
Blocking-Aware Processor Voltage Scheduling for Real-Time Tasks ∗

Fan Zhang and Samuel T. Chanson

Department of Computer Science

Hong Kong University of Science and Technology

Clear Water Bay, Kowloon, Hong Kong

Email: {zhangfan, chanson}@cs.ust.hk

Abstract

As mobile computing is getting popular, there is a growing need for techniques that minimize

energy consumption on battery-powered mobile devices. Processor voltage scheduling can effectively

reduce processor energy consumption by lowering the processor speed. In this paper, we study

voltage scheduling for real-time periodic tasks with non-preemptible sections. Three schemes are

proposed: The static speed algorithm derives the minimum static feasible speed based on the Stack

Resource Policy (SRP). Due to blocking, this static speed is usually higher than the speed required

for scheduling fully preemptible tasks (called the utilization speed). Two dynamic speed algorithms

are then introduced to further reduce energy consumption. The novel dual speed algorithm operates

the processor at the utilization speed whenever possible and switches to the higher static speed

only when blocking occurs. The dual speed dynamic reclaiming (DSDR) algorithm reserves time

budget for each job, reclaims the unused time budget from completed jobs and redistributes it to

subsequent jobs so they can run at a lower speed whenever possible. Feasibility conditions for

real-time task sets have been derived and proved mathematically. Simulation results show that the

proposed voltage scheduling algorithms dramatically reduce processor energy consumption over non-

power-aware scheduling algorithms. Furthermore, the two dynamic speed algorithms consistently

outperform the static speed scheme in a wide range of system and workload conditions.

keywords: Dynamic power management, non-preemptible sections, power-aware scheduling, real-

time systems
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1 Introduction

Wireless personal computing and communication devices are becoming increasingly popular. These

devices include laptop computers, PDAs, and various wireless embedded systems. Modern mobile

systems are often equipped with powerful processors and are capable of running sophisticated programs

such as multimedia applications. Unfortunately, faster hardware usually results in faster energy drain.

With battery technology not keeping up with the speed of the processors, the limited battery capacity

has become a major concern. Techniques that utilize energy efficiently so as to prolong battery life have

received much attention recently [5, 9, 14, 18,20].

Much work exists on evaluating the power consumption of mobile computing systems [7, 12, 19]. It

was found that the display (including backlight), processor, hard disk and wireless LAN card account

for most of the power consumption. In particular, the processor may consume up to 25% of the power

for laptop computers [12]. Since the processor may not be fully utilized all the time, processor voltage

scaling (VS) allows the processor to operate at a lower speed when the system load is low, which

has proved to be an effective way to reduce energy consumption [17]. Processors supporting dynamic

speed adjustment are commercially available (e.g., the Crusoe processor of Transmeta and the Intel

StrongARM processor). Basically, voltage scaling changes processor speed by varying the processor

supply voltage. The relationship between processor power (P ), supply voltage (Vs) and clock frequency

(f) can be described by the following formula [6]:

P = C · f · V 2

s , (1)

where C is the switched capacitance. Furthermore, the operating frequency f (and therefore the pro-

cessor speed) is approximately proportional to Vs [9]. Therefore the processor power is proportional to

the cubic of the supply voltage. For the same amount of work, a lower processor speed takes longer

time to complete the job but consumes less energy.

Despite the increased processing delay, voltage scaling is of particular interest to real-time applica-

tions because longer processing time can be tolerated as long as the timing constraints are not violated.

In practice, voltage scaling is usually implemented in the process scheduler, so we shall refer to processor

scheduling with voltage scaling simply as “voltage scheduling” for short in the rest of this paper.

Most previous studies on voltage scheduling have assumed the tasks are fully preemptible [2,17,21,22].

However, in practice tasks may contain sections that are not preemptible. Take Linux for example, the

standard Linux kernel is non-preemptive. At most one execution flow is allowed in the kernel space at

any time. Therefore, although a user process is preemptible while executing in the user mode, when it

invokes a system call (for example, read() or write()) and enters the kernel space, the process becomes

non-preemptible and remains so until it returns to the user mode. In a recent study, it was found that

the non-preemptible sections due to system calls involving disk I/O can be as long as 28ms in a standard

Linux kernel [1]. Non-preemptible sections may also be enforced in systems where resources are shared

among multiple processes. For example, the Non-Preemptible Critical Section Protocol controls resource
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access by disabling preemption when a process is holding a shared resource [15]. As a process can be

delayed by a low priority process executing in the non-preemptible section, assuming fully preemptible

tasks in this case may cause deadline misses or result in incorrect computation.

In this work, voltage scheduling for periodic real-time tasks with non-preemptible sections is studied

for dynamic priority scheduling under the earliest-deadline-first algorithm1 (EDF) as well as for fixed

priority scheduling under the rate-monotonic algorithm (RM). We shall show how to calculate a static

speed by which all admitted tasks can be feasibly scheduled with minimal energy. A dynamic dual speed

algorithm is also proposed to run the processor at an even lower speed in some intervals. Moreover,

as the actual execution time is usually shorter than the declared worst-case execution time (WCET),

a reservation-based scheme which dynamically reclaims processor time for redistribution is proposed

to further reduce energy consumption. We shall show that the proposed algorithms can effectively

reduce processor energy consumption without violating the time constraints. The two dynamic speed

algorithms, in particular, can save a significant amount of energy compared with the static speed

algorithm. Note that the proposed voltage scheduling algorithms determine the processor speed only,

and they must be used together with an existing task scheduling algorithm which will decide the task

execution sequence. We shall assume throughout this paper that EDF and RM are used for dynamic

priority scheduling and fixed priority scheduling, respectively. For each proposed voltage scheduling

scheme, we shall first present the underlying rationale and the general algorithm which are applicable

to both types of scheduling. The specific issues related to EDF and RM are then discussed.

The rest of the paper is organized as follows: Section 2 reviews related research on voltage scheduling.

The system models are introduced in Section 3. Section 4 derives the feasibility conditions and formulas

for the static speed algorithm. Section 5 presents the two dynamic speed algorithms. Performance

evaluation results are presented in Section 6. Finally, Section 7 concludes this paper.

2 Related Work

Since the seminal paper by Weiser [21], much work has been done on voltage scheduling. Research in

this area can be classified into two categories: interval-based scheduling [13, 16, 21] and profile-based

scheduling [2, 9, 17,22].

Interval-based scheduling estimates the processor utilization based on observations in the past in-

terval(s). For example, the PAST algorithm records the processor utilization in the previous interval.

If the utilization exceeded the upper threshold, the supply voltage is incremented; if the utilization was

below the lower threshold, the supply voltage is decremented [21]. The weighted-AVG algorithm [16]

makes use of the processor utilization in the previous interval as well as the average utilization in all past

intervals. Thus prediction is based on both short-term and long-term system behaviors. Simulations

using real-life traces were carried out to evaluate the performance of these algorithms. More recently,

Lorch and Smith [13] proposed to use distributions to estimate the processing requirements of future

1An earlier work on EDF was presented in IEEE Real-Time System Symposiums, 2002 [23].
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tasks from the recent behaviors of similar tasks. They suggested using the gamma model for its low

complexity and good predicating capability.

Interval-based scheduling assumes the workload is more or less stable (or follows some distributions).

