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ABSTRACT 
The FAULT FINDER Expert System implements fault 
isolation decisions for any target system or equipment 
that can be modeled by lowest replaceable units (hereafter 
called LRUs). The term “Target System” will be used to 
refer to the system being fault isolated. The Fault Finder 
expert system fault isolates the target system’s LRUs. 
This expert system utilizes a data base to represent each 
LRU. a status interface to obtain LRU status, and a 
knowledge base to store the rules of fault isolation for the 
target system. The expert system has multiple “learning” 
capabilities in the data base, the knowledge base and the 
inference procedure. Another aspect of learning which 
influences the structure of the knowledge base is that each 
rule has parameters associated with it to store the 
information learned as a result of user feedback and the 
inference process. The certainty or possibility associated 
with the conclusion of each rule is adjusted as the system 
runs and gains experience. The inference procedure uses 
fuzzy logic for premise matching certainty, and 
combining of premise certainties for the rule firing 
certainty. This expert system brings together for the first 
time a fault isolation system with unique knowledge 
representation, inference processing, fuzzy logic, and 
multiple learning capabilities in one design. Also 
presented are issues of knowledge structure, and possible 
types of fault isolation knowledge. 

JNTRODUCTION 
The FAULT FINDER is an expert system designed to 
implement fault isolation decisions for a target system 
using fuzzy logic [1][5] and learning techniques. One of 
the problems of today’s systems is the ever more complex 
knowledge, experience and training needed to operate, 
maintain and service these systems. Most systems have 
fault isolation software and sensor hardware that find faults 
in a fixed. non-adaptable way. This fixed logic is built 
into the system before field experience is gained. Each 
new system that is designed must have custom logic that 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of the 
publication and its date appear, and notice is given that copying is by 
permission of the Association for Computing Machinery. To copy other- 
wise, or to republish, requires a fee and/or specific permission. 

0 1990 ACM 089791-347-7/90/0003/0013 $1.50 13 

Dr. M. Schneider 
Computer Sciettce Department 
Florida Institute of Technology 

wilt fault isolate its components and topology. Thus, 
engineers must reinvent each new system’s logic for fault 
isolation [2]. 

The FAULT FINDER Expert System implements fault 
isolation decisions for any target system or equipment 
that can be modeled by lowest replaceable units. The 
FAULT FINDER system is configurable to, any target 
system’s components and topology. The target system 
expert enters the topology in the data base and enters the 
fault isolation rules in the knowledge base. 

The FAULT FINDER prototype is written in TURBO 
PASCAL [4] using a PC/AT compatible. TURBO Pascal [4] 
has numerous performance advantages in the PC 
environment. TURBO Pascal [4] (Ver. 4.0) allows 
separate code units which extends the code size limit, and 
by using dynamic memory ‘the data limit can be extended 
to 64K bytes per data structure. This allowed the goal of a 
least 250 rules to be achieved. 

Desian Overview 
The FAULT FINDER prototype implementation is designed 
to be a technicians helper and is based stand alone. This 
can be on any small computer such as a PC/AT. The only 
interface is through the Man Machine Interface (MMI) of 
the CRT. The technician may use the system as a 
consultant, and a library to store knowledge learned 
through experience. 

An optional Status Interface allows the FAULT FINDER to 
request real time status as part of the inference process. In 
a full scale real time implementation, the FAULT FINDER 
may be set up to monitor the health of the target system 
or test assemblies as a final step in a production process. 

Tora Level Dewa 
The system is divided into the Main Control module, the 
LRU Editor module and Data Base, the Rule Editor module 
and Knowledge Base, the Explanation module, the Real 
Time Status interface, and the Inference Procedure built 
around the expert system shell. When designing the 
knowledge base and database structures and the access 
environment the following objectives were set. 
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1. The knowledge base needed to accomodate at least 
250 rules and knowledge base must be retained when 
the execution of the FAULT FKNDER is terminated, 
and restored when the FAULT FINDER is started. 

