
FAULT FINDER
A PC BASED Expert System

W. Elliott, Staff Engineer
HARRIS Air Traffic Control
Systems Division

ABSTRACT
The FAULT FINDER Expert System implements fault
isolation decisions for any target system or equipment
that can be modeled by lowest replaceable units (hereafter
called LRUs). The term “Target System” will be used to
refer to the system being fault isolated. The Fault Finder
expert system fault isolates the target system’s LRUs.
This expert system utilizes a data base to represent each
LRU. a status interface to obtain LRU status, and a
knowledge base to store the rules of fault isolation for the
target system. The expert system has multiple “learning”
capabilities in the data base, the knowledge base and the
inference procedure. Another aspect of learning which
influences the structure of the knowledge base is that each
rule has parameters associated with it to store the
information learned as a result of user feedback and the
inference process. The certainty or possibility associated
with the conclusion of each rule is adjusted as the system
runs and gains experience. The inference procedure uses
fuzzy logic for premise matching certainty, and
combining of premise certainties for the rule firing
certainty. This expert system brings together for the first
time a fault isolation system with unique knowledge
representation, inference processing, fuzzy logic, and
multiple learning capabilities in one design. Also
presented are issues of knowledge structure, and possible
types of fault isolation knowledge.

JNTRODUCTION
The FAULT FINDER is an expert system designed to
implement fault isolation decisions for a target system
using fuzzy logic [1][5] and learning techniques. One of
the problems of today’s systems is the ever more complex
knowledge, experience and training needed to operate,
maintain and service these systems. Most systems have
fault isolation software and sensor hardware that find faults
in a fixed. non-adaptable way. This fixed logic is built
into the system before field experience is gained. Each
new system that is designed must have custom logic that

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-347-7/90/0003/0013 $1.50 13

Dr. M. Schneider
Computer Sciettce Department
Florida Institute of Technology

wilt fault isolate its components and topology. Thus,
engineers must reinvent each new system’s logic for fault
isolation [2].

The FAULT FINDER Expert System implements fault
isolation decisions for any target system or equipment
that can be modeled by lowest replaceable units. The
FAULT FINDER system is configurable to, any target
system’s components and topology. The target system
expert enters the topology in the data base and enters the
fault isolation rules in the knowledge base.

The FAULT FINDER prototype is written in TURBO
PASCAL [4] using a PC/AT compatible. TURBO Pascal [4]
has numerous performance advantages in the PC
environment. TURBO Pascal [4] (Ver. 4.0) allows
separate code units which extends the code size limit, and
by using dynamic memory ‘the data limit can be extended
to 64K bytes per data structure. This allowed the goal of a
least 250 rules to be achieved.

Desian Overview
The FAULT FINDER prototype implementation is designed
to be a technicians helper and is based stand alone. This
can be on any small computer such as a PC/AT. The only
interface is through the Man Machine Interface (MMI) of
the CRT. The technician may use the system as a
consultant, and a library to store knowledge learned
through experience.

An optional Status Interface allows the FAULT FINDER to
request real time status as part of the inference process. In
a full scale real time implementation, the FAULT FINDER
may be set up to monitor the health of the target system
or test assemblies as a final step in a production process.

Tora Level Dewa
The system is divided into the Main Control module, the
LRU Editor module and Data Base, the Rule Editor module
and Knowledge Base, the Explanation module, the Real
Time Status interface, and the Inference Procedure built
around the expert system shell. When designing the
knowledge base and database structures and the access
environment the following objectives were set.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F99412.99420&domain=pdf&date_stamp=1990-02-01

1. The knowledge base needed to accomodate at least
250 rules and knowledge base must be retained when
the execution of the FAULT FKNDER is terminated,
and restored when the FAULT FINDER is started.

2. The knowledge base must be named (target system
name) to allow multiple knowledge bases to be stored
and retrieved.

3. The LRU database must be linked to the knowledge
base by the same name.

4. The system response time must be fast when a
question is asked (fault isolation time).

5. The data base and the knowledge base must be
editable, and reports must be available to review data
and roles and must contain data structures to support
learning.