The effectiveness in energy reduction greatly depends on the accuracy in predicting future system be-

haviors, which turns out to be very difficult to achieve [8]. Furthermore, interval-based scheduling

algorithms are not suitable for real-time applications. As time constraints are not taken into consider-

ation, these algorithms may improperly lower the processor speed and cause deadline misses.

Profile-based scheduling provides service guarantees for real-time applications and has received more

attention recently. It assumes the characteristics of the tasks (e.g., period, deadline and execution time)

are known. Yao et al. [22] proposed an optimal offline algorithm for scheduling aperiodic real-time tasks.

An online approximation algorithm was also presented in the same paper. Hong et al. [9] used a similar

planning-based approach to handle non-preemptible tasks.

The traditional real-time periodic task model is considered in some recent work. For dynamic priority

scheduling, optimal static speeds can be found to schedule the tasks with minimum energy [2]. Dynamic

speed algorithms utilizing processor slack time have also been proposed. The dynamic reclaiming algo-

rithm (DRA) [2] reserves time for jobs to complete their WCETs at the optimal static speed. The time

leftover by the jobs that do not reach their WCETs are reclaimed so subsequent jobs can utilize it and

execute at lower speeds. Some greedy algorithms take into consideration the processing requirements

in the future [17]. These algorithms delay the future jobs as much as possible so the current jobs can

execute at the lowest speed possible.

All of the above studies on profile-based scheduling have assumed that tasks are either fully pre-

emptible or completely non-preemptible. None of them is suitable for scheduling tasks containing

non-preemptible sections because they may cause deadline misses or incur high scheduling overhead.

In this paper, we propose scheduling schemes that maintain real-time guarantees while preserving the

flexibility and low complexity as scheduling preemptible tasks.

3 System Model

3.1 Task Model

Real-time periodic tasks are considered in this paper. A periodic task consists of a sequence of jobs

generated (or released) at fixed intervals (called the period). We denote the set of tasks by T . Each

task Ti ∈ T is characterized by four parameters:

• Ai: time the task is first released.

• Di: relative deadline of the task, i.e., the time between a job’s arrival time and its deadline.

• Pi: period of the task.

• Ei: worst-case execution time (WCET) of any job in the task.

4



In this paper, we adopt the common assumption that the relative deadline of a task is equal to its

period. We say a job meets the deadline if the job is completed at or before its deadline, and it misses

the deadline otherwise. The scheduling algorithms should guarantee no deadline is missed. A task

Ti = (Ji,1, Ji,2, Ji,3, . . . , Ji,n) consists of n jobs, where job Ji,j is characterized by its release time ri,j , the

execution time ei,j (≤ Ei) and the deadline di,j . The execution time is defined as the time required to

process the job at the processor’s maximum speed. Furthermore, jobs are preemptible except when they

are running in their non-preemptible sections called blocking sections. We say a job is blocked only if it

cannot execute because a lower priority job is executing in its blocking section2. A job can have zero,

one or more blocking sections, and Gi denotes the length of the longest blocking section of any job in

task Ti. The blocking sections are randomly distributed within a job and are non-overlapping.

3.2 Processor Model

The processor is capable of dynamic voltage scaling and its speed is proportional to the supply voltage.

The maximum and minimum possible supply voltages are denoted as Vmax and Vmin, respectively, while

the corresponding processor speeds are Smax and Smin. The processor voltage can be adjusted in discrete

steps within the range. Throughout this paper, we assume the processor’s maximum speed is 1 and all

other speeds are normalized with respect to the maximum speed. We further assume both the voltage

transition delay and cost are negligible [17], and the voltage can be adjusted at any time (whether inside

or outside a blocking section). We also assume the processor power follows formula (1), which in our

case can be simplified to P = A · V 3
s , where A is a constant.

4 Static Speed Scheduling

In this section we show how to find a static speed that minimizes energy consumption when processing

periodic tasks with blocking sections. In a static speed scheme, the processor speed is changed only when

a new task arrives or when an existing task terminates. The earliest-deadline-first (EDF) algorithm and

the rate-monotonic (RM) algorithm are considered. Jobs with the same priority are serviced by the

first-come-first-serve (FCFS) discipline.

In our task model, a higher priority job cannot start execution if another job is executing in its

blocking section. This behavior is similar to the Stack Resource Policy (SRP) proposed by Baker to

solve the general resources sharing problem [3]. The core idea of the SRP is that a job cannot start

execution unless all the resources it needs are available. Scheduling tasks with blocking sections can be

regarded as a special case of scheduling under the SRP, where there is only one non-preemptible shared

resource, and every job needs to request the resource to run. If the job does not actually need the

resource, which corresponds to a job without a blocking section in our task model, it is still required to

request the resource for zero unit of time before it can start execution.

2The situation of a higher priority job preventing lower priority jobs from running has nothing to do with the blocking

section and is not described as “blocking” in this paper.

5



The feasibility condition of the SRP with EDF is given below:

Theorem 1 [3] Suppose n periodic tasks are sorted by their periods. They are schedulable by EDF

with the SRP if

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei

Di
+

Bk

Dk
≤ 1,

where Bk is the maximum length that a job in Tk can be blocked.

When voltage scaling is allowed, the static processor speed can be reduced according to Theorem 2.

Note that we have replaced Di with Pi since they have the same value in our task model (see Section 3.1).

Theorem 2 Suppose n periodic tasks are sorted by their periods. They can be feasibly scheduled by

EDF with the SRP at processor speed H(0 < H ≤ 1) if

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei

Pi
+

Bk

Pk
≤ H,

where Bk is the maximum length that a job in Tk can be blocked.

Proof: Note that scheduling a task set T at processor speed H is equivalent to scheduling a task set

T ∗ at the maximum processor speed where the execution times and resource holding times of T ∗ are

1/H times the corresponding values in T . Hence, the above inequality can be rewritten as

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei ·
1

H

Pi
+

Bk · 1

H

Pk
≤ 1.

Note that the maximum blocking time a job in T ∗

i may encounter would also be scaled up by 1/H times.

According to Theorem 1, T ∗ is schedulable by the SRP at full processor speed (=1), so the original task

set T is schedulable at speed H. ¤

When blocking sections are considered, the maximum length of blocking (Bk) in Theorem 2 can be

easily computed (see proof of Corollary 1).

Corollary 1 Suppose n periodic tasks with blocking sections are sorted by their periods. They can be

feasibly scheduled by EDF at processor speed H(0 < H ≤ 1) if

∀k, 1 ≤ k ≤ n,

k
∑

i=1

Ei

Pi
+

max{Gj |Pk < Pj}

Pk
≤ H, (2)

where Gj is the maximum length of any blocking section in Tj and 1 < j ≤ n.

Proof: Note that in EDF scheduling, a job can only be blocked by jobs in tasks with larger periods, so

max{Gj |Pk < Pj} is the maximum time that any job in Tk can be blocked. ¤

The feasibility condition of the SRP with RM is as follows:
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/* The algorithm finds the minimum processor speed
that can feasibly schedule a set of n tasks. */

Test Speed( )
H = 0;
utilization = 0
for i = 1 to n /*(P1 ≤ P2 ≤ . . . ≤ Pn)*/

utilization + = Ei/Pi;

speed = utilization +
max{Gj |Pi<Pj}

Pi
;

H = max(speed,H);
end for
return H;

Figure 1: The static speed algorithm for EDF.