2. The knowledge base must be named (target system 
name) to allow multiple knowledge bases to be stored 
and retrieved. 

3. The LRU database must be linked to the knowledge 
base by the same name. 

4. The system response time must be fast when a 
question is asked ( fault isolation time ). 

5. The data base and the knowledge base must be 
editable, and reports must be available to review data 
and roles and must contain data structures to support 
learning. 

The user interface for the FAULT FINDER is menu driven. 
The system is started by typing “FAULT” on the PC. The 
startup menu asks for the keyword or name of the target 
system to be fault isolated. This keyword is used to 
retrieve, or create for the first time the data and knowledge 
base files for the target system. Next the Fault Finder 
retrieves the password and is ready for verification. When 
the correct password is entered the main menu appears as 
shown in figure 1. 

The LRU data, Status data and Knowledge (rules) may be 
entered in any order. However, experience has shown that 
the best or most effective order is to enter the LRUs first, 
followed by the items for the status interface, then the 
rules. In this way the terms or arguments referred to in 
the rules are established first. 

The expert system shell which utilizes fuzzy set theory 
and fuzzy logic [5] was designed and written for the 
FAULT FINDER expert system. However the shell itself is 
general and could be used for any other expert system 
application. The inference procedure is described in a later 
section. 

Qata Base Structure 
The Data Base design centers around the LRU concept. 
Any level of component in the target system may be 
designated an LRU. Also LRUs may contain other LRUs. 
Example 1 shows a set of LRUs. In this example three 
LRUs make up a larger LRU boundary. The knowledge 
base contains the rules for the interrelationships of LRUs. 

Choosing the best LRU boundaries is somewhat of an art. 
but for most system designs it is usually at the printed 
circuit card or assembly level where clear functional and 
replaceable boundaries exist. 

Example 1: A Set of LRUs and their connectivity. 

LRU a 

,---Fk 

The basic structure of the database is represented as 
follows: 

LRU-State-Type =(Operational,Degraded,Failed. 
Offline-Standby,Out-of-Service); 

LRU-Record-Type = Record 
LRU-Name : String[25]; 
LRU-Number: String[25]; 
LRU-State : LRU-State-Type; 
Failures ‘: integer; (0 co Maxim) 
Fail-Rate : Real; ( 0 to 1 ) 
Test-Avail: Boolean; 
Test-Conf : real; ( 0 to 1 ) 
Test-State: LRU-S tate_Type; 
End; (record) 

DataBase : Array[l..Number-of_LRUs] of 
LRU-Record-type; 

One of the learning functions of the FAULT FINDER uses 
the LRU failure rates stored in the LRU database (Failures). 
This function uses a fuzzy set (defined below), and 
produces a number range [O..l] (Fail-Rate) that is used by 
the inference procedure when evaluating the conclusion 
certainty. 

The function is as follows: 

let A be a fuzzy set “failed LRUs”,and Failures be a 
member of A 

also let Mm-Fail be the largest LRU failure in the data 
base 

Then: 

Fail-Rate 
:= 0, 
:= Failures/Max-Fail, 
:= 1, 

if the LRU has not failed 
if (k Failures< Max-Fail 
if Failures = Max-Fail 
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Select one of the following options and enter (cr): 
0 - Rule Editor, Max 11 rules alloned = 250 current rule cnt : 43 : 
1 - Start Fault Isolation nith Blackboard Data 
2 - Explanation Module 
3 - Status Interface, lo. Status Blements : 17 
4 - Review the Blackboard Data 
5 - LRU Editor, lax It of LRBs: 50 Current LRU cnt: 22 
8 - Enter Data to be placed onto the Blackboard 
7 - Clear the Blackboard 

* Target System: co~msys 8 - Exit The PrograB 
annn~nnnnn~nnnnnnnnnnn~~~nnnn~nnnnnn~nnnnnnnnnnnnnnnn~nnnnn~n~ 

figure 1. 

Example 2: In this example the FAULT FINDER had 5 Status Interface 
LRUs defined in the LRU data base. After a conclusion The Status interfa~e~allows the Fault Finder to access real 
was reached the learning function described above was time status from the ‘target system. Each status element 
allowed to run. For this example the conclusion was that has a name and a type of status, boolean or real counter. 
LRU# 1 was failed. This is the LRU data base before the The structure of the status database is represented as 
learning function is run. follows: 

LRU# Failures Fail Rate 
1 5 0.71 
2 1 0.14 

3 0 0.00 

4 7 1.00 

5 2 0.29 

The first thing that is done is the number of failures for 
LRU# 1 is increased by one, then the function is applied 
to each LRU record in the data base. The result is shown 
below. 