The user interface for the FAULT FINDER is menu driven.
The system is started by typing “FAULT” on the PC. The
startup menu asks for the keyword or name of the target
system to be fault isolated. This keyword is used to
retrieve, or create for the first time the data and knowledge
base files for the target system. Next the Fault Finder
retrieves the password and is ready for verification. When
the correct password is entered the main menu appears as
shown in figure 1.

The LRU data, Status data and Knowledge (rules) may be
entered in any order. However, experience has shown that
the best or most effective order is to enter the LRUs first,
followed by the items for the status interface, then the
rules. In this way the terms or arguments referred to in
the rules are established first.

The expert system shell which utilizes fuzzy set theory
and fuzzy logic [5] was designed and written for the
FAULT FINDER expert system. However the shell itself is
general and could be used for any other expert system
application. The inference procedure is described in a later
section.

Qata Base Structure
The Data Base design centers around the LRU concept.
Any level of component in the target system may be
designated an LRU. Also LRUs may contain other LRUs.
Example 1 shows a set of LRUs. In this example three
LRUs make up a larger LRU boundary. The knowledge
base contains the rules for the interrelationships of LRUs.

Choosing the best LRU boundaries is somewhat of an art.
but for most system designs it is usually at the printed
circuit card or assembly level where clear functional and
replaceable boundaries exist.

Example 1: A Set of LRUs and their connectivity.

LRU a

,---Fk

The basic structure of the database is represented as
follows:

LRU-State-Type =(Operational,Degraded,Failed.
Offline-Standby,Out-of-Service);

LRU-Record-Type = Record
LRU-Name : String[25];
LRU-Number: String[25];
LRU-State : LRU-State-Type;
Failures ‘: integer; (0 co Maxim)
Fail-Rate : Real; (0 to 1)
Test-Avail: Boolean;
Test-Conf : real; (0 to 1)
Test-State: LRU-S tate_Type;
End; (record)

DataBase : Array[l..Number-of_LRUs] of
LRU-Record-type;

One of the learning functions of the FAULT FINDER uses
the LRU failure rates stored in the LRU database (Failures).
This function uses a fuzzy set (defined below), and
produces a number range [O..l] (Fail-Rate) that is used by
the inference procedure when evaluating the conclusion
certainty.

The function is as follows:

let A be a fuzzy set “failed LRUs”,and Failures be a
member of A

also let Mm-Fail be the largest LRU failure in the data
base

Then:

Fail-Rate
:= 0,
:= Failures/Max-Fail,
:= 1,

if the LRU has not failed
if (k Failures< Max-Fail
if Failures = Max-Fail

14

Select one of the following options and enter (cr):
0 - Rule Editor, Max 11 rules alloned = 250 current rule cnt : 43 :
1 - Start Fault Isolation nith Blackboard Data
2 - Explanation Module
3 - Status Interface, lo. Status Blements : 17
4 - Review the Blackboard Data
5 - LRU Editor, lax It of LRBs: 50 Current LRU cnt: 22
8 - Enter Data to be placed onto the Blackboard
7 - Clear the Blackboard

* Target System: co~msys 8 - Exit The PrograB
annn~nnnnn~nnnnnnnnnnn~~~nnnn~nnnnnn~nnnnnnnnnnnnnnnn~nnnnn~n~

figure 1.

Example 2: In this example the FAULT FINDER had 5 Status Interface
LRUs defined in the LRU data base. After a conclusion The Status interfa~e~allows the Fault Finder to access real
was reached the learning function described above was time status from the ‘target system. Each status element
allowed to run. For this example the conclusion was that has a name and a type of status, boolean or real counter.
LRU# 1 was failed. This is the LRU data base before the The structure of the status database is represented as
learning function is run. follows:

LRU# Failures Fail Rate
1 5 0.71
2 1 0.14

3 0 0.00

4 7 1.00

5 2 0.29

The first thing that is done is the number of failures for
LRU# 1 is increased by one, then the function is applied
to each LRU record in the data base. The result is shown
below.