Theorem 3 Suppose n periodic tasks with blocking sections are sorted by their periods. They can be

feasibly scheduled by RM with the SRP if

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei

Pi
+

Bk

Pk
≤ k · (21/k − 1),

where Bk is the maximum length that a job in Tk can be blocked.

Similar to the EDF case, based on the feasibility condition for RM, we can calculate the feasible

static speed according to the following corollary:

Corollary 2 Suppose n periodic tasks with blocking sections are sorted by their periods. They can be

feasibly scheduled by RM at processor speed H(0 < H ≤ 1) if

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei

Pi
+

max{Gj |Pk < Pj}

Pk
≤ H · k · (21/k − 1) (1 ≤ j ≤ n). (3)

where Gj is the maximum length of any blocking section in Tj and 1 < j ≤ n.

The static speed H needs to be re-computed only when a task completes or when a new task arrives.

Figure 1 shows the static speed algorithm under EDF. The algorithm under RM is similar and is omitted

due to space constraint. The objective is to find a minimum value of H such that the inequalities are

satisfied. If the return value (H) does not exceed 1, the newly arrived task is admitted and the processor

speed is set to H; otherwise the new task is not admitted and the original static speed is maintained.

If the processor speed can only be adjusted at discrete levels, then the lowest speed level that is greater

than or equal to H is used.

The overhead of the algorithm is very low. By maintaining two task lists sorted respectively by the

period and by the maximum length of the blocking sections, H can be computed in O(n) time, where n

is the number of tasks. Despite its simplicity, this static speed algorithm can effectively reduce energy

consumption when the system load is low. In the next section, we shall introduce two dynamic speed

algorithms which achieve even more energy saving at the expense of higher complexity.
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5 Dynamic Speed Scheduling

The static speed algorithm in Section 4 guarantees the feasibility of the task set. However, the processor

could be idle during some intervals in the computed schedule. These idle intervals come from two sources.

First, the feasibility test is based on the WCETs and the maximum blocking lengths of the tasks. In

reality, the actual execution times and blocking sections of individual jobs are usually shorter. Second

and more importantly, given the feasibility condition, the total processor utilization of the admitted

tasks is usually lower than the normalized static feasible processor speed H, so the processor is still

under-utilized even if all the jobs use their WCETs. Utilizing these idle intervals, some of the running

jobs can be processed at a lower speed so energy can be further reduced. However, under a static speed

algorithm, further reducing the static speed below the value calculated in Section 4 may incur deadline

misses. In this section, we present two new algorithms that dynamically slow down the processor in

strategic intervals while still preserving the feasibility of the task set.

5.1 The Dual Speed Algorithm

Fully preemptible tasks can usually be feasibly scheduled at a static speed lower than the one calculated

in the last section. For example, a set of tasks can be feasibly scheduled by EDF with a minimum static

speed L if
n

∑

i=1

Ei

Pi
≤ L.

Comparing with (2), it is easy to see L ≤ H. We refer to L as the utilization speed, or simply the

“low speed”. In contrast, we call the static speed H in Section 4 the “high speed”. We propose a dual

speed algorithm that allows the processor to operate at speed L and switch to the high speed H only

when blocking occurs. The rationale is clear: The high speed is only necessary to guarantee the time

constraints of jobs that are blocked. When no job is blocked, the low speed would be adequate. When

blocking occurs only infrequently, this strategy would operate the processor at the low speed most of

the time and save a significant amount of energy.

The dual speed algorithm is presented in Section 5.1.1. The feasibility conditions of the dual speed

algorithm with EDF and RM are given in Sections 5.1.2 and 5.1.3, respectively.

5.1.1 The Algorithm

The algorithm starts by running at the low speed L to process the released jobs according to their

priorities. When a job Ji blocks a higher priority job Jk, it will not only delay the blocked job but

also transitively delay subsequent higher priority jobs. The processor therefore must operate at the

high speed to guarantee the timeliness of these delayed higher priority jobs. However, when a job with

priority equal to or lower than the priority of job Ji is selected to run at time t, the processor can switch

back to the low speed. This is because all jobs at time t would have the same or lower priority as Ji,

so they are not blocked by Ji, directly or indirectly. Moreover, jobs released after time t will not be
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/* H and L are recomputed by the static speed algorithm as a task joins or
leaves the system. Initially the processor speed is L. */

When job Ji arrives:
if prti > prtcurrent job /*The new job has a higher priority*/

if Preempt Current Job() is successful
Execute Ji;

else /*Ji is blocked*/
if bprt == −1 /*The first blocking*/

Set Speed(H); /*Set the processor speed at H*/
bprt = prtcurrent job;

end if
end if

end if

When job Ji in the queue is selected to run:
if Ji == NULL ‖ prti ≤ bprt

bprt = −1;
Set Speed(L); /*Set the processor speed at L*/

end if
if Ji 6= NULL

Execute Ji;
end if

Figure 2: The dual speed algorithm.

transitively delayed by jobs completed before t. Similarly, if all existing jobs are completed and the

processor becomes idle, all jobs released thereafter will not be affected by the jobs released before the

idle period. As a result, if a new job arrives when the processor is idle, this job can be processed at the

low speed L.

The dual speed algorithm is formally presented in Figure 2. The following notations are used in the

algorithm:

Ji: current job of task Ti
3.

prti: priority of job Ji.

bprt: priority of the blocking job in high speed intervals. Equal to −1 otherwise.

Initially the processor operates at speed L and bprt = −1. When a job is blocked, the processor speed is

switched to H and bprt is set to the priority of the blocking job. The high speed interval is terminated

when a job with priority equal to or lower than bprt is executed. Note that the speed change from L to

H is necessary only when bprt 6= −1, i.e., outside any high speed intervals. Although blocking may also

occur inside a high speed interval, the priority of the blocking jobs would be higher than bprt (otherwise

the current high speed interval would have already been terminated). In this case, changing bprt to a

higher value will not extend the current high speed interval.

3Since each task can only have one job present at any time, no ambiguity is introduced.
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Figure 3: Comparison of static speed and dual speed algorithms under EDF.

In the dual speed scheme, the high speed and the low speed need to be re-calculated only when a

task joins or leaves the system. The calculation of H and L takes O(n) time where n is the number

of tasks. After that, both procedures in Figure 2 take O(1) time only. As H and L are not frequently

changed, the overhead of the algorithm is minimal. The dual speed algorithm can be used with EDF or

RM to schedule dynamic priority or fixed priority tasks, respectively. However, different high and low

speeds are required for EDF and RM, as will be discussed later.

An example is given in Figure 3 to illustrate how energy is saved under the dual speed algorithm

compared with the static speed algorithm. The up and down arrows denote the arrival times and

deadlines of the jobs, respectively. The white boxes indicate job execution intervals, while the shaded

boxes indicate blocking sections. EDF is used to schedule the tasks in this example. The two jobs in

T1 both need 1 time unit to finish at the high speed H while the job in T2 needs 4 time units. Suppose

the low speed L is half the value of the high speed. Under the static speed algorithm, the processor

runs at speed H throughout interval [0, 6] (Figure 3a). Under the dual speed algorithm, the processor

runs at speed L before time point 4 at which blocking occurs (Figure 3b), and after time point 7 when

the blocked job is completed. Based on formula (1), the dual speed algorithm saves about 38 percent
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of energy compared with the case of static speed.