LRU# Failures Fail Rate 
1 6 0.85 

2 1 0.14 

3 0 0.00 
4 7 1.00 
5 2 0.29 

Status-record : record 
ElrJsed : Boolean; 
ElPJaae : ident; 
ELtype : integer; { 0 - cnt, 

1 = boolean] 
Fault : boolean; 
Fail,& : Real; { 0 to intrax } 
End; {record) 

Status-type - Array [ 1. .ElrJ.!ax 1 of Status-record; 

THE LRUJDITOR 
The LRU Editor is accessed by selecting choice 5 on the 
main menu. The user may enter LRU records into the LRU 
Data Base, print the LRU Data Base report, delete LRU 
records. or exit. 

The Status interface database Editor is accessed by 
selecting choice 3 on the main menu. This menu allows 
the user to enter Status records, print a Status Data Base 
report, delete Status records, modify status records, or 
move the status to the blackboard for inference process 
access. 



I<nowledae Base Structure 
The Knowledge Base is constructed of production rules of 
the form: IF <premise> THEN cconclusion>. The premise 
and conclusion use the following grammar: 

[the]KWl[of[the]KW2]is[not][modifier]{ [KW3][number] 
[number to number]) 

where KWl,KWZ and KW3 are keywords, 
[ ] means optional and () means one choice is required, 
number may be a real. 

let p be the premise of a rule and c be the conclusion, 
then using the BNF notation we have: 

<p> = p I p or p I p and p I not p I (p) 
<c> = c I c and c I not c I (c) 

It should be noted that conclusions have different’ BNF 
forms than premises. This is because of the nature of a 
conclusion. If an “or” were allowed in a conclusion, how 
would the inference process decide which clause to use? 
The “or” in a conclusion is ambiguous, and therefor is not 
allowed. 

Each rule has an expert user assigned certainty value range 
[O..l] that describes the user’s belief in the truthfulness of 
the conclusion at the time the rule was entered. This user 
assigned number is not changed by the system, but is used 
in the learning function with other parameters to produce 
the final certainty in the conclusion. 

The knowledge of fault isolation can be divided into the 
major areas of internal LRU design knowledge and external 
LRU or target system knowledge [6]. Internal knowledge 
is design knowledge of the LRU details. This is the detail 
design knowledge that only the design engineer may know 
of how each component is interrelated within the LRU. 
External knowledge is interface knowledge of the LRU. 
without knowing the internal design implementation. The 
knowledge base of the FAULT FINDER [7] is composed of 
rules of “system knowledge” or “shallow knowledge”. An 
example of system knowledge is. “If two inputs are 
present and no output is present then the LRU is faulted”. 
Most technicians or support engineers servicing system 
sites do not have the deep knowledge of how each card 
(LRU) works or fails. Only the designer may know this. 
But this deep knowledge is not needed to fault isolate and 
replace the failed LRU. Shallow knowledge is not 100% 
correct in all cases, but a substantial amount of system 
maintainence can be done with shallow knowledge. 

Each conclusion is assigned a real number, range [O..l], 
derived in the inference process, which represents the 
possibility that this conclusion is correct. 

As shown in figure 2 the knowledge base is made up of 
three major data structure types; the Rule-Pointer&ray, 
the Rule-Record, and the Clause-Record. The 
Rule-Pointer-Array points to rule records that are 
dynamically allocated as needed using the ‘NEW’ function 
of Pascal. The array pointers are set to nil unless a valid 
rule is pointed to. The Premisejdx and Conclusion-idx 
both point to a Clause-Record which in turn may point to 
another Clause-Record. The last Clause-Record in a chain 
has a zero forward index. The grammar defined previously 
allowed the Premise and Conclusions to have the forms: 

<p> = p I p or p I p and p I not p I (p) 
<co=cIcandcInotcI(c) 

These forms are supported by stringing the clauses 
together using the Relation structures to store the type of 
linkage between the clauses. 

