
Efficient Generation of
Lexically Proper Palindromes

-I- Richard Rankin, “f Hal Berghel, $ Xu Tielin
t Dept. of Computer Science, University of Arkansas

$ Taiyuan University of Technology

Abstracp -

Palindromes am strinas of svmbols which are svmmettical
about the center. This
of palindromes. CalleBB per outliries a method for generating c&sin types

lexical palindmmes, which consist of legitimate
En&h words. The method reported provides substantial pnxning of a
P&og search tree by calculating the number of success nodes along
certain search paths instead of visiting them. indexing words to improve
database performance, and continuous analysis of current states to
eliminate non-uroductive search oaths. These efftciencv measures aRow
lexical palind&es to be genera&d using a microcomputkr.

Our ultimate objective is to be able to estimate the ratio of
sentential ualindromes for a& eiven lennth to the set of svntacticallv well-
formed E&lish sentences of i&t length 6it.h respect to a given lexicbn and
grammatical model. We shall take up the problem of determiniig the ratio
of sentential palindromes to well-form&l sentences in a seqiel to this
paper.

Introduction:

Given the finite alohabet. V. a sentence over V is anv finite
string composed of symbols #mm V. ?he set of sentences n&e from
symbols in V. we refer to as V* (V+ if we exclude the empty sentence.) A
l&uaee L. over V is some subset of V*. Let a ‘ualiudro&c lanauaac’ be
one”in -which all sentences are symmetrical abokt the center, i.e. thi fust
half of the sentence is the reverse of the second half of the sentence. Let L
be the subset of V+ which consists of alindromes. Let L’ be a subset of L
such that for each palindrome in E* there is at least one way of
partitioning the palindrome where cach’part of the partition is a correctly
spelled word of the English language. We will refer to L as the set of

which is also a syntactically well-formed sentence of English.
Palindromes have been treated as both mystical [2] and trivial

word games [1,3,4). The term has been extended to cover symmetries
unrelated to the alphabetic units with which they are normally associated
(51. In this paper, we are concerned with the generation of lexical
naliidromes over the Roman alnhabet. We nresent here a techniaue to
generate the lexical palindromes7n an efficienimanner.

There are an infinite number of palindromes which may be
generated using any alphabet Obviously, any palindtume can be
expanded into another palindrome by adding the same character onto both
ends of a strine 131. Just as clearlv. them are an infiite number of lexical
palindromes in’ &glish. Adding a palindromic word to opposite ends of
any lexical palmdrome will generate a new lexical palimdrome. There are
only a fur& number of lexical palindromes. however, when palindromes
are constrained by length and the size. of the lexicon. It is this environment
with which we are concerned

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-347-7/90/0003/0151 $1.50 151

General Discussion of The Problem:

The goal of this paper is to present an effective means for the
generation of lexical palindromes, ignoring case and punctuation. The
simplest strategy is to
see d they are. in fact. extcal palindromes. f .

enemte palindromes from an alphabet, and test to
Processinx with the petterate

and test approach would begin -with the random genera&n of a St&g, then
proceed to a parsing/lookup system which would test to determine if the
string is a lexical alindrane.
‘stsos~s4’ where a E

For example, the system may generate
s; are elements of some svmbol system. The Datser

m&l% “&n attempt to’ partition the string so &at each block con&ins a
correctly spelled word from the lexicon. In this example, the partitions (
ds1.s ,s3,i4>, <sls2,s3,s4>, <s152s3,s4>, etc.] would-each be-checked to
see if%y of the possiblepa ttitions consists of legitimate words. If at least
one of the pattitions arms legitimate words, and the string is a
palindrome, then the string is a lexical palindrome.

One of the problems of the character-oriented a roach above
is that there will be an enormous amount of time s Et g the system
pattitioning and checking unacceptable output. One o IOUS improvement
m the processing algorithm would be to check the generated string for
palindromic p

T
nies before partitioning. This would eliminate many

untenable searc paths. The character approach basically applies a
factorial process to an exponential output, resulting in a combinatorial
explosion.