LRU# Failures Fail Rate
1 6 0.85

2 1 0.14

3 0 0.00
4 7 1.00
5 2 0.29

Status-record : record
ElrJsed : Boolean;
ElPJaae : ident;
ELtype : integer; { 0 - cnt,

1 = boolean]
Fault : boolean;
Fail,& : Real; { 0 to intrax }
End; {record)

Status-type - Array [1. .ElrJ.!ax 1 of Status-record;

THE LRUJDITOR
The LRU Editor is accessed by selecting choice 5 on the
main menu. The user may enter LRU records into the LRU
Data Base, print the LRU Data Base report, delete LRU
records. or exit.

The Status interface database Editor is accessed by
selecting choice 3 on the main menu. This menu allows
the user to enter Status records, print a Status Data Base
report, delete Status records, modify status records, or
move the status to the blackboard for inference process
access.

I<nowledae Base Structure
The Knowledge Base is constructed of production rules of
the form: IF <premise> THEN cconclusion>. The premise
and conclusion use the following grammar:

[the]KWl[of[the]KW2]is[not][modifier]{ [KW3][number]
[number to number])

where KWl,KWZ and KW3 are keywords,
[] means optional and () means one choice is required,
number may be a real.

let p be the premise of a rule and c be the conclusion,
then using the BNF notation we have:

<p> = p I p or p I p and p I not p I (p)
<c> = c I c and c I not c I (c)

It should be noted that conclusions have different’ BNF
forms than premises. This is because of the nature of a
conclusion. If an “or” were allowed in a conclusion, how
would the inference process decide which clause to use?
The “or” in a conclusion is ambiguous, and therefor is not
allowed.

Each rule has an expert user assigned certainty value range
[O..l] that describes the user’s belief in the truthfulness of
the conclusion at the time the rule was entered. This user
assigned number is not changed by the system, but is used
in the learning function with other parameters to produce
the final certainty in the conclusion.

The knowledge of fault isolation can be divided into the
major areas of internal LRU design knowledge and external
LRU or target system knowledge [6]. Internal knowledge
is design knowledge of the LRU details. This is the detail
design knowledge that only the design engineer may know
of how each component is interrelated within the LRU.
External knowledge is interface knowledge of the LRU.
without knowing the internal design implementation. The
knowledge base of the FAULT FINDER [7] is composed of
rules of “system knowledge” or “shallow knowledge”. An
example of system knowledge is. “If two inputs are
present and no output is present then the LRU is faulted”.
Most technicians or support engineers servicing system
sites do not have the deep knowledge of how each card
(LRU) works or fails. Only the designer may know this.
But this deep knowledge is not needed to fault isolate and
replace the failed LRU. Shallow knowledge is not 100%
correct in all cases, but a substantial amount of system
maintainence can be done with shallow knowledge.

Each conclusion is assigned a real number, range [O..l],
derived in the inference process, which represents the
possibility that this conclusion is correct.

As shown in figure 2 the knowledge base is made up of
three major data structure types; the Rule-Pointer&ray,
the Rule-Record, and the Clause-Record. The
Rule-Pointer-Array points to rule records that are
dynamically allocated as needed using the ‘NEW’ function
of Pascal. The array pointers are set to nil unless a valid
rule is pointed to. The Premisejdx and Conclusion-idx
both point to a Clause-Record which in turn may point to
another Clause-Record. The last Clause-Record in a chain
has a zero forward index. The grammar defined previously
allowed the Premise and Conclusions to have the forms:

<p> = p I p or p I p and p I not p I (p)
<co=cIcandcInotcI(c)

These forms are supported by stringing the clauses
together using the Relation structures to store the type of
linkage between the clauses.

The Knowledge Base Editor is accessed from the main
menu by choice 0. The editor prompts for the rule
certainty. If a rule has a syntax error, the editor protects
the knowledge base from this rule by deleting it. The
knowledge base and the bit matrix [S] are initialized when
the editor is exited. The bit matrix is a data structure used
by the inference process in the direct chaining of rules.
The bit matrix is built to store information concerning the
interrelationships of rules. The bit matrix (BM) is a N by
N matrix where N = the number of rules, and is defined as
follows:

BM [l,J] I 1 if rule I may participate in the
firing of rule J.

0 otherwise

The bit matrix is initialized to all zeros. Next each rule is
compared to all other rules in the knowledge base and the
matrix is updated with the results of the comparison. If a
rule has all zeros in its row then the rule is a concluding
rule (a rule that fires no other rules). If a rule has all
zeros in its column then the rule is fired by no other rule
and requires user entered data to be fired. As shown below
each modifier has a lower and an upper fuzzy value. In the
grammar defined previously the modifier may be a single
number, or a range “number to number”.