The Knowledge Base Editor is accessed from the main 
menu by choice 0. The editor prompts for the rule 
certainty. If a rule has a syntax error, the editor protects 
the knowledge base from this rule by deleting it. The 
knowledge base and the bit matrix [S] are initialized when 
the editor is exited. The bit matrix is a data structure used 
by the inference process in the direct chaining of rules. 
The bit matrix is built to store information concerning the 
interrelationships of rules. The bit matrix (BM) is a N by 
N matrix where N = the number of rules, and is defined as 
follows: 

BM [l,J] I 1 if rule I may participate in the 
firing of rule J. 

0 otherwise 

The bit matrix is initialized to all zeros. Next each rule is 
compared to all other rules in the knowledge base and the 
matrix is updated with the results of the comparison. If a 
rule has all zeros in its row then the rule is a concluding 
rule ( a rule that fires no other rules). If a rule has all 
zeros in its column then the rule is fired by no other rule 
and requires user entered data to be fired. As shown below 
each modifier has a lower and an upper fuzzy value. In the 
grammar defined previously the modifier may be a single 
number, or a range “number to number”. 

Exactly 1.00 1.00 
Almost 0.97 0.99 
More-or-less 0.90 1.10 
Nearly 0.95 0.99 
Approximately 0.85 1.15 
Aiound 0.85 1.15 
About 0.85 1.15 
Somewhat 0.80 1.20 
Slightly 0.75 1.25 
Barely 0.65 0.95 
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FAULT FINDER Knowledge 

Rule pointer array Rule-Record 

I b 

2 

3 

* 

Rcert 
L 

Ucert 
NT 
NS 
P-Ptr 
C-Ptr 
Rule text 

I I I 
I q;I 

(N 
const 

Arggax : 500; 
Rulejax : 250; 
linelnt - 255; 
BlkBdJax : 50; 

tue 
ident 5 string[25]; 
Relation-type = (null, mot, zor, zand, 

openJam, Close-Pam, Clause) ; 
Statement-type : array[O. .20] of Relation-type; 

rule_yecord-type = record 
Ucert : real; 
Ecert : real; 
Fcert : real; 

tj: 
: integer; 
: integer; 

Preajdx : integer; 
Preagrd : Staterentfype; 
Concjdx : integer; 
Concqrd : Statement-type; 
Srule : String[linelnt]; 
Concqtr : integer; 
end ; 

Rule&r = ‘rule-record-type; 
rule-array : array [l. *Rule jax] of rule&r; 
BlkBd-array = array [l, .BlkBDsaxl of rule&r; 
rule-state-type = (preGe,conclusion); 

l 
l 
l 

( 

S-Arg-type : record 
Arg-used : boolean; 
KWl : ident; 
11132 * ident; 
Intjnot i boolean; 
Adj : integer; 
KH3 * ident; 
Nurgall I Real; 
Nur-va12 : Real; 
Nud : Real; 
Nu12 * Real; 
fornardjdx I integer; 
end; { RECORD } 

Args-type 1 array [l..Argsax] of S&g-type; 
Arggtr-type - “args-type; 
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When the modifier is applied to KW3 the Fault Finder 
ignores the modifier. To see why this was done consider 
the following examples: 

Example 3: The user types in a rule as follows: 

If the fan is not active and the power is not failed 
then the source of the fault is almost LRU2 

The adjective almost cannot be applied to LRU2 in a 
meaningful way. 

Example 4: Now consider the following rule. 

If the input is more-or-less 35 then LRU2 is 
not faulted. 

The adjective more-or-less can be applied to 35 in a 
meaningful way. Using fuzzy matching [l] the number 35 
is replaced with an interval defined as follows: 

Lower fuzzy value * 35 to Upper fuzzy value * 35, 

using the values of the fuzzy modifiers we have, 

(0.90 * 35) to (1.10 * 35 ) = interval 31.5 to 38.5 

As shown in example 3. the modifier should be ignored 
when a KW3 is entered. The modifier in example 4 
however, may be applied to the number in a meaningful 
way. The values of the lower and upper modifier fuzzy 
values were selected based on the opinion of the author, 
and other values may be suitable for other applications. 