To ameliorate the problem of checking irrelevant output, one
also could attempt a word-orie+ed approach., This, at the least, assures
E,~=‘ytat s mserted are lextcally correct sm.ee they ate obtamed, from

.i thts method, the nabndrome beams as a stnna of variables
of the length desired. A word & insetted be&mmg in the first available
position, normally proceeding from left to right. Ihe reverse of the word
is then inserted at ihe cormsponding mirmr’unage position of the string.
One knows. that at least half of the strinn. when mad from either direction.
consists of’legitimate words. and that-‘the string is symmetrical. For
example, ‘seekkees’ is a palindrome which resulted from the insertion and
never&of an actual word. However, the string ‘seekkees’ is not a lexical
palindrome since it cannot be entirely pattitioned into legitimate words.

The basic problem, using a word-oriented approach, is to
determine whether the reverse of words inserted conform to an acceptable
lexical pattition. In the example above, ‘seek’ should not have been
inserted, because the resulting string, ‘seekkees’ cannot be partitioned into
lexically correct segments. The string may initially he partitioned into
(<seek.kees>). ‘Seek is obviously in the dictionary, so an attempt would
be made to part&cm ‘kees’ into words. ‘lhis is not possible, so the system
would backtrack and a new word will be attemnted. but not until all

’ ’ possible partitions of Ike-es’ had been attempted.
Processing is generally from left to right within a string.

Problems regardin
f

the pat%ming of the string in the reversed art of the
list may not, there on, be discovered until the process is much cfe eper into
the search tree than the level at which the word was originally insetted.
The reason for the late discovery of failure with left to right processing is
that the system cannot attempt to analyze the second half of the string until
after the first half of the string has been filled. The situation causing the
failure may easily be the Ias; character of the string, which was piaced
upon the insertion of the fit word. If a mblem has arisen at the end of
the string which can never be resolve 8 1 backtrackiig may require an
exponential number of steps before finally returning to the first word
inserted, and changing it.

http://crossmark.crossref.org/dialog/?doi=10.1145%2F99412.99451&domain=pdf&date_stamp=1990-02-01

Therefore. what is needed is a systan which takes advantage of
the concept of working only with lcxically correct insertions, but
eliminates the problem of failure occurring deep in the search tree. The
earlier a failure may be discovered in the search, the more unfruitful paths
may be pruned without being explored.

Specific Discussion of the Problem:

Given an al
length k. 9

habet of n symbols, there. arc nk distinct strings possible of
01, not all strings will be palindrpes. Therefore, the

number of palindromes will be less than the n strings generated for
testing under a simple melhod. When one considers all strings less than or
equal to length k, then the total number of strings generated is:

k
cr

r= ?
If one assumes an alphabet of 26 symbo& yd a m+mun

string length of 7. then there are approximately 8*10 strmgs which may
be generated. The number of these strings which can be lexically correct
can be calculated, if the distribution of the lexicon is known. Obviously,
this makes the assumption that any word not present in the lexicon is not a
correctly spelled word in the Engliih language.

‘llte combinatorial formula to calculate the number of possible
lexical strings (Lexical&rings, below) of length 7, and the values of the
variables used for the example provided in the text, is shown below.

Sample Lexicon Used:
“X

(x=length) fquency
1 ,J

lE
208
330
460

Using our lexicon of 4517 words, 1143 words are of length 7 or
lass, ao that the upper bamd for lcxically correct strings with length 7 is
35917. Figures 1 and 2 show the length distribution of our test lexicons.
The enormous discrepancy between strings which could be generated, and
the upper bound of the number of these strings which can be lexically
correct shows the advantage of a word oriented approach. If only
insertions kgown in advance to be lexically correct are made, only
35917/8*10 or .ooo43% of the possible strings need actually be checked -
those compsed of legitimate words. By dealing only with lexical entries
as candidates for insertion, we effectively eliminate 99.99957% of the
search paths.

