 1990. Through the interface: A human activity approach to user interface
design. Hillsdale, NJ: Lawrence Erlbaum Associates.

Carroll, J.M., 1984. Mental models and software human factors. IBM Research Report
RC 10616. Yorktown Heights, NY: IBM.

Clement, A., 1990. Cooperative support for computer work: A social perspective on the
empowering of end users. In these Proceedings.

Friedman, A.L., 1989. Computer systems development: History, organization and
implementation. Chichester, UK: Wiley.

Gaines, B.R. and Shaw, M.L.G., 1986. From timesharing to the sixth generation: the
development of human-computer interaction. Part 1. Znt. J. Man-Machine
Studies, 24, l-27.

Gould, J.D., 1988. How to design usable systems. In M. Helander (Ed.) Handbook of
Human-Computer Interaction. Amsterdam: North-Holland.

Grudin. J., 1989. The case against user interface consistency. Communications of the
ACM, 32, 10, 1164-1173.

Grudin, J., 1990a. The computer reaches out: The historical continuity of interface
design. In Proc. CHI’90 Human Factors in Computing Systems, (Seattle,
April l-4).

Grudin, J., 1990b. The development of interactive systems: Bridging the gaps between
developers and users. Manuscript submitted for publication.

Grudin, J. and Poltrock, S., 1989. User interface design in large corporations:
Coordination and communication across disciplines. In Proc. CH1’89
Human Factors in Computing Systems, (Austin, April 30-May 4).

James, W., 1890. The principles of psychology. New York: Holt.

Liddle, D., 1989. What makes a desktop different. In S. Alsop (Producer), Proc. Agenda
90. 69-70.

Malone, T.W., 1985. Designing organizational interfaces. In Proc. CHI ‘8.5 Human
Factors in Computing Systems, (San Francisco, April 14-18).

Moran, T.P., 1981. The Command Language Grammar: a representation for the user
interface of interactive computer systems. Inc. J. Man-Machine Studies, 15,
3-50.

CSCW 90 Proceedings October 1990

277

Nielsen, J., 1990. A meta-model for interacting with computers. Interacting with
Computers, 2,2.

Norman, D.A., 1986. Cognitive engineering. In D.A. Norman and S.W. Draper (Eds.),
User centered system design. Hillsdale, NJ: Lawrence Erlbaum Associates.

Sayeki, Y., 1989. Human interface and cognitive engineering. Information Processing
(Journal of the Information Processing Society of Japan), 30, 1,2-14.

Streitz, N.A., 1988. Mental models and metaphors: Implications for the design of
adaptive user-system interfaces. In H. Mandl and A. Lesgold (Eds.),
Learning issues for intelligent tutoring systems. New York: Springer-
Verlag.

Wright, K., 1990. The road to the global village. Scientific American, March, 57-66.

Young, R., 1983. Surrogates and mappings: Two kinds of conceptual models for
interactive devices. In D. Gentner and A.L. Stevens (Eds.) Mental models.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying
is by permisssion of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791402-3/90/0010/0278 $1.50

CSCW 90 Proceedings October 1990

278

