
Formal Manipulation of Modular Software Systems

Robert L. Nord Peter Lee William L. Scherlis

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213-3890

Abstract

We present a formally based method for systematically
integrating software components. This is accomplished
through the adjustment and mediation of abstract sys-
tems interfaces and their underlying data representa-
tions. The method provides the software designer with
the ability to delay or revise design decisions in cases
when it is difficult to reach an a priori agreement on
interfaces and/or data representations.

A moderate-scale example, drawn from the develop-
ment of a simple interactive text editor, is provided to
demonstrate the application of these techniques. The
text buffer in an editor must support a va.riety of oper-
ations. These fall into groups determined by the most
natural and efficient data representations that support
the individual operations. \Ve demonstrate how such
data representations can be combined using formal pro-
gram manipulation methods to obtain an efhcient com-
posite representation that supports all of the operations.

This approach can provide meaningful support for
later adaptation. Should a new editor operation be
added at a later time, the initial representations can
be reused to support another combination step that ob-
ta.ins a new composite represent&ion t1ia.t works for all
of the operations including the new one.

This research was supported in part by the OIlice of Naval
Research under contract N00014-84-K-0415 and in part by the
Defense Advanced Research Projects Agency (DOD), ARPA Or-
der No. 5404, monitored by the Ofice of Naval Research under
the same contract. The views and conclusions contained in this
document are those of the authors and should not be interpreted
as representing the oflicial policies, eitlvx expressed or implied, of
DARPA or the U.S. Government.
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

@ 1990 ACM 089791-415.5/90/0010-0090.,.$1.50

1 Introduction

Key to the management of larger-scale software systems
is the organization of interfaces among system compo-
nents. For many large systems, a principal source of risk
is the set of decisions concerning the placement of these
interfaces - how the components are to be organized
into a systems architecture. Language features for mod-
ularity, including the various advanced type systems,
provide a means for component structure to be made
more explicit, thus facilitating management of systems
interfaces.

We suggest that formal methods can be applied to
support the development and evolution of larger-scale
systems through the formal manipulation of the inter-
faces and components. As a system architecture ma-
tures and evolves, interfaces and components may need
to be adjusted in va.rious ways, by moving or shifting
computations across interfaces, by introducing new in-
terfaces to create new components, by combining similar
interfaces to merge components, and so on. Indeed, the
architecture of large systems is rarely determined fully
in advance, and, in any case, evolves rapidly as develop-
ment experience is gained. Formal methods can provide
a basis for the creation of software tools that can sup-
port this kind of iterative refinement. In this paper,
we address the issue of how formal program manipula-
tion techniques can be applied to support iterative re-
finement while preserving those program meanings that
need to be preserved.

Consider, for example, the development of a.n inter-
active display editor. A key subproblem is the defini-
tion of opera.tions on the data structure for the test
bufTer. There are many possible representa.tions for
buffers, for example a sequence of characters, a sequence
of lines, and so on, and for each operation, one rep-
resentation may be more natural or appropria.te tl1a.n
another. Rather than having to decide in advance on
some compromise, would it not be preferable to collect
into separate components the sets of individual editing

1
Proceedings of the ACM SIGSOFT International
Workshop on Formal Methods in Software Develop-
ment. Napa, California, May 9-11, 1990.

90

http://crossmark.crossref.org/dialog/?doi=10.1145%2F99571.99825&domain=pdf&date_stamp=1990-04-01

operations that agreed on associated “na.tural” repre-
sentations for straightforward implementation? This is
a very natural step to take as a paper exercise in the
initial design of a system, before arriving at the ulti-
mate data structure definition that must work for all
the operations. The approach we suggest involves tak-
ing individual components, each using its own “natural
representation,” and aggregate them into a single com-
posite implementation. This requires finding a way to
mediate the interactions among the components.

Program transformation techniques can be of assis-
tance in accomplishing this. Before discussing this how-
ever, we first consider the strategies that are currently
available to the software-system designer.