Exactly 1.00 1.00
Almost 0.97 0.99
More-or-less 0.90 1.10
Nearly 0.95 0.99
Approximately 0.85 1.15
Aiound 0.85 1.15
About 0.85 1.15
Somewhat 0.80 1.20
Slightly 0.75 1.25
Barely 0.65 0.95

16

FAULT FINDER Knowledge

Rule pointer array Rule-Record

I b

2

3

*

Rcert
L

Ucert
NT
NS
P-Ptr
C-Ptr
Rule text

I I I
I q;I

(N
const

Arggax : 500;
Rulejax : 250;
linelnt - 255;
BlkBdJax : 50;

tue
ident 5 string[25];
Relation-type = (null, mot, zor, zand,

openJam, Close-Pam, Clause) ;
Statement-type : array[O. .20] of Relation-type;

rule_yecord-type = record
Ucert : real;
Ecert : real;
Fcert : real;

tj:
: integer;
: integer;

Preajdx : integer;
Preagrd : Staterentfype;
Concjdx : integer;
Concqrd : Statement-type;
Srule : String[linelnt];
Concqtr : integer;
end ;

Rule&r = ‘rule-record-type;
rule-array : array [l. *Rule jax] of rule&r;
BlkBd-array = array [l, .BlkBDsaxl of rule&r;
rule-state-type = (preGe,conclusion);

l
l
l

(

S-Arg-type : record
Arg-used : boolean;
KWl : ident;
11132 * ident;
Intjnot i boolean;
Adj : integer;
KH3 * ident;
Nurgall I Real;
Nur-va12 : Real;
Nud : Real;
Nu12 * Real;
fornardjdx I integer;
end; { RECORD }

Args-type 1 array [l..Argsax] of S&g-type;
Arggtr-type - “args-type;

17

When the modifier is applied to KW3 the Fault Finder
ignores the modifier. To see why this was done consider
the following examples:

Example 3: The user types in a rule as follows:

If the fan is not active and the power is not failed
then the source of the fault is almost LRU2

The adjective almost cannot be applied to LRU2 in a
meaningful way.

Example 4: Now consider the following rule.

If the input is more-or-less 35 then LRU2 is
not faulted.

The adjective more-or-less can be applied to 35 in a
meaningful way. Using fuzzy matching [l] the number 35
is replaced with an interval defined as follows:

Lower fuzzy value * 35 to Upper fuzzy value * 35,

using the values of the fuzzy modifiers we have,

(0.90 * 35) to (1.10 * 35) = interval 31.5 to 38.5

As shown in example 3. the modifier should be ignored
when a KW3 is entered. The modifier in example 4
however, may be applied to the number in a meaningful
way. The values of the lower and upper modifier fuzzy
values were selected based on the opinion of the author,
and other values may be suitable for other applications.

KNOWLEDGE BASE LEARNING FUNCTION
The Knowledge Base learning function uses four
parameters associated with each rule. These parameters
are the expert’s confidence in the conclusion (Ucert), the
number of times the rule was tried (NT), the number of
times the rule was successful (NS) and the output of a fuzzy
function (Rcert). The fuzzy function uses the above
parameters to calculate the possibility that the conclusion
is correct as follows:

Rcert := Rcert - 0.5 l (Rcert - NS/NT)

The Rcert is initialized to the user certainty (Ucert) when
the rule is first entered. The 0.5 factor is applied to cut
the rate of change in the learning process. This factor
helps stop large oscillations but allows multiple changes,
through experience, to accumulate in a direction.

Example 5:
let Rcert = Ucert = 0.9 for the first run with a success,
then

NS=l,andNT=l
Rcert := 0.9 - 0.5 * (0.9 - l/l)
Rcert := 0.95

Next, a run with a failure
NS=l,andNT=2
Rcert := 0.95 - 0.5 * (0.95 - l/2)
Rcert := 0.725

Then, another run with a failure
NS=l,andNT=3
Rcert := 0.725 - 0.5 * (0.725 - l/3)
Rcert := 0.529

The learning functions are applied to the knowledge and
data bases only after the user enters a ‘yes or no’ answer as
to the conclusion’s verified correctness.

