
Dynamically Displaying a Pascal Program In Color

John F. Cigas

Department of Mathematics & Computer Science
Ithaca College

Ithaca, NY 14850
Bitnet:cigas@icunix

Abstract

This paper describes a method of using color to display the
actual structure of a Pascal program on a color monitor. This
enhancement not only increases a programmer’s understanding
of the code, but also aids in detecting common structural errors.
The paper identifies several structures deserving of color and the
properties that must be adhered to when assigning colors to
these structures. A simple coloring scheme illustrates this
discussion. The last section describes enhancements and
directions for future research.

I. Introduction

Color monitors capable of displaying text as well as graphics
are now available for personal computers and workstations.
Many software packages currently use color to distinguish
between different functions or modes of operation. In this
paper, we propose to extend the use of color to the display of
computer programs.

Previously, several programming environments have
incorporated the formatting of a program info its display on the
screen. Pascal-I [CichelliSO] is an interactive Pascal system which
reformatted the source code to proper indentation levels during
every compilation. Other tools, such as the Cornell Program
Synthesizer [TeitelbaumSl] andSED (Syntax-EDitor) [AllisonS3]
allow for multiple displays of a program, but do not reformat
the program text on the display. This is to avoid disturbing the
programmer’s sense of location when viewing the program. It was
felt that the programmer should have ultimate control of such
formatting decisions.

One context-sensitive editor explicitly displays the program
structure with an alphanumeric structure index beside each line
of program text [AtkinsonSl]. From this display, the user can
determine the exact contextual location of each program
statement. However, the indexes take up many columns of space
on the screen and require the user to perform an explicit mental
transformation from the key numbers to the program structure.

We propose a similar method of displaying a computer
program, except that we use color instead of alphanumeric

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise , or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-347-7/90/0003/0068 $1.50 68

indexes to distinguish between each of the control structures.
This allows more space on the screen for the program and
eliminates the transformation from indexes to program structure.

Our proposed display complements the traditional format
of indenting sections of code enclosed in a program unit of a
loop, procedure, or decision branch, but does not replace it. It
differs from such formatting conventions in that the colors are
not user-supplied; they are generated by the displaying program
based on the parsed structure of the program. Since the colors
are generated by our tool, not the user, the programmer sees
what the compiler is doing, as opposed to what the programmer
thinks the compiler is doing. This removes one level of
uncertainty by displaying the exact structure of the program.

Enhancing the readability of a program is not novel. Program
formatters and pretty printers have been around for years.
However, they require the extra step of generating hard copy,
then reviewing the program. Our method has the advantage of
being an interactive tool used at the terminal. This paper
explores the topics of what structures to color, what properties
should apply to the colors, and how to choose the colors to
satisfy the aforementioned properties. It only briefly attempts to
justify the usefulness of color.

In the following section, we briefly give an example of how
color can aid in detecting structural errors in a Pascal program.
Such errors are usually caused by typing mistakes, not algorithmic
misconceptions. The next section discusses some of the
important properties needed to color a program. The fourth
section presents one simple method of assigning colors to sections
of a program and discusses how this conforms to the described
properties. The final section describes the improvements that
can be made on this simple method and indicates the direction
of future research.

II. Common Structural Programming Errors

There are many common programming errors that color will
help to detect. These include a missing comment terminator,
missing END statement, an ELSE paired with the wrong IF, and
a missing BEGIN-END around a block of code. This section
illustrates the cases of a missing right comment terminator, “}“,
and a block not enclosed by BEGIN-END.

A missing comment terminator is a typographical error made
by most programmers at one time or another. It is not a
difficult error to correct, but it may be difficult to find. Consider
the program in Figure 1. It is not a long program, and at first
glance may seem correct. However, the Turbo Pascal 4.0

http://crossmark.crossref.org/dialog/?doi=10.1145%2F99412.99432&domain=pdf&date_stamp=1990-02-01

compiler refuses to accept the program, putting the cursor on the
keyword UNTIL and displaying the message “Error 113: Error
in statement”. Of course, the error is not in the marked
statement; it is not even in the statement immediately preceding
it. The error is caused by the missing right brace “}” on line 8.
Given the brevity of the program, it is not difficult to detect the
error eventually, but it requires scanning the whole program.
For a longer program, this becomes a significantly harder task.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

2
3
4
5
6
7
8
9

10
11
12
13
14
1.5
16

PROGRAM NoComment;
VAR

Count : INTEGER;
BEGIN
{ This is a header comment. It

contains many lines of text. It
may appear anywhere in the program
Alas, it has no closing bracket

Write(‘Enter number of iterations: ‘);
Readln(Count);
REPEAT { Execute “count” times }

Process;
Count := Count - 1;

UNTIL Count = 0;
Writeln(‘Program completed’);

END.