Since lexical palindromes are a subset of lexically c-t
strings, the number of lexlcal palindromes. in this case, must be less than
or equal to 35917. We have empirical evidence that there are 117 lexical
palindromes of length 7 or less which can be construded from the lexicon
used. Therefore, in this case, lexical palindromes constitute .32% of the
lexical strings possible with a word-oriented approach, but only
.OOOOO14% of the total strings which could be generated under a character
approach. Althcugh the success nodes remain proportionally few in
number, the search space has been diminished by several orders of
magnitude.

Palindrome Generation:

A description of the method chosen to generate palindromes for
this paper follows. It involves both the analysis of alindromc generation.
and the inclusion of efficiency measures. The ana ysis portion drives the P
processing methodology so that only potentially successful paths are
pursued. Paths guaranteed to fail arc uickly eliminated. Efficiency
measures involve the storage and retriev 3 system developed to minimize
the search s ace.

tin e of the design goals of the project was to efficiently
generate palindromes on a microcan uter.

s
The program was

implemented using A&y Prolog version .O, and timed on an IBM AT
clone, running at 1OmHz. with 512k of primary memory, PC-DOS 3.2,
and a 20 megabyte ftTed disk.

Analytic Generation of Lexical Palindromes :

In our processing algorithm, two lists are maintained. The
concatenation of these lists (even length palindromes), or their
concatenation with a single character overlap (odd length palindromes)
holds a palindrome. After each word inseflion, the resulting string is

DISTRIBUTION OF SAMPLE LEXICONS
BY WORD LENGTH

0 1
1 2 3 4 5 6 7 8 9 10111213141516171819202122

WORD LENGTH
- Small Lexicon -- Large Lexicon

Figure 1

152

analyzed to provide an intelligent choice for the selection of the
subsequent word to be inserted.

To begin, a word is selected from the lexicon and inserted into
ForwardList. The word is reversed and placed in
ReverseList ReverseLit is analyzed to see which
of three conditions holds:

1) ReverseList can be partitioned so that all parts are words in
the lexicon (EVEN LENGTH PALINDROMES):

2) ReverseList can be partitioned so that all rts are word; in
the lexicon, except that the iif st character in
ForwardList is considered an intersection between
ForwardList and ReverseList (ODD LENGTH
PALINDROMES);