5.1.2 Feasibility under Dynamic Priority Scheduling (EDF)

Although the dual speed algorithm reduces the processor speed in some intervals, the feasibility of

the task set is maintained. The following theorem guarantees that under EDF scheduling if a task

set is schedulable by the static speed algorithm, it is also schedulable by the dual speed algorithm.

Furthermore, the energy consumption under the dual speed algorithm can never be higher than that

under the static speed algorithm.

Theorem 4 Suppose n periodic tasks with blocking sections are sorted by their periods. They can be

feasibly scheduled by the dual speed EDF algorithm with high speed H and low speed L if

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei

Pi
+

max{Gj |Pk < Pj}

Pk
≤ H (4)

and
n

∑

i=1

Ei

Pi
≤ L. (5)

Proof: We shall prove the theorem by contradiction.

In EDF scheduling, priorities are assigned to jobs based on their deadlines, and a earlier deadline

indicates a higher priority. For clearer presentation, we use deadlines instead of priorities in the following

proof.

Suppose the claim is false and t is the earliest time that a job misses its deadline. We find a time

point t1 before t which is the latest time point such that no active job arrived before t1 has a deadline

at or before t. If t1 does not exist, we let t1 = 0. Constructed in this way, the processor is never idle

during (t1, t] and only two categories of jobs can execute in the interval. The jobs in the first category,

denoted by N , are released after t1 and have deadlines at or before t. The second category, if exists,

consists of a single job, denoted by Jm, which has a deadline after t and is executing in its blocking

section at time t1.

We consider two cases: only jobs in N are executed during (t1, t], and both Jm and jobs in N are

executed during the interval.

Let X = t − t1. In the first case, because all tasks are periodic, the processor demand generated by

the jobs in N is bounded by
∑n

i=1
bX/Pic ·Ei. On the other hand, as the processor is never idle and its

speed is greater than or equal to L in the entire interval, the processor demand that can be handled is

at least L · X. Since a job misses its deadline at time t by assumption, the total processor demand in

the interval must exceed what the processor can handle in the same interval. Therefore

n
∑

i=1

⌊

X

Pi

⌋

· Ei > L · X.
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Since X/Pi ≥ bX/Pic, we have

n
∑

i=1

X

Pi
· Ei ≥

n
∑

i=1

⌊

X

Pi

⌋

· Ei > L · X ⇒
n

∑

i=1

Ei

Pi
> L,

which contradicts with (5).

In the second case, the processor demand during (t1, t] is larger than that in the first case due to

the execution of Jm. However, since Jm will no longer be executed once it leaves its blocking section,

the total time that Jm can execute during (t1, t] cannot exceed its longest blocking section, i.e., Gm.

Therefore the total processor demand is bounded by Gm +
∑l

i=1
bX/Pic · Ei, where Pl is the longest

period that is smaller than or equal to X. As the deadline of Jm is later than t and all jobs in N have

deadlines earlier than or equal to t, the processor must have been operating at speed H throughout the

whole interval (t1, t], therefore the amount of work processed is X · H. If there is a deadline miss at

time t, the processor demand must be greater than the work processed, i.e.,

Gm +
l

∑

i=1

⌊

X

Pi

⌋

· Ei > X · H.

Since Pl < Pm ⇒ Gm ≤ max{Gj |Pl < Pj}, we have

max{Gj |Pl < Pj} +
l

∑

i=1

X

Pi
· Ei > X · H.

Because Pl ≤ X , we get
l

∑

i=1

Ei

Pi
+

max{Gj |Pl < Pj}

Pl
> H,

which contradicts with (4). ¤

5.1.3 Feasibility under Fixed Priority Scheduling (RM)

Similarly, the schedulability conditions for the dual speed algorithm scheduling fixed priority tasks can

be derived as given in Section 5.1.2. When the dual speed algorithm is used with the rate-monotonic

(RM) algorithm, a given task set is schedulable if the high and low speeds satisfy the following conditions:

n
∑

i=1

Ei

Pi
≤ L · n · (21/n − 1),

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei

Pi
+

max{Gj |Pk < Pj}

Pk
≤ H · k · (21/k − 1) (k < j ≤ n).

The feasibility of the dual speed algorithm can be proved as follows:

Lemma 1 Suppose n periodic tasks are sorted by their periods. If

k
∑

i=1

Ei

Pi
≤ L · k · (21/k − 1), (6)
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where 1 ≤ k ≤ n, then ∃t ∈ U = {m · Pi|i = 1, . . . , k; m = 1, . . . , bPk/Pic} such that

k
∑

i=1

Ei · dt/Pie ≤ L · t. (7)

Proof: The proof is obtained by noticing that expression (6) is a sufficient condition for the k-th task to

be schedulable [11] when all tasks are fully preemptible, while expression (7) is a sufficient and necessary

condition [10]. ¤

Lemma 2 Suppose n periodic tasks with blocking sections are sorted by their periods. If

k
∑

i=1

Ei

Pi
+

max{Gj |Pk < Pj}

Pk
≤ H · k · (21/k − 1) (k < j ≤ n),

where 1 ≤ k ≤ n, then ∃t ∈ U = {m · Pi|i = 1, . . . , k; m = 1, . . . , bPk/Pic} such that

k
∑

i=1

Ei · dt/Pie + max{Gj |Pk < Pj} ≤ H · t.

Proof: The proof is similar to that given in Lemma 1 by replacing the WCET of task Tk from Ek to

Ek + max{Gj |Pk < Pj}. ¤

Theorem 5 Suppose n periodic tasks with blocking sections are sorted by their periods. They can be

feasibly scheduled by the dual speed RM algorithm with high speed H and low speed L if ∀k, 1 ≤ k ≤ n,

∃ta, tb ∈ U = {m · Pi|i = 1, . . . , k; m = 1, . . . , bPk/Pic} such that

k
∑

i=1

Ei · dta/Pie ≤ L · ta (8)

and
k

∑

i=1

Ei · dtb/Pie + max{Gj |Pk < Pj} ≤ H · tb. (9)

Proof: We shall prove this theorem by contradiction.

Suppose the claim is false and t is the earliest time point that a job, say Jk with priority level prtk

misses its deadline. We find another time t1 before t which is the latest time point such that there is no

job available with a priority higher than or equal to prtk. If t1 does not exist, we let t1 = 0. Constructed

in this way, the processor is never idle during (t1, t] and only two categories of jobs can be executed

in the interval. The jobs in the first category, denoted by N , are released after t1 and have priorities

higher than or equal to prtk. The second category, if exists, consists of a single job, denoted by Jm,

whose priority is lower than prtk and it is executing in its blocking section at time t1.
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We consider two cases: i) only jobs in N are executed, and ii) both Jm and jobs in N are executed.