Figure 1. III. What to Color in a Program

However, if the comments were displayed in a different color
than the executable statements, the error would be immediately
obvious. Such is the case with Figure 2. (The colored text is
printed as underlined text.) In this case, it is very easy to see
that several lines of seemingly executable code are in fact
swallowed up as part of a comment.

PROGRAM NoComment;
VAR

Count : INTEGER;
BEGIN
{ This is a header comment. It

contains many lines of text. It
may appear anvwhere in the program
Alas, it has no closing bracket

WriteCEnter number of iterations: ‘1;
ReadlnKZount);
REPEAT { Execute “count” times }

Process;
Count := Count - 1;

UNTIL Count = 0;
Writeln(‘Program completed’);

END.

Figure 2.

Another programming problem easily detected by color is a
block not enclosed by BEGIN-END. This commonly occurs
when adding a statement to a loop containing a single statement.
Figure 3 shows a loop intended to assign zero to all the elements
in two arrays. This loop may appear to be correct because the
programmer has indented both assignment statements the same

amount. Since this fragment is syntactically correct, the error will
not appear until the program is executed and its output checked.
However, if all statements within a loop are the same color,
Figure 4, the programmer can easily see that the second
assignment statement is not part of the loop.

FOR Student := 1 TO MaxStudent DO
Grade[Student] := 0;
Average[Student] : = 0;

Figure 3.

FOR Student := 1 TO MaxStudent DO
GradelStudentl : = 0,
Average[Student] : = 0;

Figure 4.

These are only two examples of the usefulness of dynamically
coloring a program on the display. Other examples are omitted
here in the interest of brevity. In the next section we discuss
what parts of a program should be colored and some criteria for
choosing each of the colors.

In the previous section, we presented an example of how
color can be used to reflect the structure of a Pascal program.
Now, we shall discuss the parts of a program to be colored.
These are important considerations, because one must be
judicious in the use of color. Using too many colors only results
in a cluttered display that doesn’t convey any meaning to the
viewer. Furthermore, even with high resolution monitors
capable of displaying many thousands of colors at a time, there
is a limit to the number of colors that a viewer can distinguish
and remember at any one time. Our application requires a large
contrast between colors in order to be functional.

As seen in Figure 2, it is useful to color comments differently
from executable statements. Additionally, among executable
statements, there should be a distinction between each of the
different control structures. The three necessary control
structures are iteration, repetition, and decision. A fourth
structure, subroutine, is also useful and will be considered as well.
Of these four, there is no need to color iterative statements
separately, since they do not reflect a change in the control flow.
The other three structures do affect control flow and should be
colored distinctly. We examine each one separately.

Repetition (loop). In Pascal, there are three types of loops:
WHILE, FOR, and REPEAT. The differences among them are
not important from a coloring point of view. It is only important
to be able to discern that statements are inside the body of a
loop. Given this distinction, the programmer can easily read the
code to determine the type of the loop. Therefore, all types of
hops can be the same color.

Subroutine. Coloring Pascal’s two types of subroutines,
PROCEDURE and FUNCTION, follows the same reasoning as
for loops. Given that they are colored differently from other
structures, the programmer can determine the type of subroutine
from context. Therefore, both procedures and functions can be
the same color.

69

Decision. There are two types of decision statements, IF-
THEN-ELSE and CASE. The CASE statement could be
colored, but because of its inherent structure and well-defined
scope, we choose not to consider it further. The IF statement,
though, presents some other challenges. Ie must be colored, but
there is a choice on how to color the ELSE branch. The ELSE
may be the same color as the IF, to show the pairing, or it may
a different color, to indicate the difference between the two
branches. Arguments can be made for both options. For the
remainder of this paper, we will choose to pair the ELSE with
its corresponding IF in the same color. This is an arbitrary
choice and requires further investigation.