3) ReverseList can be partitioned so that all parts, except the
leftmost partition, are words in the lexicon. (The
empty word is considered to exist in the lexicon.)
~~~~~~~~~~~~~~~~~~~~~ 

the leftmost partition can be found to insert, 
backtracking is invoked. 

Example of case 1, even length paliidrorne: 
1: ForwardList = [I. ReverseList = [I. looking for pahndmme 

of length 6 
2: insert ‘top’ into ForwardList and ‘pot’ into ReverseList 
3: The concatcnatim of [top],[pot] results in a lexical 

paliidrome 

Example of case 2, odd length palindrome: 
1: FotwardList = 1). ReverseList = [], looking for a palindrome 

of length 5 
2: insert ‘tax’ into Forwardfist and ‘xat’ into ReverseList 
3: The concatenation of [tax].[xat], allowing for the single 

character overlap, results in a lexical pahndmrne 
b-vtl 

Example of Case 3: 
1: ForwardList = [I, ReverseList = [I, looking for a palindrane 

of length 10 
2: insert: ‘as’ 
3: ForwardList = [a.s]. ReverseList = [s.a] 
4: Partition ReverseList: 

4a: [csa>) -5 ‘sa’ is not in lexicon 
4b: (->,<a>) -7 ‘a’ is in lexicon, but ‘s’ (the 
leftmost partition) isn’t 

5: Use ‘s’ as an index to find a word ending in ‘s’ to be 
inserted 

6: insert ‘pots’ in ReverseList, and its reverse into ForwardList 
(Since ‘s’ already occurs in both lists, it is the 
excess characters of the word located which get 
inserted.) 

7: ForwardList = [a,s,t,o.p], ReverseList = [p,o,t.s,a] 
8: At this point, we have a lexical pahndrome with the 

P 
artitions: 
<as7,acpr,cpots7,ca7) 

In cases 1) and 2). the concatenation of ForwardList and 
ReverseList forms a valid palindrome. In case 3) the concatenation of the 
lists may result in a lexical alindrome only if the additional letters can be 
used to obtain another wo rx from the lexicon which, when inserted, will 
lead to a palindrome. The additional letters are used to select the next 
word inserted, and processing continues. In case 3), a leftmost substring 
of a valid entry already inserted is used to obtain another word from the 
lexicon as the next candidate for insertion, and processing continues. 

Once the above conditions am applied to ReverseList, either a 

E 
alindrome is found of the requested length, or processing must continue. 
processing continues, a word is selected and inserted for ReverseList, 

then its reverse is inserted into ForwardList. The conditions are then 
applied to ForwardList except that case 3) is concerned with the rightmost 
partition of ForwardList. 

As can be noted from this description of the processing 
methodology, palindrome generation is accompltshed from the outside of 
the string inwards. Since all characters inserted are derived from valid 
lexical entries, a pahndrome, if found, must be lexically correct The 
terminating conditions of this process is determined by a user-entered 
maximum length for palindromes to be generated. For example, an 
argument of 10 means that only palindromes of length less than or equal to 
10 will be generated. 

The irnponance of the outside-in processing is that insertions 
leading to failure are discovered as high in the search tree as possible, 
eliminating most of the backtracking. If a word has been inserted which 

must later lead to failure regardless of future insertions, this fact is 
diicovered immediately due to the lack of an acceptable word as a 
candidate for the next insettion. This does not mean that every path 
undertaken will lead to success, but it does mean that paths guaranteed to 
fail will not be prsued. 

As an example, assume we have a limited lexicon consisting of 
(seek, weed, . ..) and we wish to fonn a palindrome of length 14. Under 
our system the rocessin would insen ‘seek’ and analyze the situation as 
follows. Note Xat case 5 * 
palindrome of even length. 

IS never applied, because we are looking for a 

1: ForwardList = [], ReverseList = [] 
2: Insert ‘seek’ into ForwardList and ‘kees’ into ReverseList 
3: Analyze curmnt situation: 

a) ‘kees’ ia not in the lexicon (Case 1 fails) 
b) partition dc>, <ees>: lees’ is not in the lexicon 

(7 
artition attempt fails) 

c partition <ke>,<es>: ‘es’ is not in the lexicon 
(partition attempt fails) 
d) partition Qee>.cs>: ‘s* is not in the lexicon 

artition 
e The rightmost partition consists of the empty (5 

attempt fails) 

word. Since the empty word is considered to be in 
the lexicon. this means that, to proceed towards a 
palindrcme, ‘kees’ would have to be the end of a 
legitimate word, and is used as an index to locate 
such a word. A version of the lexicon indexed by 
the last character of words is maintained to improve 
the performance of these searches. A search of the 
lexicon results in the determination that no word 
ends in ‘kees’. therefore this path cannOt result in a 

4: Forward Lit 
alindrome. Backtracking is invoked. 

t = [], ReverseList = [] 
5: hen next word (‘weed’) and try again 

Under this method, since the insertion of ‘seek’ is guaranteed 
to lead to failure further down in the search tree, the path is pruned 
immediately. Without this heuristic, backtracking would be invoked the 
same number of times as the number of length 3 words in the lexicon 
(attempting to fii the string to length 14). before reaching the point where 
‘seek’ is discarded. 

Imuroving the Efficiencv of Palindromic Generation : 

Improving the efficiency of alindromic generation for this 