The Blackboard
The blackboard menu is used to enter data for the fault
finder to use in the inference process. The blackboard
editor is entered from the main menu by choice 6.
Blackboard data is entered in the same basic format as rule
premises. The input data consists of statements as to the
state of the target system, the interfaces. or other data that

is target system dependent. The structure of the blackboard
is very similar to the structure of the knowledge base.
This allows the inference process to be more efficient in
matching input data, premises, and conclusions.

Inference Procedure
The inference engine is responsible for inferring
conclusions from a given knowledge base and user entered
data. The process of inferencing involves matching the
knowledge base with the data and producing conclusions
[S]. The inference procedure uses fuzzy matching [l] for
comparing input data, premises and conclusions and may
be sumrnerized in the following steps.

1. The conclusion of a rule becomes true if and only if
the matching process generates results which are
above or equal to a threshold of 0.6.

2. If the conclusion becomes true, then we “fire” that
rule and place its conclusion on the blackboard, along
with its firing certainty.

3. We repeat the process until no more rules can be
fired.

There are two steps in Finding the degree in which two
ranges are matched. First it is necessary to find out the
possible range of the variable $I question and then utilize
the matching procedure. When matching clauses, two
cases must be considered:

1. A clause contains the keyword “NOT” and
2. A clause does not contains the keyword “NOT”,

18

In the first case, the word “NOT” forces two intervals 171
to be created. In the case where the clause does not
contain the keyword “NOT”, there is one continuous
interval. Therefore, when two clauses are compared, it
must be assumed that there may be four intervals to
consider.

The overall operation of the FAULT FINDER is shown in
figure 3. The user defines the LRUs in the LRU data base,
defines the status items in the status interface and the rules
of the target system in the knowledge base. Next the user
enters input data onto the blackboard, and/or requests
status to be moved to the blackboard, and starts the
inference procedure. The inference procedure produces one
or more conclusions with decreasing certainty. The
conclusion with the highest certainty is printed as “the
conclusion”, but the user through the use of the
explanation module may review all of the conclusions
produced. The user then tries the suggested conclusion,
and provides feedback to the FAULT FINDER for the
learning functions.

The inference procedure process -flow for the FAULT
FINDER is shown in figure 4. The inference procedure is
based on direct chaining [l] which uses the bit matrix, the
blackboard, a list of fired rules and a list of fired
conclusions. The modifiers and internal not’s are applied
at the time of input. The starting point of the inference
procedure uses the rules in the knowledge base, and the
data on the blackboard.

The inference procedure starts by matching each rule’s
premises against the blackboard data. At the start of each
rule matching process a match matrix of fuzzy values for
each clause in the premise is initialized to 0.5. The
reason for this is if a clause is not on the blackboard there
is a 0.5 certainty that it was a correct assumption.
Boolean matching is used for KWl, KW2, KW3, and the
internal NOT if KW3 is a word, fuzzy matching [l] is used
for all numbers and intervals. In the case of a number the
internal not was applied to the interval at the time of
input. If a match is greater than 0.6 then the following
function is used to update the match matrix.

Match-Matrix(Clause#) =
(match-value + BBdataFcert) / 2

The final matching value for a premise is achieved by
combining the individual clauses of a premise using fuzzy
ands, ors, and nots. If the match value is greater than 0.6
then the rule is fired. When a rule is fired the blackboard
must be updated. The inference procedure blackboard
updating process uses the Ucert and Rcert values for each
rule and a premise matching certainty [l] as it fires a rule
to accumulate a fimal firing certainty (Fcert) for that rule.
The fuzzy function for handling firing certainty for the
blackboard update is as follows:

This value is stored in the knowledge base with the rule
for later reference. If the rule ends up being the best
concluding rule this composite conclusion certainty (Fcert)
is the final conclusion certainty. The blackboard is
updated by copying the fired rules’ conclusion to the
blackboard and the following values:

BB.Ucert = Rule(x).Rcert;
BB.Fcert = Temp-Result;