One final area to receive color is the declaration section of
a program or subroutine. It is useful to differentiate this section
with a distinct color, not so much to detect errors, but to
separate it from the executable statements in a program. We
also find it visually appealing to do this, since it breaks up a
large block of one color into two sections of different colors.

IV. Coloring Criteria

Having decided what to color, there are some properties to
be aware of when deciding what colors to use. These are as
follows:

Consisrency. Each control structure should have its own
unique color. That color must not be used for any other control
structure. This allows the programmer to recognize structures by
color as well as by keyword.

Sim.ilurity. While all color applications require consistency,
displaying a program adds an additional constraint when
displaying nested structures. If all loops are the same color, as
required by the consistency criteria, then there is no way to
distinguish between the inner and outer loops. Therefote, the
color of a structure must change depending on its level of
nesting. However, there is still a need for some consistency, so
the color change can not be random. The solution is to change
the color a small amount, enough to indicate a change (see
distinction) but not enough to overlap the color space of another
structure.

Distinction. Distinction means that one must be able to tell
two different structures apart by sensing two different colors.
Even though a monitor is capable of displaying many fine shades
of color, there must be a fairly large contrast between two
adjacent control structures, such as nested loops. Note that it is
easy to provide contrast between six predetermined colors, but it
becomes more difficult when taken in context with the principle
of similarity, which adjusts the color of a structure based on its
level of nesting.

V. A Simple Coloring Scheme

In this section, we describe a simple method for assigning
colors to the different components of the program. We first
define some terms, then we present our coloring scheme.
Finally, we discuss some of the improvements that can be made
to the coloring scheme.

The standard color monitor is composed of three phosphors
for every pixel. These phosphors approximate the three colors
red, green, and blue (RGB). Each phosphor has a range of
intensities, mapped to the range O..l, and operates independently
of the other two phosphors in the same pixel. Therefore, to
describe the actual color of a pixel, we need an ordered triplet

representing the values of each phosphor. For example, (l,O,O)
represents a bright red, (0,&O) a medium green, and (l,O,l) a
bright magenta (red + blue). Equal intensities of all three
components represent neutral gray colors, ranging from black
(O,O,O) to white (l,l,l). Colors described this way are in the
RGB color space. There are other systems for describing a
color, and we shall mention some of these later. The RGB color
space is not the easiest one to manipulate for color
transformation, but conceptually it is the simplest to understand.

Since any two colors must be distinguishable, for each
phosphor there is some minimum amount of change in its
intensity that must occur for a noticeable change in color. In
this example, we shall assume that this difference, d, is the same
for each primary, and is constant over the whole range of
intensities. Given M intensities in the range O..l, there are Mld
distinct colors that can be displayed by changing a single
phosphor value. For this discussion, we pick M=64 and d = 16,
giving 4 distinguishable intensities per phosphor.

The structures of the program to be colored are: the main
program declaration and its executable statements,
procedure/function declarations and their executable statements,
the declaration section of each block, loops, IF-THEN-ELSE
statements (with the ELSE the same color as the matching IF),
and comments. We will assign these six elements to six vertices
in the RGB color space as follows:

program - red U,W)
subroutine - magenta (LW)
‘ooP - blue (0,0,1)
declaration - cyan (OJJ)
decision - green (O,LO)
comment - yellow (LLO)
background - black ww)

Coloring will take place one of two ways. If the structure
detected is different from its enclosing structure, the color used
will be the initial color for that type of structure (as defined
above). However, if the structure is the same as the enclosing
structure, then the color is shifted one division (d) “down” on
the color table. For example, the basic color of a loop is blue
(O,O,l). Given a nested loop, the color of the inner loop would
shift in the direction of cyan. This is accomplished by increasing
the amount of green by d/M, or 0.25, giving the cotor (0,.25,1).
This allows for up to four nested structures of the same type,
more than enough for our simple examples.

This scheme satisfies the properties of consistency, similarity,
and distinction. Coloring is consistent because the same nesting
of structures results in the same colors being displayed. This
applies both to different sections of the same program and to
separate programs. This coloring satisfies the property of
similarity, since nested structures are represented by only a small
change in the displayed color, thus maintaining a close
relationship with the previous color. The coloring is also
distinct, since every color change is either to a vertex (very
discernible) or an increase of at least d/M, which is the minimum
discernible change. However, there is a limit to this distinction.
The scheme only allows for four levels of nesting. Deeper
nesting might be handled by repeating the sequence of colors for
a structure, though this allows the same color to apply to
different contexts.