project fell into two general categories, e Einating valid yet unnecessary 
palindromes, and search method im rovernent. The fit techni ue 

sections of the search tree by car culating the number of inEZ 
eliminated during proning. rather than visiting those nodes. 2 e second is 
concerned with decreasing the size of the search space. 

Eliminating The Exhaustive Generation of Palindromes: 

When case 1) or Case 2), above, holds, a palindrome has been 
found and that palindrome is saved into a fde. ‘lhe palindromes generated 
from Case 1). though, have additional properties of interest. Suppose that 
a palindrome is of even length, and word partitions divide along the 
mtdpomt into lexical entries. For example. [no,on], [a,a], and 
[may,me.it,tie.my.am], when separated into ForwardList and ReverseList, 
do not overlap. Both lists contain only complete words, and their 
concatenation results in a palindrane, Palindromes of this type, which are 
generated by Case 1), above, are formed from even length sublists 131. 

Anytime we have an even length ahndrome of length n. a 
palindrome of length k, and a maximum ength constraint w, with P 
(n+k)<w, then the k length palindtomc may be inserted into the middle of 
the even length palindrome to make another palindrome of length n+k. If 
one can determme the number of even length palindromes and their 
lengths, it is possible to ski the actual generation of sane palindromes, 
yet still know how many tA ere should have been in the portiat of the 
search tree eliminated 

@,a]. 
Suppose our regular ’ drome file (fde 1) contains [in,i] and 

We then discover the c . dtome [no.on]. We would add this new 
palmdrane to the file, so that we now have 3 entries. We would also write 
the new ’ 

P 
drome to a second fiie (fiie 2), since it meets our criteria of 

even in ength. This is done in lieu of continuing the traversal of the 
search tree to obtain [no.am.a,on], and [no,in.i.ar]. Assuming that these 
are all the palindromes found using our program, with a length constraint 
of 7, how many total palindranes are there? Obviously, we have the three 
palmdmmes in file 1. Withii a length constraint of 7. however, we could 
also have made [no,am,a,on], and [no,in,i,on] for a total of 5 palindromes. 
(Constructing [no,no,cn,on] fails because of the length constraint.) 

153 



The total number of palindromes can he determined simply by 
taking the number of palindromes in fde 1. and adding the constmctions 
which cculd have been made by ecmbining anties from file 2 with entries 
from fde 1, and weren’t. 
less is : 

Obviously, the total palindromes of length nor 

n 
C T(i) 

i=l 
where T(i) is the total number of palindromes of length i. What may not 
be as obvious is how we determine T(i) when we haven’t generated all the 
palindromes. The method of calculating the results is: 

R(n) The number of palindromes with n characters in fde 2 
(even length) 

N(n) ‘Ihe number of paliudromes with n characten in file 1 
T(n) The total number of oalindmmes with n characters 

L 

T(3) = N(3) + R(2) * T(1) 
T(4) = N(4) + R(2) * T(2) 
T(5) = N(5) + R(2) * T(3) + R(4) * T( 1) 
T(6) = N(6) + R(2) * T(4) + R(4) * T(2) 
T(7) = N(7) + R(2) l T(S) + R(4) * T(3) + R(6) * T( 1) 
T(8) = N(8) + R(2) * T(6) + R(4) l T(4) + R(6) * T(2) 
. . . . . 
Whennisodd: 
T(n) = N(n) 

+ R(2) * T(n-2) 
+ R(4) * T(n-4) 
+ . . . 
+ R(n-1) * T(1) 

When n is even: 
T(n) = N(n) 

+ R(2) * T(n-2) 
+ R(4) * T(n-4) 
+ . . . 
+ R(n-2) * T(2) 

This method eliminates slow search tree processing with a 
substitutiion of simple calculatiat. Thus, when counting is the primary 
goal of palindrome generation, we may accomplish this goal without 
tmversing the canplete search tree. If the palindromes themselves are of 
interest, the two fdes could be canbmed after program termination, or one 
may sbghtly alter our rogram to remove this efficiency measure, and 

K perform complete seat-c tree traversals. The number of search tree paths 
actually eliminated is a function of the size of the lexicon and the length 
umaraint. 

Search Method Imorovements: 

In general, the highest cost of generating palindromes derives 
from the characteristics of Prolog and its search tree mechanism. At the 
highest level, the palimimme generation process may be considered as a 
tree traversal. If we assume that there am 1000 words in the lexicon. for 
exx:zehe problem may be represented as a tree, with 1000 arcs leaving 

* Step one is to select a word from the lexicon. This initial root 
of the tree has 1000 branches, one for each word. Once a particular word 
is selected, a second word, out of loo0 possibilitieq, must be selected 
from the lexicon. The second word is tested to determme if it may provide 

“cr 
th to a success node containing a palindrome. There am, however, an 

a d&mat loo0 branches frun this node so that the selection of a third 
word involves the s&ctiou of one out of loo0 mom branches, etc. If, for 
exam le. five words need to be selected from the 1 
palins 

xicon 
mne, the worst case search involves 1000 4 

to compose a 
nodes to derive alI 

possible pahndranes from the lexicon. This is untenable if one desires 
realistically finite mntimes. 

Our solution involved the elimination of as many useless paths 
as possible, as early as possible in t#,e search process. Every word 
~~~~~ ;a-a~~di~;~~~;~~~ gxi in a k-word palindrome 