2 Formal Methods in Software Develop-
ment

Modern programming languages such as Ada [3],
Clu [15], and Modula-2 [23] have data abstraction and
enca.psulation constructs called pa.ckages, clusters, or
modules that enable one to define and enforce the
boundaries separating the components of a software
system. Modularity facilitates reuse and analysis and,
when properly structured (either by design or through
evolution), isolates and localizes the revisions that occur
as a system is maintained, ada.pted, and reused. In this
pa.per, we refer to these data abstraction constructs as
modules. Modules can be viewed a.s a kind of (usually
complex) data type definition. Like data type defini-
tions, modules consist of what we call an abstract inter-
face, that is, the exported types a.nd signatures of the
opera.tions; the underlying represeutations for the data
objects; and the kmplementntions of the operations. We
refer to an abstract interface and its a.ssociated data rep-
resentations collectively as a module interface. (We are
motivated to make this definition of module interface by
the fact that both the abstract interface and the data
representations affect the interactions among data ob-
jects in a system.)

Unfortunately, the integration of such data types in a
larger-scale system is difficult; types that interact must
agree not only on the abstract interfaces, but also on
da.ta representations in the cases where they share data.
Also, as a software system evolves, the need to adapt
existing interfaces can arise. Thus, this problem of inte-
gration persists for as long a.s the system is maintained.

The Existing Choices in Software Development.
Confronted with the problem of integra.ting interfa.ces in
larger-scale systems, the softwa.re-system designer has
the following choices:

1. hlake an a priori correct choice of abstract interface
and data representa.tion deIinitions tha.t will suffice

2 Introduce functions for translating between repre-
sentations in the situations where the abstract in-
terfaces agree but the data representations do not.

Separately designed modules that share data may
be used together by writing translation functions
that convert from one module’s representation for
data objects to the other%. Unfortunately, effi-
ciency is lost in the overhead of mapping back and
forth among modules.

3. Use a very-high-level langua.ge with built-in high-
level types.

In this ca.se data representations are not explic-
itly defined. Instead, design decisions regarding
data representations are left to a compiler. Unfor-
tunately, the performance of the implementation
and expressiveness of the programming language
are limited by the existing compilation technology.
If a designer wants to develop a system using rich
abstractions that will have exacting performance
requirements, then it seems that the designer must
be involved in defining data representations.

4. Adapt or refine the abstract interfa.ces of existing
modules by defining new modules as extensions of
the existing ones.

For exa.mple, object-oriented techniques ca.n be
used to define new types (and hence abstract inter-
faces) in terms of existing ones [16]. Objects having
the new type will share meaning with objects of the
the existing type, typically by inheriting its opera-
tions and a.dding something more. The new objects
will also share implementation by directly reusing
the code for the existing objects. Unfortunately
there is no way to specialize that implementation
in the context of the new type in order to obtain
better performance.

for all anticipated needs.

Unfortunately, common data representations may
be difficult to design a priori, especially when there
is not much experience in the particular applica-
tion domain. Once built, systems also evolve as
users desire additional functionality which may not
be anticipated. Clearly all needs for novel applica-
tion domains and evolving systems cannot be an-
ticipated. Adapting components is usually difficult
once design decisions are made and, indeed, the
cost of implementing change often becomes unman-
ageable. These problems have led software design-
ers toward iterative and evolutionary models of de-
velopment [4], but little advice is given on how to
get from one stage to the next.

91

The Role of Formal Methods. Each approach ad-
dresses the problem of integration with varying degrees
of success. We are interested in investiga.ting how pro-
gram transformation methods might be used to comple-
ment or enhance them. In particular, we are exploring
the use of transformation-ba.sed techniques to (1) pro-
vide a source of guidance on how to get from one stage to
the next in evolutionary models of development, (2) alle-
viate the overhead of translation functions through pro-
gram manipulation, (3) optimize programs in very-high-
level languages, and (4) specialize implementations to
obtain better performance in object-oriented programs
that reuse code through inheritance. The goal of our
research is to determine how transforma.tion techniques
might be developed to aid the process of building and
managing complex types (or modules).