Following similar approach for the proof of Theorem 4 and analyzing the processor demand generated

and processed during (t1, t], these two cases can be found to contradict with expressions (8) and (9),

respectively. ¤

Corollary 3 Suppose n periodic tasks with blocking sections are sorted by their periods. They can be

feasibly scheduled by the dual speed RM algorithm with high speed H and low speed L if

n
∑

i=1

Ei

Pi
≤ L · n · (21/n − 1), (10)

and

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei

Pi
+

max{Gj |Pk < Pj}

Pk
≤ H · k · (21/k − 1) (k < j ≤ n). (11)

Proof: The proof directly follows from Lemma 1, Lemma 2 and Theorem 5. ¤

Both Theorem 5 and Corollary 3 provide means to find feasible high and low speeds to use with the

dual speed algorithm. Theorem 5 produces a tighter bound (i.e., lower speed), but the complexity of

computing the speeds is high when the number of tasks is large. Corollary 3, on the contrary, provides

a simpler way to calculate H and L, but the resulting speeds may be higher than those found by

Theorem 5. In practice, the choice could be made based on the number of concurrent tasks and the

number of jobs each task may contain. If the number of tasks is small while each task contains a large

number of jobs (e.g., playing back a movie), preference can be given to Theorem 5; otherwise the speeds

can be calculated by the formulas in Corollary 3.

In the dual speed algorithm, the processor speed is always set to H when blocking occurs, indepen-

dent of the priority of the blocking job and the length of the blocking section. In fact, a lower speed

may be adequate if we take these two factors into consideration. Take RM scheduling for example, if

the blocking job belongs to Tb, then speed H ′ can be used instead of H, where

∀k, 1 ≤ k < b,
k

∑

i=1

Ei

Pi
+

Gb

Pk
≤ H ′ · k · (21/k − 1).

The algorithm then becomes a multi-speed scheme with n possible speeds depending on the possible

length of blocking. Unlike the dual speed scheme, the algorithm must maintain nested high speed

intervals because they may have different speed requirements, that is, the inner levels require higher

speeds. The processor speed therefore needs to be dynamically changed when the system steps into or

out of a higher speed interval.

We give a simple example to illustrate this concept. Consider a task set with three tasks. The

characteristics of the tasks (Ai, Di, Pi, Ei, Gi) are respectively T1 = (3, 5, 5, 1, 0), T2 = (1, 10, 10, 2, 2)

and T3 = (0, 20, 20, 1, 1). The low speed L ≈ 0.58. The high speeds are H2 = 0.77 if the blocking job

is in T2 and H3 = 0.64 if the blocking job is in T3. The task execution is shown in Figure 4. In the

14
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Figure 4: An illustration of nested speed levels.

example, T3 executes at the low speed until T2 arrives and is blocked. The processor speed is then

increased to H3. T1 arrives later and is blocked by T2, requiring an even higher processor speed H2.

When the first job in T1 completes, the processor speed is lowered to H3. During the execution of the

second jobs in T1 and T2, the processor runs at the low speed L because there is no blocking.

5.2 The Dynamic Reclaiming Algorithm

The speeds in the dual speed algorithms are calculated based on the WCETs of the tasks. The actual

processing demand is often lower. When a job completes early, the subsequent jobs can be allowed to run

longer without violating their deadlines. Therefore the corresponding processing speed can be further

reduced to save energy. We present a reservation-based scheme that allocates time budget to jobs. The

time budget specifies the wall clock time that a job can execute, so the time allocated to each job is

guaranteed. A dynamic reclaiming mechanism collects the residue time budget from early completions

for redistribution. Since this algorithm is an extension of the dual speed algorithm, it is called the Dual

Speed Dynamic Reclaiming (DSDR) algorithm. Aydin et al. [2] proposed a similar approach for fully

preemptible tasks, but their algorithm is not applicable when blocking sections are present.

5.2.1 The Algorithm

First, we use the term time budget (denoted by R) to specify the wall clock time that a job is allowed

to execute on the processor. The time budget is computed (to be described shortly) and assigned to a

job when it arrives, and is consumed as the job executes. In addition, the assigned time budget has a

priority equal to the priority of the job. The execution time (denoted by E) of a job, on the other hand,

describes the workload imposed by the job. It is defined as the required time to complete the job if the

processor runs at its maximum speed. As the processor speed may change in actual execution, the time

budget may not be the same as the execution time. In DSDR, a job will always complete its execution

before its time budget is depleted. Therefore, given the time budget and the execution time of a job,

the processor should operate at speed S = E/(Smax · R), where Smax is the maximum processor speed.

Just like the dual speed algorithm, in DSDR, the system also enters a high speed interval when
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blocking occurs. However, the high speed interval in DSDR only affects the computation of the time

budget but does not determine the processor speed. Furthermore, the high speed interval will terminate

only when all the time budget with priority higher than that of the blocking job has been consumed.

We introduce a new term called “base speed” in DSDR. The base speed simulates the processor speed

under the dual speed algorithm, and is used to determine the time budget an arriving job will receive.

Specifically, a job is allocated the amount of time budget that enables it to complete its WCET at

the base speed before depleting its time budget. If a job is released in a high speed interval and has

a priority higher than that of the blocking job, it assumes the base speed H and its time budget is

R = E/H. Otherwise it assumes the base speed L and has budget R = E/L. Just as in the dual speed

algorithm, H and L are recomputed on task arrivals and departures.

A Free Time Budget list called the FTB-list keeps track of the unconsumed time budget. Each item

in the FTB-list contains two values: the amount of time budget and its priority. The list is sorted in

decreasing order of the time budget’s priority. The free time budget comes from two sources. First,

when a job completes, its residue time budget is sent to the list. Second, if the base speed of a job is

H, the job will receive less time budget than if the base speed is L. The time budget thus saved is also

inserted into the FTB-list with priority bprt (the priority of the blocking job that started the high speed

interval). The reclaimed time budget in the FTB-list will be used to allow some other jobs to run at a

lower speed and therefore saves energy.

Before formally presenting the algorithm, we first introduce some additional notations:

Rr
i (t) : time budget of job Ji at time t.

RF
i (t) : total amount of time budget in the FTB-list that job Ji is eligible to at time t.

Ei : worst-case execution time of job Ji under the maximum speed Smax(= 1).

Er
i (t) : worst-case residue execution time of job Ji under Smax at time t.

The core algorithm is presented in Figure 5. H, L, prti and bprt have the same meanings and initial

values as in the dual speed algorithm. When a job is scheduled to run, it is eligible to use its own

time budget as well as the time budget in the FTB-list with a higher or equal priority. The actual

processor speed is calculated according to the usable time budget RF
i (t) + Rr

i (t) and the worst-case

residue execution time Er
i (t) of the job that is scheduled to run. However, when blocking occurs, the

processor speed is always forced to H during that blocking section in order to minimize the blocking

time. To complete the DSDR algorithm, the following rules are used to update the time budget and

the worst-case residue execution time of a job as well as the time budget in the FTB-list:

1. As a job executes, its eligible free time budget is consumed at the same speed as the wall clock

starting from the front of the FTB-list. Its own time budget will be consumed after the eligible

free budget is depleted. Er
i (t) is decremented by the processor speed per unit time.
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When a new job (Ji) arrives:
Er

i (t) = Ei;
if bprt 6= −1 && prti > bprt /*Job released in a high speed interval*/

Rr
i (t) = Ei/H;

Insert (Ei/L − Ei/H) to the FTB-list with priority bprt;
/*Reclaim unneeded time budget due to running at high speed H*/

else
Rr

i (t) = Ei/L;
end if
if prti > prtcurrent job

if Preempt Current Job() is successful
Select Ji to run;

else if bprt == −1 /*Ji is blocked*/
Set Speed(H); /*Force the speed to H in the blocking section*/
bprt = prtcurrent job;

end if
end if

When job Ji is selected to run:

Set Speed(
Er

i (t)

RF
i

(t)+Rr
i
(t)

); /*Calculate the appropriate processor speed*/

Execute Ji;

When job Ji is in execution:
Set bprt = −1 if the priority of the budget being consumed is lower than or equal to bprt;

When job Ji completes:
if Rr

i (t) 6= 0
Insert Rr

i (t) to the FTB-list; /*Early completion reclamation*/
end if

Figure 5: The dual speed dynamic reclaiming (DSDR) algorithm.