KNOWLEDGE BASE LEARNING FUNCTION 
The Knowledge Base learning function uses four 
parameters associated with each rule. These parameters 
are the expert’s confidence in the conclusion (Ucert), the 
number of times the rule was tried (NT), the number of 
times the rule was successful (NS) and the output of a fuzzy 
function (Rcert). The fuzzy function uses the above 
parameters to calculate the possibility that the conclusion 
is correct as follows: 

Rcert := Rcert - 0.5 l (Rcert - NS/NT) 

The Rcert is initialized to the user certainty (Ucert) when 
the rule is first entered. The 0.5 factor is applied to cut 
the rate of change in the learning process. This factor 
helps stop large oscillations but allows multiple changes, 
through experience, to accumulate in a direction. 

Example 5: 
let Rcert = Ucert = 0.9 for the first run with a success, 
then 

NS=l,andNT=l 
Rcert := 0.9 - 0.5 * (0.9 - l/l) 
Rcert := 0.95 

Next, a run with a failure 
NS=l,andNT=2 
Rcert := 0.95 - 0.5 * (0.95 - l/2) 
Rcert := 0.725 

Then, another run with a failure 
NS=l,andNT=3 
Rcert := 0.725 - 0.5 * (0.725 - l/3) 
Rcert := 0.529 

The learning functions are applied to the knowledge and 
data bases only after the user enters a ‘yes or no’ answer as 
to the conclusion’s verified correctness. 

The Blackboard 
The blackboard menu is used to enter data for the fault 
finder to use in the inference process. The blackboard 
editor is entered from the main menu by choice 6. 
Blackboard data is entered in the same basic format as rule 
premises. The input data consists of statements as to the 
state of the target system, the interfaces. or other data that 

is target system dependent. The structure of the blackboard 
is very similar to the structure of the knowledge base. 
This allows the inference process to be more efficient in 
matching input data, premises, and conclusions. 

Inference Procedure 
The inference engine is responsible for inferring 
conclusions from a given knowledge base and user entered 
data. The process of inferencing involves matching the 
knowledge base with the data and producing conclusions 
[S]. The inference procedure uses fuzzy matching [l] for 
comparing input data, premises and conclusions and may 
be sumrnerized in the following steps. 

1. The conclusion of a rule becomes true if and only if 
the matching process generates results which are 
above or equal to a threshold of 0.6. 

2. If the conclusion becomes true, then we “fire” that 
rule and place its conclusion on the blackboard, along 
with its firing certainty. 

3. We repeat the process until no more rules can be 
fired. 

There are two steps in Finding the degree in which two 
ranges are matched. First it is necessary to find out the 
possible range of the variable $I question and then utilize 
the matching procedure. When matching clauses, two 
cases must be considered: 

1. A clause contains the keyword “NOT” and 
2. A clause does not contains the keyword “NOT”, 
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In the first case, the word “NOT” forces two intervals 171 
to be created. In the case where the clause does not 
contain the keyword “NOT”, there is one continuous 
interval. Therefore, when two clauses are compared, it 
must be assumed that there may be four intervals to 
consider. 

The overall operation of the FAULT FINDER is shown in 
figure 3. The user defines the LRUs in the LRU data base, 
defines the status items in the status interface and the rules 
of the target system in the knowledge base. Next the user 
enters input data onto the blackboard, and/or requests 
status to be moved to the blackboard, and starts the 
inference procedure. The inference procedure produces one 
or more conclusions with decreasing certainty. The 
conclusion with the highest certainty is printed as “the 
conclusion”, but the user through the use of the 
explanation module may review all of the conclusions 
produced. The user then tries the suggested conclusion, 
and provides feedback to the FAULT FINDER for the 
learning functions. 

The inference procedure process -flow for the FAULT 
FINDER is shown in figure 4. The inference procedure is 
based on direct chaining [l] which uses the bit matrix, the 
blackboard, a list of fired rules and a list of fired 
conclusions. The modifiers and internal not’s are applied 
at the time of input. The starting point of the inference 
procedure uses the rules in the knowledge base, and the 
data on the blackboard. 