Criteria to help focus our evaluation of the utility of
these techniques include:

l Scala&lily. What techniques are available for con-
structing larger programs? This is a ma.jor source
of motivation for this investigation of transforma-
tions and module interfaces.

l Expressiveness. To what degree a.re the conceptual
properties of the problem reflected in the syntax
of the language? It is conventional wisdom that
module facilities enable more explicit representa-
tion of systems architecture, and, through infor-
mation hiding, enable components to be designed
and developed separately. The challenge is to de-
velop module mechanisms and formal methods ap-
proaches that can exploit modularity, and to de-
velop formal methods approa.ches that support ag-
gregation and integration of components.

l Appropriateness of Representations. How do data
representations reflect the requirements of each
component? As a system evolves, compromises are
inevitably made to data representations in order to
meet diverse needs; often expedient solutions are
developed from which a later retreat is required.

l Inlerface Agreement. When must agreement on in-
terfaces in the design of software be reached? De-
laying design decisions when a priori agreement
can not be reached may make the design process
easier initially but additional work is usually re-
quired to integrate the components later.

l Adaptability. How easy is it to modify existing in-
terfaces and incorporate new components into the
system?

l Reliability. Bow can higher assurance of correct-
ness be provided for larger systems, or, rather, for
aspects of behavior of la.rger systems?

Performance. What choices are available to the
designer for improving the efficiency of a program?
These might include techniques that affect the fre-
quency of execution of parts of the program and
how readily information is made available.

Automation. How can the process of producing ef-
ficient programs from high-level programs be mech-
anized? The main emphasis here should be on
achieving productive interactions of automated sys-
tems with developers and maintainers.

We will return to these criteria after presenting our
approach, in order to compare it with other approaches
to formalized software development.

Our Approach. We are developing program transfor-
mation methods to integrate module interfaces yielding
efficient implementations. With these techniques, com-
plex data type definitions can start as a collection of
separate modules. Then, translation functions are used
to reach agreement on data representations, and module
extensions for defining new interfaces are used to reach
agreement on abstract interfaces. The initial interfaces
are then integrated by using an extended form of data-
type transformations. Thus, a consistent and efficient
implementation, but possibly with complex composite
interfaces, is obtained. The techniques may facilitate
the application of program transformation to larger-
scale programs.

3 Deriving and Manipulating Module
Interfaces

In order to demonstrate our techniques for integrating
module interfaces by transformations, we will show part
of the development of a simple interactive text editor.
There is space enough only for a few highlights of the
complete derivation. (More details may be found in a
separate report [lg].) 0 ur editor is designed as a collec-
tion of separate modules. The collection of modules is
then integrated and ada.pted by deriving module inter-

faces to achieve an executable prototype. This prepares
the way to introduce efficiency transformations later in
the derivation process. The entire process is depicted
in Figure 1, which will be referred to in the following
example as the steps are elaborated. But before we go
into the details of our example, we must first sa.y a few
words about the previous work on data transformations
that forms the basis for our techniques.

Data Transformations. The use of data abstraction
in programming suggests there is value in examining
transformation techniques on modules. Early meth-
ods focused on the relationship between abstract pro-
grams and their implementations. Hoare [12] presents

92

Figure 1: Deriving a Buffer

a method for proving the correctness of a data repre-
sentation for an abstract program. This approach has
been adopted by VDM [a]. An alternative a.pproach
is to derive the concrete representa.tion using program
transformation [5, 81 rather tl1a.n invent the concrete
representation and then prove it correct. Darlington [7]
shows how a concrete program can be derived from an
abstract program using program tra.nsformations that
ensure that the implementation is correct. Wile [22] de-
velops this idea further by considering the interrelation-
ships along data paths in programs and outlining a set
of informally described operations on data types. These
include operations for delaying or a.dva.ncing computa-
tion and operations for changing type signatures based
on the “theory operations” of Burstall and Goguen [6].
Jarring and Scherlis [14, 211 develop and generalize these
ideas to obtain a framework that permits programmers

to take general purpose abstract type definitions and,
using type transformations, obtain types tailored to the
application.

We now present our example derivation.

Notation. In the following examples, the typewriter
font is used for data types, lower-case greek letters for
type variables, sans-serif font for functions, and italics
for variables. The product type constructor “x” binds
more tightly than the function type constructor “+“.
Function definition is denoted by “e”. Data type def-
initions are represented as modules using an extended
form of Standard ML [17]. The extensions and addi-
tional notation will be described as they are introduced
in the examples.

An Editor Buffer. The abstract interface for an
editor buffer is defined as a signature containing, for

93

the purposes of our example, seven buffer operations:
makebuf, delete, insert, move-left, move-right, show-char,

and next-line.