2. When the processor is idle, the time budget in the FTB-list is consumed at the same speed as the

wall clock unless the FTB-list is empty.

3. When a new task arrives at time t, the time budget of every job is set to Er
i (t)/H∗, where H∗ is

the new high speed value. The FTB-list is then cleared and the free time budget in the list is lost.

As new task arrivals are infrequent, the impact of time budget loss caused thereby is minimal.

The above rules do not need to be carried out at every time unit. Instead, Rule 1 is applied only

when the current job completes, blocks another job, or is preempted. Rule 2 is used only if a new job

arrives when the processor is idle.

5.2.2 Feasibility under Dynamic Priority Scheduling (EDF)

As an extension of the dual speed algorithm, DSDR maintains the same feasibility conditions. Before

proving this, we first prove that under DSDR a job is always completed before its time budget is

depleted.
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Lemma 3 If a task set is scheduled by DSDR, every job will complete before depleting its time budget.

Proof: Take any interval in which job Ji is continuously executing. Suppose t is the time Ji starts

execution and t′ is the end of execution. According to the DSDR algorithm (Figure 5), at time t+∆t (0 ≤

∆t ≤ t′ − t ≤ Rr
i (t) + RF

i (t)), the job’s worst-case residue execution time and its time budget are

respectively:

Er
i (t + ∆t) = Er

i (t) −
Er

i (t)

RF
i (t) + Rr

i (t)
· ∆t,

and

Rr
i (t + ∆t) =

{

Rr
i (t) ∆t ≤ RF

i (t)

Rr
i (t) − (∆t − RF

i (t)) ∆t > RF
i (t)

. (12)

We can further prove that ∀∆t(0 ≤ ∆t ≤ Rr
i (t) + RF

i (t)),

Rr
i (t + ∆t)

Er
i (t + ∆t)

≥
Rr

i (t)

Er
i (t)

, (13)

which means the ratio between Rr
i and Er

i will not decrease after any period of execution. Since the

initial ratio is at least 1/H, a job will not exhaust its own budget before it completes. ¤

The feasibility conditions of DSDR with EDF are given and proved as follows:

Theorem 6 Suppose n periodic tasks with blocking sections are sorted by their periods. If

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei

Pi
+

max{Gj |Pk < Pj}

Pk
≤ H, (14)

where k < j ≤ n, and
n

∑

i=1

Ei

Pi
≤ L, (15)

then all jobs can be feasibly scheduled when DSDR/EDF is used with high speed H and low speed L.

Proof: By Lemma 3, all jobs complete before their budget is depleted. Therefore, in order to prove

that all jobs meet their deadlines, we only need to prove that budget is always consumed before its

deadline. The latter is proved by contradiction as follows.

Suppose the claim is not true. Let t be the earliest instant that the time budget of job Jk is not

depleted at its deadline. We choose another time t1 before t, which is the latest time point such that no

pending jobs arrived before t1 has a deadline at or before t, and the FTB-list does not contain any budget

item whose deadline is at or before t. If such a time point does not exist, let t1 = 0. Constructed in

this way, the processor never stops consuming time budget throughout the interval (t1, t]. Furthermore,

the time budget consumed during the interval is either generated after t1 and has a deadline before t

(denoted as time budget A), or has a deadline after t (denoted as time budget B).

We consider two cases. In the first case, only the time budget in A is consumed. Note that time

budget is only generated on job releases. Let Y = t − t1, the total amount of time budget in A is
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Jb

Figure 6: An illustration showing when the time budget in B is consumed.

bounded by
∑n

i=1
bY/Pic ·Ei/L. As there is still time budget left at time t, the amount of time budget

in A must be greater than the time budget consumed in the interval, which is Y . Therefore

n
∑

i=1

⌊

Y

Pi

⌋

·
Ei

L
> Y,

which contradicts with (15).

In the second case, the time budget in both A and B is consumed in the interval. Unlike the situation

in the proof of Theorem 4, the time budget in B may be consumed anywhere in (t1, t] instead of only

at the beginning of the interval. This scenario is illustrated in Figure 6. Jb, with a deadline later than

t, starts by consuming the time budget in the FTB-list with deadlines earlier than or equal to t. It

depletes the time budget in A after entering its blocking section and starts to consume the time budget

in B. In this case, we choose a third time t2 which is the latest time point before t such that the

time budget being consumed has deadline later than t. Since the time budget in B is consumed in the

interval (t1, t], t2 must exist and t1 < t2 < t. Before the time budget in the FTB-list is depleted, at

least a job with a deadline equal to t or earlier must have arrived and is blocked; otherwise Jb would

have been preempted before t2 or the assumption t1 < t2 would be violated. Furthermore, there is no

time budget in the FTB-list whose deadline is earlier than or equal to t at time t2. Let Ja be the first

job that is blocked by Jb. We use t3 to denote its arrival time. In the interval (t3, t2], the time budget

consumed (by Jb) is generated before time t3. However, in the subsequent interval (t2, t] only the time

budget generated in the period (t3, t] and whose deadline is earlier than or equal to t is consumed.

Let Z = t − t3. Since the base speed throughout (t3, t] is H, the amount of time budget generated

after t3 which has a deadline at or before t is bounded by
∑l

i=1
bZ/Pic ·Ei/H, where Pl is the maximum

period that is smaller than or equal to Z. Moreover, as the processor operates at speed H throughout

(t3, t2] according to DSDR, the total amount of time budget that can be consumed during (t3, t] is

bounded by Gb/H +
∑l

i=1
bZ/Pic · Ei/H, where Gb is the length of the longest blocking section in Jb.

As there is still residue time budget at time t whose deadline is at t and the processor keeps consuming

time budget throughout the interval (t3, t], we have

Gb

H
+

l
∑

i=1

⌊

Z

Pi

⌋

·
Ei

H
> Z. (16)
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Because Z ≥ Pl and Z/Pi ≥ bZ/Pic , (16) can be rewritten as

Gb

Pl
+

l
∑

i=1

Ei

Pi
> H,

which contradicts with (14). ¤

As proved in Theorem 6, DSDR maintains the same feasibility condition as the dual speed algorithm

under EDF. The same conclusion holds under the rate-monotonic (RM) algorithm for fixed priority

scheduling, which will be presented in the following subsection.