The method used to eliminate unsuccessful Paths relies on
indexing the lexicon and a constant analysis of the situations in case 3)
above. Fit, the lexicon was divided into sub-groups indexed by the fist

COMPARISON OF LEXICON DIST;;\,BUTION
BY WORD LENGTH

0 Generoted Lexicon -+ Webster’s, Scale:

Figure 2

154

letter of the word. A second index was constructed and grouped by the
first letter of the reversed words. This resulted in two lexical indices, one
indexed by the fust letter of each word, and a second indexed by the last
letter of each word.

This optimization of the lexicon aids in eliminating tentially
wasteful paths in the search tree. In case 3). above, some wo nr has been
inserted, part of which contributes to a palindrome. and part of which
consists of ‘leftover’ letters. Any further attempt to achieve a corn lete
palindrome must account for these extra letters which have Len
mtroduced. Gly attempting to insett another word from front to back,
and checking to see if it accounts for the extra letters is a wasteful, btute-
force approach which requires a full test of the lexicon. We use the extra
letters and the reverse index to select a word which must fit properly. This
identifies only potentially valid word paths from the analysis of the
reversed insetticm.

Conclusion:

We have shown a procedure for generating English lexical
palindromes of various lengths. ‘his procedure offers several
improvements over a brute-force generate and test system with significant
search tree pnming. These improvemmts utilize a method of calculation
to eliminate some paths in the search tree. indexing to improve database
performance, and stepwise analysis of a current state to eliminate
obviously impossible search uee branching.

Future research in this area is expected to pursue a
determination of the frequency of lexical palindromes which also are
sentential palindromes.

RUN TIMES IN MINUTES

-*- Small Lexicon -8- Large Lexicon

Figure 3

The use of the indices insures that only words beginning with
the proper letter will ever be attempted. By checking for congruence in
the index of the last letters. one quickly determines which subset of
available words could possibly be candidates for the next insertion from
the front of the string. If none are available, failure occurs and

REFERENCES

[l] Borgmann. D., “The Majestic Palindrome”. Word Ways, Vol. 18. No.
l,Feb.. 1985,pp6-15.

backtracking is invoked immediately to change the last word inserted from
the front of the string.

If a candidate is available, it is chosen for insertion. The
insertion, in turn. invokes a new analysis of the string built so far.
Through this means, although a completely successful pth is not
guaranteed, paths guaranteed to fail by not accounting for letters already
present in the string, are quickly eliminated.

[2] Borgmann, D., “Palindromes: The Ascending Tradition”, Word Ways,
Vol. 13,No. 2,May. 198o,pp91-101.

In a lexicon evenly distributed by first letter of each word and
containing 1000 words, the potential worst case for 3 patticul3
palindrome req ’ .

oo3?
g five words is now approximately 40 (looOL%)

mstead of 1 This improvement is provided through indexing the
words by first and last letters, and using this resulting subset to locate
potentially fruitful candidates for inseltion.

[3] Funt, R., “Notes on Palindromes”, Word Ways, Vol. 10, No. 4, Nov.,
1977. pp, 232-234.

Figure 3 shows the run times of our program. using different
lexicons, and different palindrome length constraints.

[4] Irvine, W., and S. Guamaccia, Madam, I’m Adam and Other
Palindromes, Charles Scribner’s Son s,NY, 1987.

[5] Ranta, J., “Palindromes, Poems, and Geometric Form”, College
English. Vol. 36. No. 2. Oct., 1974, pp. 161-172.

155