The final composite conclusion certainty (Fcert) and the
LRU Fail-Rate (Fail-Rate) values, from the LRU data base,
are used in calculating the FAULT FINDER’s final
conclusion certainty (FFcert). After the inference process
has terminated. one or multiple concluding rules may have
been fiied. The explanation module will allow the user to
access the secondary and subsequent conclusions if needed.
These subsequent conclusions may contain additional
faults with a lower certainty, as compared to the primary
conclusion. The conclusion to be suggested first and its
certainty could be calculated by just averaging the Fcert
and Fail-Rate values. Another approach is to define
classes of conclusion certainty using the Fcert and
Fail-Rate values. If we assign points to ranges of
certainty then a fuzzy function can be constructed as
follows:

Define the following certainty ranges for fail-rate values:
High, Med., Low

where
0.7 .z= High CL 1 .O, and High Certainty = 3 points
0.3 C= Med. .Z 0.7, and Med. Certainty = 2 points
0.0 <= Low c 0.3, and Low Certainty = 1 point

and, define the following ranges for rule firing certainty:
High, Med., Low

where
0.9 c= High C= 1 .O, and High Certainty = 3 points
0.7 .c= Med. < 0.9, and Med. Certainty = 2 points
0.6 C= Low < 0.7, and Low Certainty I 1 point

Now a table of combinations can be constructed:

Fcert
High
High
High
Med.
Med.
Med.
LOW

Low
LOW

Fail Rate
High
Med.
LQW

High
Med.
LOW

High
Med.
LOW

Class
6 1
5 2
4 5
5 3
4 4
3 7
4 6
3 8
2 9

Temp-result =
(Result + Rule(x).Ucert + Rule(x).Rcert) / 3;

Rule(x).Fcert = Ternp-result
Table I

19

FAULT FINDER Inference Process Flow

rule input
Parser

- not and modifier applied at inpu

I
not epsilon = l/maxint)

Cd = Rcert for input l-l

user input data
Parser

+ not and modifier applied at inpu

I
ncDefrtepsilon = lhnaxint)

= Rcert for input

I B

Status
Data

Blackboard Knowledge Base

Data y Rule x
Ucert, Fcert, Number Ucert, Rcert, Fcert, Number

intervals intervals

Intermediate
Conclusions I

3

Rules T Certainty

I . + / I
Inference process

LRU Data
e b learning

Base
functions

4 I

\ Failures +

Explanation Module
Conclusions

figure 3.

20

FAULT FItiDER
certainty handling in the Inference Process

data and
rule input

- not and modifier applied at input

/ I
not epsilon = l/maxint)
cert = Rcert for input

/
Rule x Data y

acert, Rcert, Fcert, Number Ucert, kcert, Number

learning
functjon inference process

next rule c
match matrix set = 0.5

F--+ I

t+

next clause
KWI ,KW2, KW3, M-not compared
as boolean for each clause

- if pass then match = 1 .O

c
fuzzy match of numbers

C-------- if match > 0.6 then
match-matrix(clause) I (match + Data y. Fcert)/2

c
match-matrix evaluated by fuzzy
not,and,or, (), and s

c
- if result > 0.6 then fire rule x, update BB

move rule x conclusion to BB
temp-result = (result + rulex.Rcert + rulex.Ucert) / 3
BB. Ucert
BB. Fcert

= rule x. Rcert
= temp-result

Rule x. Fcert = temp-result

rule with highest Fuzzy (Fcert , fail rate) -
is conclusion print certainty

figure 4.

21

If the two or more conclusions fall in the same class then
a weighted average is used to make a choice as follows:

let
w(FFcert) =

bl* F&t, w(Fail-Rate) = b2 * Fail-Rate

and bl + b2 = 2.
Then: FFcert = (w (Fcert) + w (Fail-Rate)) / 2

Where a bl of 1 .l weights the Fcert at 110% and a b2 of

0.9 weights the Fail-Rate at 90%.

Example 6: In this example the inference procedure
produced two conclusions with the following values:

Conclusion 1 =a Fcertl = 0.90..