Signature BUF = sig
type buf

makebuf : buf
delete : buf + buf
insert : ch x buf - buf
move-left : buf - buf
move-right : buf -+ buf
show-char : buf - ch
next-line : buf --+ buf
end

Our intended goal is to arrive at one data representation
that implements all of these operations efficiently. Since
designing an efficient data representation that satisfies
all of the operations may be difficult, we will chose to
implement subsets efficiently, and then try to integrate
them.

Program Composition. An appropriate model to
represent a buffer on which move operations can be eas-
ily defined is a sequence of characters with an explicit
index for the point where editing takes place. This point
is marked by the cursor. The cursor is moved left by
decrementing the index, “p-“, and moved right by in-
crementing the index, “p+“. The chara.cter at the cursor
is shown by looking up the cha.racter in the text to the
left of the index, “t [p-l”. We call this a componen&
rather than a Standard ML “structure” since it imple-
ments only a subset of the buffer signature. Abstraction
boundaries are maintained using a quasi-equational no-
tation that is similar to abstraction and clausal defini-
tions in Standard ML. (Constraints on the component,
for example, that the cursor rema.ins within the text,
have been omitted to simplify the presentation.)

Component Buf 1 : BUF = struct
type buf = Buf of (int x ch’)

move-left(Buf (p, t)) -+= Buf (p-, 1)
move-right(Buf (p, 1)) G Buf (p+, 1)
show-char(Buf (p, t)) -+ t [p-l
end

This provides simple and natural definitions for the
three operations shown. To include insertion and dele-
tion of characters in this Bufl representation, on the
other hand, requires a bit of manipulation of subse-
quences within the text. A more appropriate repre-
sentation for these new operations (from the view of
conceptual simplicity) might be a pair of sequences, rep-
resenting the characters to the left and to the right of
the point of editing. The index for the point of editing
is implicit. A character is deleted by removing the last

element from the left sequence, “front(l).” A character
is inserted by appending it to the left sequence, “I o [cl”.

Component Bufz : BUF = struct
type buf = Buf of (ch* x ch’)

makebuf + Buf(u, 0)
delete(Buf(l, T)) + Buf(front(l), r)
insert(c,Buf(Z,r)) X= Buf(l o [cl, T)
end

The next-line operation moves the cursor to the follow-
ing line with the character position in the line remaining
the same. This is difficult to do using either of the pre-
vious representations, since it would require searching
for newlines and computing the distance between the
point of editing and the preceeding newline. For this
new operation, a new component, Bufs, is introduced
where the text is a sequence of lines (where a line is a
sequence of characters not containing a newline) and the
point of editing is a line and character position. Now
the cursor is moved to the next line by incrementing the
line position by one, “IT+“.

Component Buf3 : BUF = struct
type buf = Buf of ((int x int) x line’)

type line = (ch - ‘nl’)*

next-line(Buf((lp, cp), 1~)) + Buf((lp+, cp), ls)
end

The newlines are implicit, giving a compact represen-
tation; however, an a.lterna.tive representation could be
used that keeps a newline character at the end of each
line. The choice is up to the designer.

Designing Interfaces. Collectively the components
implement all of the operations of the signature for
BUF. IIowever, an a.greement among representations of
the components must be reached to link them together
so that all the operations can be executed on a single
buffer. That is, when the move-right operation is ex-
ecuted, for example, not only is the Bufl component
updated, but the Bufz and Buf3 components must be
updated as well. The aggregate buffer can thus be de-
fined in terms of the components, along with functions
that translate among the components. Each component
is a projection of the buKer and is made consistent with
each other component via the translation functions.

94

axiom proj, (move-right(b)) = BufI.move-right(proj,(b))

axiom map:(proj,(b), proj,(b)) z=+ map:(proj,(move-right(b)), proj,(move-right(b)))

axiom mapl(proj,(b), proj,(b)) a map:(proj,(move-right(b)), proj,(move-right(b)))

Figure 2: Buffer Specification

Structure Buf : BUF = struct
structure Bufl, Bufz, Buf3
type buf = Buf of (int x ch’ x ch* x ch’ x (int x int) x line*)

makebufl x2 -+ span,(Bufz.makebuf)
unspan,(makebuf) e makebufi x2
. . .