The method of assigning colors to vertices along the RGB
cube of colors and the simple step function means that any color

70

displayed is composed of at most two of the three RGB
primaries. This appears to be a substantial restriction, reducing
the number of available colors from M3 to 3M2 and limiting the
number of distinct steps that are achievable for coloring nested
structures. However, adding a third primary does not necessarily
increase the distinction on the display. Equal amounts of all
three primaries result in a neutral color. As the third primary
is added, the displayed color becomes less saturated and
progresses toward gray. This is not a desirable situation, since
it is easier to distinguish purer colors from less saturated ones.

VII. Conclusion

VI. Future Work

Much work still needs to be done to refine the coloring of a
program. Most of this centers around mapping colors to
program structures and changing color based on the level of
nesting. Some areas of interest are:

Change in color space. The RGB color space is easy to
conceptualize, but difficult to work with [Ha1189]. It is much
easier to compute colors based on other systems, then transform
them to RGB coordinates for display. The most advantageous
system is the CIEXYZ system. It is important for two reasons.
First, it describes colors independently from actual RGB values.
Knowing CIEXYZ values for the individual phosphors in any
monitor allows the user to build transformation matrices to and
from the monitor’s RGB space. Secondly, the CIEXYZ
coordinates are easily converted into the uniform color space
coordinates of the CIELUV system [Robertson77]. In this
system, the distinction between two colors can be approximated
by a straight line between the coordinates of the two colors.
This allows for a more accurate computation of nested colors
than just using a constant d. Employing the CIELUV difference
metric allows for tertiary colors in the color display, without
degenerating to a screenfult of gray images.

Non-uniform color assignment. Three of the six structures to
which we are adding color are never nested - programs,
comments, or declaration sections. This means that there will
only be one color displayed for each of these structures.
Consequently, to have more color available for the other
structures, the initial allocation of colors to structures does not
have to be uniformiy spaced. Use of the CIELUV system
greatly facilitates this allocation.

Foreground and background colors. The method described
in this paper displays various foreground colors on a constant
black background. It is possible to use a lighter background,
and thus increase the perceived saturation of the displayed colors
[Silverstein87]. It may also be useful to combine changes in both
text and background colors. Care must be taken here, since
many background colors are irritating to the viewer.

Completely unique colors. One of the problems with the
current coloring system is that nested structures do not always
possess the same colors. The only solution to this problem is
to base coloring decisions on the global state of the program.
Mathematically, this is fairly simple, but initial attempts resulted
in a display full of drab, hard to distinguish colors. There is also
the consideration that a user cannot discern more than a dozen
colors at one time, and that generating a unique color for each
configuration would be more confusing than helpful. This is the
most difficult and interesting area of future work.

We have described a method for displaying a Pascal program
using color to indicate the structure of the program. This aids
in detecting certain structural coding errors and in enhancing a
programmer’s overall understanding of the code. We have
detailed various structures that should be colored and the color-
related properties that must be adhered to when choosing colors.
We have presented a simple example of a coloring scheme that
satisfies most of the coloring properties. Finally, we have
discussed the deficiencies of the simple scheme, outlined possible
improvements, and indicated the direction of future research in
the area.

References

[Allison831
L. Allison, “Syntax Directed Program Editing”,So+are
Practice and Experience,l3, p.453-465, (1983).

[Cichelli80]
R.J. Cichelli,“Pascal-I - Interactive, Conversational Pascal-
S”,SIGFXAN Notices, 15(l), p.34-44, (1980).

[Hal1891
R. Hall, Illumination and Color in Computer Generated
Imagery, New York: Springer-Verlag, 1989.

[Robertson771
A.R. Robertson, “The CIE 1976 Color-Difference
Formulae”, Color Research and Application, 2(l), p.7-11,
(Spring 1977).

[Silverstein
LD. Silverstein, “Human Factors for Color Display Systems:
Concepts, Methods, and Research”, Color and the
Computer, Academic Press, (1987).

[Teitelbaum81]
T. Teitelbaum and T. Reps, “The Cornell Program
Synthesizer: A Syntax Directed Programming Environment”,
CXCM, 24(g), 563-573, (1981).

71