5.2.3 Feasibility under Fixed Priority Scheduling (RM)

We assume RM is used with DSDR for fixed priority scheduling. The feasibility conditions are given

and proved as follows:

Theorem 7 Suppose n periodic tasks with blocking sections are sorted by their periods. If ∀k, 1 ≤ k ≤ n,

∃ta, tb ∈ U = {m · Pi|i = 1, . . . , k; m = 1, . . . , bPk/Pic} such that

k
∑

i=1

Ei · dta/Pie ≤ L · ta (17)

and
k

∑

i=1

Ei · dtb/Pie + max{Gj |Pk < Pj} ≤ H · tb, (18)

then these tasks can be feasibly scheduled when DSDR/RM is used with high speed H and low speed L.

Proof: We shall prove the theorem by contradiction.

Suppose the claim is not true and t is the earliest time point that a job with priority level prtk

misses its deadline. Let us denote this job by Jk,j . We choose another time t1 before t, which is the

latest time point such that there is no job or any time budget in the FTB-list with priority higher than

or equal to prtk. If such a time point does not exist, let t1 = 0. Constructed in this way, time budget is

continuously consumed throughout the interval (t1, t]. The time budget consumed can be classified into

two categories, A and B. The time budget in A is generated after t1 and has a priority higher than or

equal to prtk, while the time budget in B has a priority lower than prtk.

We consider two cases: only the time budget in A is consumed, and the time budget in both categories

is consumed. Similar to the proof of Theorem 6, these two cases are found to contradict with (17) and

(18) respectively after analyzing the amount of budget generated and consumed in the interval. This

part of the proof is therefore omitted due to space limitation. ¤

Based on Theorem 7, the following corollary can be derived:

Corollary 4 Suppose n periodic tasks with blocking sections are sorted by their periods. If

n
∑

i=1

Ei

Pi
≤ L · n · (21/n − 1),
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Task Type Short Tasks Medium Tasks Long Tasks

Period 20∼100ms 100∼1000ms 1000∼5000ms

WCET 1∼20ms 1∼100ms 1∼1000ms

Table 1: Characteristics of the three types of tasks.

and

∀k, 1 ≤ k ≤ n,
k

∑

i=1

Ei

Pi
+

max{Gj |Pk < Pj}

Pk
≤ H · k · (21/k − 1) (k < j ≤ n)

where Gj is the length of the longest blocking section in task Tj, then these tasks can be feasibly scheduled

by DSDR/RM with high speed H and low speed L.

6 Performance Evaluation

Simulation experiments were carried out to evaluate the effectiveness of the proposed algorithms in

saving energy. In section 6.1, we first describe the simulation model and the task sets. The simulation

results are then presented and analyzed in Section 6.2.

6.1 Simulation Setup

The simulator is event-driven and simulates the processing of periodic tasks on a single processor that

is capable of voltage/speed scheduling. We assume a maximum processor speed of 1 and a minimum

processor speed of 0.05. Speed levels between the two bounds are discrete and spaced by 0.05. The

processor speed is proportional to the supply voltage and the energy consumption follows formula (1).

We also assume the processor does not consume energy when it is idle. The simulation experiments

consisted of three phases: task generation, admission control, and job scheduling/execution.

Each task set generated was associated with a utilization factor and a blocking ratio. The utilization

factor indicates the expected total utilization of the tasks generated, that is,
∑n

i=1
Ei/Pi. The blocking

ratio specifies the maximum proportion of a blocking section in a job’s execution time, so the maximum

length of any blocking section is WCET × blocking ratio. To simulate the mixed workload, three types

of tasks were generated. Their characteristics are presented in Table 1. Tasks in each task set had equal

probability of being short, medium or long. Within each category, the task periods and WCETs were

randomly selected from the corresponding ranges. After the task set was generated, the WCETs of the

tasks were scaled such that the total utilization was equal to the specified utilization factor.

Every generated task had to undergo an admission control procedure in the order of its release time.

A new task was admitted if a high speed H smaller than the maximum speed could be found satisfying

formula (2) for dynamic priority scheduling or formula (9) for fixed priority scheduling; otherwise the

task is discarded. The admitted tasks generated jobs periodically according to their periods. Each task

was further assigned a best-case execution time (BCET). The actual execution times of the jobs in a task
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were uniformly distributed between the task’s BCET and WCET. In each experiment a WCET/BCET

ratio was specified which was used by all tasks. Each job could have at most one blocking section, and

we use the term blocking probability to denote the probability that a job has a blocking section. The

position of the blocking section was randomly chosen. Released jobs were placed in the job queue and

processed according to their priorities (calculated according to EDF or RM). The voltage scheduling

algorithms presented in Sections 4 and 5 were used to determine the processor speed for the current

executing job.

6.2 Experimental Results

Extensive simulation experiments were conducted to evaluate the performance of the proposed algo-

rithms. In each experiment, 30 tasks were generated. All tasks were released at time 0 and each experi-

ment ran 100,000ms of simulated execution time. Jobs whose deadlines were later than 100,000ms were

not processed at all. This guaranteed that the workload processed by the algorithms under evaluation

(see below) was exactly the same. To improve accuracy, ten experiments were performed with different

task sets for each set of parameter values and the average results were taken.

Including the baseline and the lower bound algorithms, a total of six algorithms were considered in

the experiments. The energy consumption of a processor without voltage scheduling (i.e., the processor

always runs at its maximum speed) was used as the baseline. The energy consumptions of the three pro-

posed voltage scheduling algorithms4 were normalized with respect to the baseline for easy comparison.

The performance of the proposed algorithms were compared with the Dynamic Reclaiming Algorithm

(DRA) [2], which allows a job to execute at a lower speed if its preceding jobs did not use up their

WCETs. To guarantee schedulability in case of blocking, the static speed H was taken as the “nominal

speed” in DRA. A lower bound in energy consumption was also plotted where the processor operated at

the lowest static speed to complete the given workload within the simulated time span (i.e., 100,000ms)

disregarding the deadlines of the jobs. Not limited by the timing constraints nor by the discrete speed

levels, it consumes less energy than any algorithm that must observe these constraints.

Blocking parameters

In the first set of simulations, we evaluated the effect of blocking sections on energy consumption. The

blocking parameters blocking ratio and blocking prob were varied to produce task sets with different

blocking characteristics. In these experiments, we let all jobs run their full length of their WCETs,

i.e., WCET/BCET = 1. As will be shown later, the energy saving would further increase if the actual

execution time is less than the WCET.

We first fixed the blocking prob at 0.5 and varied the blocking ratio between 0 and 0.3. The range of

blocking ratio was chosen for two reasons. First, blocking sections are usually short in practical systems.

Moreover, as the blocking ratio exceeded 0.3, the number of tasks dropped during the admission control

4For the rate-monotonic dual speed algorithm and DSDR, the high and low speeds were calculated according to formu-

las (9) and (8), respectively.
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Figure 7: Normalized energy consumption with varying blocking ratio.

increased rapidly, thereby affecting the accuracy of the results. The normalized energy consumption

of the proposed algorithms under a utilization factor of 0.4 was given in Figure 7. The proposed

algorithms consumed much less energy compared to the baseline. Since all jobs consumed their WCETs

in the simulation, the performance of DRA was identical to that of the proposed static speed algorithm.