The inference procedure starts by matching each rule’s 
premises against the blackboard data. At the start of each 
rule matching process a match matrix of fuzzy values for 
each clause in the premise is initialized to 0.5. The 
reason for this is if a clause is not on the blackboard there 
is a 0.5 certainty that it was a correct assumption. 
Boolean matching is used for KWl, KW2, KW3, and the 
internal NOT if KW3 is a word, fuzzy matching [l] is used 
for all numbers and intervals. In the case of a number the 
internal not was applied to the interval at the time of 
input. If a match is greater than 0.6 then the following 
function is used to update the match matrix. 

Match-Matrix( Clause# ) = 
(match-value + BBdataFcert) / 2 

The final matching value for a premise is achieved by 
combining the individual clauses of a premise using fuzzy 
ands, ors, and nots. If the match value is greater than 0.6 
then the rule is fired. When a rule is fired the blackboard 
must be updated. The inference procedure blackboard 
updating process uses the Ucert and Rcert values for each 
rule and a premise matching certainty [l] as it fires a rule 
to accumulate a fimal firing certainty (Fcert) for that rule. 
The fuzzy function for handling firing certainty for the 
blackboard update is as follows: 

This value is stored in the knowledge base with the rule 
for later reference. If the rule ends up being the best 
concluding rule this composite conclusion certainty (Fcert) 
is the final conclusion certainty. The blackboard is 
updated by copying the fired rules’ conclusion to the 
blackboard and the following values: 

BB.Ucert = Rule(x).Rcert; 
BB.Fcert = Temp-Result; 

The final composite conclusion certainty (Fcert) and the 
LRU Fail-Rate (Fail-Rate) values, from the LRU data base, 
are used in calculating the FAULT FINDER’s final 
conclusion certainty (FFcert). After the inference process 
has terminated. one or multiple concluding rules may have 
been fiied. The explanation module will allow the user to 
access the secondary and subsequent conclusions if needed. 
These subsequent conclusions may contain additional 
faults with a lower certainty, as compared to the primary 
conclusion. The conclusion to be suggested first and its 
certainty could be calculated by just averaging the Fcert 
and Fail-Rate values. Another approach is to define 
classes of conclusion certainty using the Fcert and 
Fail-Rate values. If we assign points to ranges of 
certainty then a fuzzy function can be constructed as 
follows: 

Define the following certainty ranges for fail-rate values: 
High, Med., Low 

where 
0.7 .z= High CL 1 .O, and High Certainty = 3 points 
0.3 C= Med. .Z 0.7, and Med. Certainty = 2 points 
0.0 <= Low c 0.3, and Low Certainty = 1 point 

and, define the following ranges for rule firing certainty: 
High, Med., Low 

where 
0.9 c= High C= 1 .O, and High Certainty = 3 points 
0.7 .c= Med. < 0.9, and Med. Certainty = 2 points 
0.6 C= Low < 0.7, and Low Certainty I 1 point 

Now a table of combinations can be constructed: 

Fcert 
High 
High 
High 
Med. 
Med. 
Med. 
LOW 

Low 
LOW 

Fail Rate 
High 
Med. 
LQW 

High 
Med. 
LOW 

High 
Med. 
LOW 

Class 
6 1 
5 2 
4 5 
5 3 
4 4 
3 7 
4 6 
3 8 
2 9 

Temp-result = 
(Result + Rule(x).Ucert + Rule(x).Rcert) / 3; 

Rule(x).Fcert = Ternp-result 
Table I 
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FAULT FINDER Inference Process Flow 

rule input 
Parser 

- not and modifier applied at inpu 

I 
not epsilon = l/maxint) 

Cd = Rcert for input l-l 

user input data 
Parser 

+ not and modifier applied at inpu 

I 
ncDefrtepsilon = lhnaxint) 