unspan,(move-right(Buf (p, 1,1, T, (lp, cp), ls))) -+=
Bufl.move-right(unspanc(Buf(p,i,l,r, (Zp, cp),ts)))

show-char(Buf (p, t, 1, T, (Zp, cp), 1s)) + Bufrshow-char(unspan,(Buf(p, t, I, T, (Ip, cp), Is)))

next-hner,~(span,(Bufs.Buf((lp, cp),ts))) e= span,(Bufs.next-line(Bufa.Buf((lp, cp),ts)))

unspan,(next-line(Buf(p, t, 1, r, (lp, cp), ts))) + next-hner,3(unspan,(Buf(p, t, 1, r, (Ip, cp), ts)))

map,-,(Buf2.Buf(l,r)) + Bufl.Buf(#I, 1 o r)

map,-,(Bu%Buf((h CP), is)) (-r Bufl.Buf(#(lines-to-chars(ls[..Zp-1)) + cp, lines-to-chars(ts))
where lines-to-chars(s) = if null(s) then 0 else [hd(s)] o [‘I#] o lines-to-chars(tl(a))

span,(Bufz.Buf(l,r)) + Bufrx2(p, t, 2, T)

where Bufl.Buf(p,t) = map2,,(Buf2.Buf(l,~))

unsPanb(Buf(p,t,h T, (h~~),ts)) * BuflXz({ P i PJ 1, { t 1 t3 1, 1, T)

where Buf 1 .Buf (p3, t3) = map,-, (BuLBuf((b, CP), Is))

. . .

end

Figure 3: Buffer Definition

The effect of an operation on the buffer is defined in
terms of the component in which it was defined. The
new operation updates the buffer correctly a.nd all other
components are kept consistent as expressed in the fol-
lowing commutative diagram.

The relationships depicted in this diagram ca.n be spec-
ified via axioms on the operations in the va.rious com-
ponents. Such axioms can be written along with the
signature of the data type. The a.nnota.ted signature
then constitutes a specification of the integration of the
components. We show the axioms for move-right in Fig-
ure 2.

These axioms suggest that an extended form of data
transformations might be useful in the design and im-
plementation of the buffer data type (Figure 1, design
step). The basic principle of data transformations is as
follows: Given a program f on a domain D and a func-
tion that maps elements of the domain D’ to elements of
the doma.in D, we can define the following “expression
procedure” [2O]:

Abs(f’(d)) -+ f(Abs(d))

Then, syntactic transformations can be used to obtain
an executable definition for the program f on the do-
main D’.

\Ve can extend these methods to data aggregates as
well. When we a.re given a collection of components for
the buffer, perhaps the easiest way to integrate them is
to detine the buffer representation as the product of the
component representations. The buffer definition shown
in Figure 3 uses this a.pproach. (As is data transforma-

95

Structure Bufproto : BUF = struct
typebuf =Buf of (intx ch* x ch' x ch' x (intx int)x line*)

makebuf + Buf(O, n, 0, fl, (ho), II)

move-right(Buf(p, t, I, T, (/I), cp), ts)) e
let Ip’, cp’ = if (cp = #Is [1p]) then Ip+, 0 else Ip, cp+ in

Buf(p+, t, 10 [hd(T)], t(T), (~P’,cP’), ts)

show-char(Buf (p, t, 1, T, (Zy, cp), ls)) +
{ t Cp-] 1 last(l)) (if (cp = 0) then ‘111’ else ts[lpl [q-l) }

next-line(Buf(p, 1, I, T, (Ip, cl,), 2s)) +=
let d = (nlpos(2s)) [I111 - (nlpos(ts)) Up-1 in

Buf(p + d, t, / o T[..d], Ted+..], (lp+,Cp), ts)

end

Figure 4: Buffer Prototype

tions, these opera.tions are defined by expression proce-
dures which are more genera.1 than ML patterns since an
expression can appear on the left hand side of the func-
tion definition.) The operations a.re defined in terms of
the aggregate buffer representation, or some portion of
this representation. To map between the components
and the various aggregates, “span” and “unspan” func-
tions are used-this also has the effect of putting things
into a form suitable for data transformation.

In the definition, Buf implements the signa.ture BUF
using the components Buf 1, Buf 2, and Bufs. A repre-
sentative sample of operations is shown. Defining the
makebuf operation for the aggregate requires two stages
beca.use the Bufz component,, in which it is defined, is
not directly connected to a.ll t!le other components. It
is connected directly to Buf 1 via a transla.tion function,
but is connected indirectly to Buf3. In the first stage,
an intermediate definition of makebuf is defined on an
intermediate aggregate (the product of Buf 1 and Buf 2).
In the second sta.ge, the final operation on the aggregate
buffer is defined by merging this intermediate definition
with the Buf3 component. Since the Buf 1 component is
directly connected to all other components, new imple-
mentations for the operations defined in this component
(e.g., move-right and show-char) can be defined in a sin-
gle step.