As the maximum length of blocking sections grew with the blocking ratio, the value of high speed H

was also increased according to formulas (4) or (9), respectively. Although the energy consumed by all

three algorithms proposed grew with H, the energy consumption of the two dynamic speed algorithms

grew much more slowly because they operated at the low speed in some intervals. As a result, when the

energy consumption of the static speed algorithm increased to 75% of the baseline energy under EDF,

the dual speed algorithm and DSDR consumed less than 25% of the baseline energy, only 10% higher

than the lower bound. Although there was no slack to reclaim in this set of experiments, DSDR was still

able to utilize the time budget reclaimed during the high-speed intervals and performed better than the

dual speed algorithm. However, the difference was marginal because blocking happened infrequently and

the resulting high speed intervals were short, leaving little room for reclamation. Another observation
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Figure 8: Normalized energy consumption with varying blocking probability.

is that when the blocking ratio was smaller than 0.09, the discrete values of high and low speeds were

equal. Therefore the curves of all three algorithms converged (see Figure 7). The energy consumption of

the two dynamic speed algorithms under dynamic priority scheduling was very close to the lower bound

as shown in Figure 7(a). However, the energy consumption under fixed priority scheduling was slightly

higher. This is due to the stricter feasibility conditions (see formulas (8) and (9)). For the same set

of periodic tasks, the rate-monotonic algorithm may require a higher speed than that needed by EDF

scheduling to guarantee schedulability.

Next, we varied blocking prob with blocking ratio fixed at 0.2. The energy consumptions of the

static speed algorithm and DRA were identical and constant. Interestingly, the energy consumed by

the dual speed algorithm increased only slightly (about 2%) with increase in the blocking probability

(see Figure 8). This is somewhat surprising because both the number and the durations of high speed

intervals increase with the blocking probability, leading to potentially higher energy consumption. Closer

examination showed that the occurrence of blocking was still infrequent (several hundred in the entire

time span of each experiment) despite the increasing blocking probability, and the high-speed intervals
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were short. The impact on energy consumption was therefore almost negligible. DSDR was insensitive

to changes in blocking prob since the time budget reclaimed in high-speed intervals could be used by

subsequent jobs. The overall energy consumption did not change much.

WCET/BCET Ratio

In this set of experiments, we fixed the blocking ratio and the blocking prob at 0.2 and 0.5, respectively.

The utilization factor was 0.4. Figure 9 shows the simulation results with the WCET/BCET ratio

varied between 1 (no slack) and 10 (90% slack). The static speed and the dual speed algorithms were

insensitive to changes in the WCET/BCET ratio. On the other hand, with the ability to reclaim unused

time budget from early completions, DSDR was able to process some jobs at a speed even lower than

the utilization speed. As a result, the energy consumption decreased when the slack increased. For

example, at a WCET/BCET ratio of 5, which is a typical value for video decoding times [4], DSDR

obtained an additional 5 percent energy saving under dynamic priority scheduling and 12 percent energy

saving under fixed priority scheduling compared to the case when no slack was available. Nonetheless,

the gain slowed down as the WCET/BCET ratio increased and more or less stabilized when the ratio

reached 5 (80% slack). Due to the job slack time, DRA was also able to save energy compared with

the static speed algorithm, but the energy consumption was still higher than those of the dual speed

algorithm and DSDR in all cases.

Processor Utilization

We also investigated the effect of different system load on performance. Again, the blocking ratio and

the blocking prob were set at 0.2 and 0.5 respectively. The WCET/BCET ratio was kept at 5. Due

to blocking, it was not possible to reach full processor utilization. As the utilization factor grew, some

tasks failed the admission control and were dropped, causing the actual processor utilization to be lower

than the specified value and affected the accuracy of the results. We therefore show the results only for

utilization factors between 0.1 to 0.6 when all tasks generated were admitted to the system.

As in the previous experiments, the proposed voltage scaling algorithms consistently outperformed

the baseline full speed algorithm, but the normalized energy consumption increased with the utilization

factor. This can be explained as follows. The increased utilization factor resulted in linear increase in

processing time under the baseline algorithm, so the energy consumption increased linearly. The other

five algorithms, however, had to increase the processor speed to meet the deadline under the increased

load, resulting in cubic energy increase according to formula (1). As seen in Figure 10, the normalized

energy consumptions of the five voltage scheduling schemes increased more or less quadratically with

the utilization factor as expected. Nonetheless, since the allowable operating speed cannot exceed the

maximum processor speed, the energy consumptions of the proposed algorithms are bounded by that

of the baseline algorithm.

In summary, the proposed voltage scheduling algorithms effectively reduced energy consumption

compared with the full speed algorithm under all workload and system settings tested. In particular, they
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Figure 9: Normalized energy consumption with varying WCET/BCET ratio.

saved more than 90 percent of energy when the system load was low. Moreover, the two dynamic speed

algorithms demonstrated better energy saving capabilities among the proposed algorithms. Thanks

to blocking-awareness, the dual speed algorithm and DSDR were able to adjust the processor speed

more flexibly and aggressively, and saved more energy than the existing DRA algorithm in all the

experiments performed. When jobs did not always execute at their WCETs, DSDR was able to save

additional energy compared with the dual speed algorithm owing to its dynamic reclaiming mechanism.

The energy consumptions of the two dynamic speed algorithms were close to the theoretical lower bound

in dynamic priority scheduling using EDF. However, the results under rate-monotonic scheduling suggest

room for further energy reduction.

7 Conclusion

Voltage scheduling is an effective way in reducing energy consumption of the processor. In this work, we

have modelled and studied the performance of voltage scheduling of real-time tasks with non-preemptible

26



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

Utilization

(a) Dynamic Priority (EDF)

Static Speed
DRA

Dual Speed
DSDR

Lower Bound

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1  0.2  0.3  0.4  0.5  0.6

N
or

m
al

iz
ed

 E
ne

rg
y 

C
on

su
m

pt
io

n

Utilization

(b) Fixed Priority (RM)

Static Speed
DRA

Dual Speed
DSDR

Lower Bound

Figure 10: Normalized energy consumption with varying processor utilization.

blocking sections. Three algorithms are proposed for dynamic priority scheduling (EDF) and also for

fixed priority scheduling (RM). The static speed scheme maintains a minimal feasible static speed based

on a result from the stack resource policy. In the dual speed algorithm, the high-speed interval is defined

as the interval that begins when a job is blocked and terminates when a job with priority equal to or lower

than that of the blocking job starts execution. Except during the high speed intervals, the processor runs

at a much lower utilization speed in the dual speed algorithm. The DSDR algorithm extends the dual

speed algorithm by reserving time budget for each job. A reclaiming mechanism is used to collect the

unused time budget from completed jobs and redistribute it to subsequent jobs whenever possible. The

feasibility conditions for the algorithms have been derived and proved. Extensive simulations have shown

that the proposed algorithms can significantly reduce energy consumption in all scenarios compared to

the case where voltage scheduling is not used. Furthermore, our blocking-aware algorithms (dual speed

and DSDR) excelled the existing DRA algorithm in all the experiments. Moreover, the DSDR algorithm

achieved performance close to the theoretical lower bound and consistently outperformed the static speed

algorithm by up to 60% in energy consumption.
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