Fail-Rate1 = 0.50

Conclusion 2 =B Fcert2 = 0.75,

Fail-Rate2 = 0.90

Using Table 1. Conclusion 1 has 5 points and conclusion
2 has 5 points, but conclusion 1 is in class 2. and
conclusion 2 is in class 3. So conclusion 1 is tried first.

Example 7: In this example the inference procedure
produced two conclusions with the following values:

Conclusion 1 => Fcert 1 = 0.75,
Fail-Rate1 = 0.25

Conclusion 2 => Fcert2 = 0.80,

Fail-Rate2 = 0.20

Using Table 1. Conclusion 1 has 3 points and conclusion
2 has 3 points, also conclusion 1 and 2 both are in class
7, so the weighted average must be used.

FFcertl = (1.1 * 0.75 + 0.9 * 0.25) / 2 = 0.525

FFcert2 = (1.1 * 0.80 + 0.9 * 0.20) / 2 = 0.53

So conclusion 2 will be tried fist.

We have seen that in the PC based version of the FAULT
FINDER, maintenance personnel may easily use the
system without changing existing maintenance plans or
procedures. The system can be used as a consultant, and a
library to store knowledge learned through experience.
New rules may be added by maintenance personnel. The
system also learns from fault data and improves its fault
finding performance.

When the real time status interface is added in the PC
based version of the FAULT FINDER, the target system
status is now available to the inference procedure. The
system can still be used as a consultant, and a library to
store knowledge learned through experience. But now the
Fault Finder can run in a real time mode logging
conclusion to a printer for example. New rules may still
be added by maintenance personnel, and the system still
learns from fault data and improves its fault finding
performance. If the Fault Finder was rehosted within the
target system it could become part of the fault isolation
software for that application and could be tailored to the
system’s requirements.

The FAULT FINDER PC based system with its learning
process helps the designer and manufacturer be more
productive, and helps the end user have a system with a
higher availability number, with lower costs for
maintenance.

References
HI M. Schneider, D. Clark and A. Kandel.“On the

Matching Process in Fuzzy Expert Systems”,l989.

PI

[31

141

[51

[61

[71

181

[91

D.A. Rowan. “AI Enhances On-Line Fault Diagnosis”,
InTech, May 1988. Page 52.

HARRIS Electronic Systems Sector Melbourne,
Florida 32901

TURBO Pascal is a trademark of Borland
International, Inc.

M. Schneider and A. Kandel.“Cooperative Fuzzy
Expert Systems - Their Design and Dpplications in
Intelligent Recognition”, 1988, Verlag TUV
Rheimland.

Conor Clancy. “Qua2 tative Reasoning in Electronic
Fault Diagnosis”, Electronic Engineering, Nov.
1987, Page 141.

Schneider, M., Shnaider, E., and Kandel, A. (1989).
Application of the Negation Operator in Fuzzy
Production Rules, Accepted for publication in the
International Magazine for Fuzzy Sets and Systems.

Harmon, P. and King, D. ‘Expert Systems’ John
Wiley & Sons, Inc. 1985.

Zadeh, L. A. ‘From circuit theory to system theory,
Proc. Institute of Radio Engineers, 50, 856-865.
1962.

[lo] Zadeh. L.A. ‘Fuzzy Sets’, Inf. and control, 8.
338-353, 1965.

[ll] Barr A. and Feigenbaum, E. A. The Handbook of
Artificial Intelligence. volume 1, William Kaufmann,
1981.

22

[12] Bonnet, A., Haton. J. P., and Truong-Ngoc, J. M.,
Expert Systems, Prentice Hall, 1988.

[13] Gevarter, W. B. Expert Systems: Limited But
Powerful IEEE Spectrum. August, 1983.

[14] Hayes-Roth, F., Waterman, D.A. and Lenat, D.B
Building expert systems. Addison-Wesley Publishing,
1983

[15] Liebowitz, J. Introduction to Expert System Mitchell
Publishing, Inc. (1988).

[16] Luger, G.F., and Stubblefield, W. A. Artificial
Intelligence and the Design of Expert Systems.
Benjamin Cummings, 1989.

[17] Waterman, D.A. A Guide to Expert Systems.
Addison-Wesley Publishing, 1985.

[181 Weiss, SM. and Kulikowski, C. A. Designing Expert
Systems.Rowman and Allanheld, 1984.

23