The components are kept consistent through the
translation functions map2,I and map3,1. It is not nec-
essary that all tra.nslations among components be given;
it is sufficient that the components are connected, possi-
bly through some number of intermediate components.
Component Buf2 is mapped into component Buf 1 by
making the point of editing explicit (which is the num-
ber of characters to the left of the point, “#I”), and
by appending the left and right scqucnce of characters

together. Component Bufs is mapped into component
Bufl by converting the line and character indices into a
character index and by converting the sequence of lines
into a sequence of characters. The auxiliary function
lines-to-chars takes a sequence of lines, adds a newline
to the end of each one a.nd appends them to make a
sequence of characters. (The notation “s [..;I ” denotes
the subsequence of s from the beginning of s to i inclu-
sive.) The span functions can be easily defined in terms
of the map equations. A value that can be computed
in more than one way is denoted “{c~~c~~cs}.” Multiple
alternative ways to compute a value are maintained to
ensure consistency among the components.

Deriviug Interfaces. Next a prototype (Figure 4)
is derived (Figure 1, prototype step) where the expres-
sion procedures defining the buffer operations are trans-
formed into functional definitions. For brevity, the steps
have been omitted. As with other data-type transfor-
mations, they consist of a number of purely mechanical
steps and a few insight steps that require input from
the designer. It is not, actually necessary to derive span
functions that are computable. Instead, the tra.nsfor-
mation process makes use of them in syntactic manip-
ulations to obtain computable functions for the buffer
operations.

In the prototype the data representation is simply the
product of the da.ta representations of the components.
All components are updated simultaneously.

The makebuf opera.tion generates each component
representation. The move-right operation increments
the index appropriately for each component. (The func-
tions hd a.nd tl return the first element and the rest of
a sequence.) The show-char operation returns the char-
acter at the cursor position of the buffer. The value
may be produced frown any of the three representations;

96

Structure Bufimpl : BUF = struct
type buf = Buf of ((int x ch’) x (int x int*))

makebuf (; Buf(0, 0, 0, 0)
. . .
move-right(Buf(p, 1, i, nl)) G Buf(p+, t, (if nlp(d[p]) then i+ else i), nl)
show-char(Buf (p, 2, i, ~11)) e= 1 [II-]
next-line(Buf(p, t, i, nl)) G Buf(p + (nl[i] - &[&I), t, i+, nl)
end

Figure 5: Buffer Implementation

these three alternatives are denoted ‘({cl 1~2 IQ} .” This
is the only extension to Standard ML in the prototype.
The extension could easily be implemented by selecting
the first alternative so that the prototype could be ex-
ecuted. Multiple alternative ways to compute a value
are kept in order to avoid losing informa.tion that may
be useful in later transformation or analysis steps. (The
function last returns the last element of a sequence.) In
the next-line operation, the positions of the surrounding
newlines are used to advance to the next line for the
Bufl component. (The function nlpos takes a sequence
of lines and returns a sequence of newline positions.)
Note that the character index for the Bufl component
1la.s been transformed to use information from the Bufs
component, where it is easier to compute newline in-
formation. The representation of each component is
a.vaila.ble to update any other component representa-
tion. 110~ they are used provides the motivation for the
final representation that follows.

Shifting Computation. A specialized implementa-
tion (Figure 5) is derived using data-type transforma-
tion techniques to obtain a representa.tion that caches
newline positions (Figure 1, implement step). For
brevity, the steps a.gain have been omitted. Performance
is improved by eliminating the computation for the Buf 2
component, and computing newline information directly
ratller than maintaining a sequence of lines a.nd map-
ping it into newline positions when needed. The former
is an instance of releasing components from the data
type, while the latter is an insta.nce of slrifti~~g compu-
tation from access to creation time, techniques that are
described in [13, 211.