= Rcert for input 

I B 

Status 
Data 

Blackboard Knowledge Base 

Data y Rule x 
Ucert, Fcert, Number Ucert, Rcert, Fcert, Number 

intervals intervals 

Intermediate 
Conclusions I 

3 

Rules T Certainty 

I . + / I 
Inference process 

LRU Data 
e b learning 

Base 
functions 

4 I 

\ Failures + 

Explanation Module 
Conclusions 

figure 3. 
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FAULT FItiDER 
certainty handling in the Inference Process 

data and 
rule input 

- not and modifier applied at input 

/ I 
not epsilon = l/maxint) 
cert = Rcert for input 

/ 
Rule x Data y 

acert, Rcert, Fcert, Number Ucert, kcert, Number 

learning 
functjon inference process 

next rule c 
match matrix set = 0.5 

F--+ I 

t+ 

next clause 
KWI ,KW2, KW3, M-not compared 
as boolean for each clause 

- if pass then match = 1 .O 

c 
fuzzy match of numbers 

C-------- if match > 0.6 then 
match-matrix(clause) I ( match + Data y. Fcert)/2 

c 
match-matrix evaluated by fuzzy 
not,and,or, (), and s 

c 
- if result > 0.6 then fire rule x, update BB 

move rule x conclusion to BB 
temp-result = ( result + rulex.Rcert + rulex.Ucert) / 3 
BB. Ucert 
BB. Fcert 

= rule x. Rcert 
= temp-result 

Rule x. Fcert = temp-result 

rule with highest Fuzzy ( Fcert , fail rate ) - 
is conclusion print certainty 

figure 4. 
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If the two or more conclusions fall in the same class then 
a weighted average is used to make a choice as follows: 

let 
w(FFcert) = 

bl* F&t, w(Fail-Rate) = b2 * Fail-Rate 

and bl + b2 = 2. 
Then: FFcert = (w (Fcert) + w (Fail-Rate)) / 2 

Where a bl of 1 .l weights the Fcert at 110% and a b2 of 

0.9 weights the Fail-Rate at 90%. 

Example 6: In this example the inference procedure 
produced two conclusions with the following values: 

Conclusion 1 =a Fcertl = 0.90.. 

Fail-Rate1 = 0.50 

Conclusion 2 =B Fcert2 = 0.75, 

Fail-Rate2 = 0.90 

Using Table 1. Conclusion 1 has 5 points and conclusion 
2 has 5 points, but conclusion 1 is in class 2. and 
conclusion 2 is in class 3. So conclusion 1 is tried first. 

Example 7: In this example the inference procedure 
produced two conclusions with the following values: 

Conclusion 1 => Fcert 1 = 0.75, 
Fail-Rate1 = 0.25 

Conclusion 2 => Fcert2 = 0.80, 

Fail-Rate2 = 0.20 

Using Table 1. Conclusion 1 has 3 points and conclusion 
2 has 3 points, also conclusion 1 and 2 both are in class 
7, so the weighted average must be used. 

FFcertl = (1.1 * 0.75 + 0.9 * 0.25) / 2 = 0.525 

FFcert2 = (1.1 * 0.80 + 0.9 * 0.20) / 2 = 0.53 

So conclusion 2 will be tried fist. 

We have seen that in the PC based version of the FAULT 
FINDER, maintenance personnel may easily use the 
system without changing existing maintenance plans or 
procedures. The system can be used as a consultant, and a 
library to store knowledge learned through experience. 
New rules may be added by maintenance personnel. The 
system also learns from fault data and improves its fault 
finding performance. 

When the real time status interface is added in the PC 
based version of the FAULT FINDER, the target system 
status is now available to the inference procedure. The 
system can still be used as a consultant, and a library to 
store knowledge learned through experience. But now the 
Fault Finder can run in a real time mode logging 
conclusion to a printer for example. New rules may still 
be added by maintenance personnel, and the system still 
learns from fault data and improves its fault finding 
performance. If the Fault Finder was rehosted within the 
target system it could become part of the fault isolation 
software for that application and could be tailored to the 
system’s requirements. 

The FAULT FINDER PC based system with its learning 
process helps the designer and manufacturer be more 
productive, and helps the end user have a system with a 
higher availability number, with lower costs for 
maintenance. 
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