The new specialized representation is a sequence of
characters with a.n index for the cursor and a sequence
of newline positions with a.n index tracking which line
contains the cursor. The makebuf operation now gener-
ates an empty buffer and newline cache. The move-right

operation updates the newline index wllcn crossing over
a hue. (The predicate nlp returns true when its argu-
ment is a newline.) The show-char opera.tion is one of

the three choices. The next-line operation uses the new-
line cache to move more eficiently.

Adapting Interfaces. The editor buffer can now be
ada.pted further, for example by including a display. A
display will need to know the cursor position and the
content of the buffer; operations that the editor buffer
module does not currently support. An agreement be-
tween the abstract interfaces of the editor buffer and
display can be reached by extending the editor buffer
module to include these additional two operations. One
way to do this is to add a new component consisting
of the operations required by display and re-derive the
module interfaces (Figure 1, adapt step).

4 Conclusions

Our research extends data transformations by introduc-
ing transformation techniques for the module and inter-
face design process. Once a complex type definition
is defined as a collection of components, these trans-
formation techniques provide a systematic way to in-
tegrate them. The components are first aggregated to
produce a “canonical” data representation, which is a
straightforward combination of component representa-
tions. Additionally, the representation-translation func-
tions are incorporated into the operations. Then, the
components are coalesced by using transformations to
specialize the components in the context of the aggre-
gate data structure and eliminate redundant informa-
tion or computation, thereby producing an efficient ag-
gregate implementation.

Our experience with the derivation of an editor buffer
has given us some encouragement that formal program
manipulation techniques might be applicable to larger
softwa.re systems. The encouragement derives not from
the sca.le of the burer example, which is modest, but
from the complexity of the interfaces and the means
by which they lvere obtained. Scalability, nonetheless,
must be demonstra.ted by sca.ling up, and therefore a
larger derivation is underway that will cover a larger,

97

more realistic set of operations and components, and
also will include display manipulation.

Automated assistance would be useful for managing
the derivation, especially for the larger problems. In
this case, the bulk of the transformation steps could be
automatically applied, with the user left only with the
task of selecting the appropriate strategies and provid-
ing the “insight steps” in the derivation. Still, discovery
of the insight steps will likely turn out to be a significant
bottleneck. We cannot expect to eliminate this entirely,
but can work toward isolating the steps into manageable
local pieces each of which requires a minimal amount of
context.

The Existing Choices in Software Development
- Revisited. The approach we have demonstrated
addresses the problems of integrating module interfaces
(raised earlier in this paper) in the following ways:

1. Rather than requiring a priori agreement on data
representations, complex data types are defined as
a collection of separate modules that are systemat-
ically merged using formal methods to derive the
module interfaces and efficient representations.

2. Rather than mediating representations through in-
termediate translation functions, new module in-
terfaces can be derived tha.t interact directly.

3. Rather than leaving data design decisions to a com-
piler when using very-high-level languages, the soft-
ware designer is involved in delining aud organizing
module interfaces.

4. Rather than requiring a priori agreement on ab-
stract interfaces, new types may be defined as ex-
tensions of existing ones using module extensions
(e.g., object-oriented techniques using inheritance)
and new module interfaces can be derived.

The Role of Formal Methods - Revisited.
There are a number of other approaches to formal-
ized software development. In this section, we indi-
cate the different choices and tradeofl’s some of them
make with respect to the criteria that a.re suggested in
Section 2: scalability, expressiveness, appropriateness of
representations, interface a.greement, adaptability, reli-
ability, performance, and autonmtion.

There are a number of formal frsmeworlrs for devel-
oping larger-scale programs by transforming high-level
specifications into executa.ble code. Like our approach,
they seek to extend transformation techniques to larger-
scale systems, and similarly involve the software de-
signer in the design of data representations (usua.lly in

order to avoid limiting the expressiveness of the specifi-
cation language). The developers of CIP [l], for exam-
ple, advocate using algebraic specifications as the start-
ing point for a top-down method of program develop-
ment. The developers of Extended ML [19] and VDM [2]
use formal verification to invent new implementations
and prove them correct.

Our approach differs from these in its support for the
integration of separate components. This gives the de-
signer the flexibility to delay agreement on, as well as
adapt, the interfaces of a (module) system. Goguen [lo]
has studied the issue of component integration for large-
scale systems, and proposes a module interconnection
language with a program methodology for composing
software components that facilitates reuse. We specu-
late that it may be possible to embed our methods for
integrating multiple data representations into his sys-
tem.

The views approach of Garlan [9] has motivations
similar to ours; rather than having to decide in advance
on some compromise representation, separate compo-
nents with appropriate representations are designed and
later integrated. This allows agreement on interfaces to
occur later in the design process. Unlike our approach,
however, merging is restricted to a small number of fixed
data types, thus yielding a greater degree of automation
at the expense of expressiveness, power, and flexibility.
The programming with views approach of the Gandalf
group [ll] extends Garlan’s work to support the merg-
ing of arbitrary a.bstract da.ta types (that are connected
via “compatibility maps”), but is less automatic since
it requires all operations to be rewritten by hand for a
merged type. Our techniques for deriving module inter-
faces may provide a basis for formalizing this process of
merging.

The example sketched in this paper, in which a buffer
data structure for a text editor is derived from a col-
lection of simple components, is a first step of experi-
mentation in exploring the applicability of data trans-
formation techniques in the management of larger-sca,le
softwa.re systems. The example shows how module in-
terfaces can be systematically derived in an iterative
way. The formal ma.nipulations are generally carried out
within narrow syntactic contexts. There are, nonethe-
less, a small number of cases where more global trans-
formations a.re made, but the areas of heuristic difficulty
are almost entirely associated with the more narrow con-
texts. The examples create optimism that scaling up to
apply formal program manipulation methods to larger
softwa.re systems is possible, but it is also evident that
this scaling up will most likely require additional tech-
niques such a.s the data-type transformations illustrated
in this paper.

98

References

PI

PI

PI

PI

PI

PI

VI

PI

PI

PO1

Pll

P21

F.L. Bauer, B. Mijller, II. Partsch, and P. Pepper.
Formal program construction by transformations
- computer-aided, intuition-guided programming.
IEEE Transactions on Software Engineering, 1988.

D. Bjorner and C.B. Jones. The Vienna Devel-
opment Method: the Meta-Language, volume 61
of Lecture Notes in Computer Science. Springer-
Verlag, 1978.

Grady Booth. Software Components with
Ada: Structures, Tools, and Subsystems. Ben-
jamin/Cummings, Menlo Park, CA, 1987.

Frederick P. Brooks, Jr. No silver bullet: Essence
and accidents of software engineering. Computer,
20(4):10-19, April 1987.

R. M. Burstall and John Darlington. A transfor-
mation system for developing recursive programs.
Journal of the Association for Computing Machin-
ery, 24(1):44-67, January 1977.

R.M. Burstall and Joseph A. Goguen. Putting the-
ories together to make specifications. In Proceed-
ings of Fifth International Joint Conference Artiji-
cial Intelligence, pa.ges 1045-1058, 1977.

John Darlington. The design of eflicient data rep-
resentations, 1980.

Martin S. Feather, A survey and classification
of some program transformation approaches and
techniques. In L.G.L.T. Meertens, editor, Proceed-
ings of the IFIP TC2/WG 2.1 Working Conference
on Program Specification and Transformation, Bad
Toelz, FRG. North-Holla.nd, November 1986.

David Garlan. Views for Tools in Integrated Envi-
ronments. PhD thesis, Carnegie Mellon University,
1987. Available as Technical Report CMU-CS-87-
147.

Joseph A. Goguen. Reusing and interconnect-
ing software components. Com,puter, 19(2):16-28,
February 1986.

A.N. IIabermann, Cha.rles Krueger, Benjamin
Pierce, Barbara Staudt, and John Wenn. Program-
ming with views. Technical Report CMU-CS-87-
177, Carnegie Mellon University, Computer Science
Department, January 1988.

C.A.R. Hoare. Proof of correctness of data repre-
sentations. Acta Informatica, 1(4):271-281, 1972.

P31

P4

[W

D61

1171

PSI

PI

PO1

I211

1221

WI

Ulrik Jarring and William L. Scherlis. Compilers
and staging transformations. In Thirteenth Sym-
posium on Principles of Programming Languages,
pages 86-96. ACM, January 1986.

Ulrik Jarring and William L. Scherlis. Deriving
and using destructive data types. In IFIP TC2
Working Conference on Program Specification and
Transformation. North-Holland, 1986.

Barbara Liskov. Abstraction mechanisms in Clu.
Communications of the ACM, 20(8):564-576, Au-
gust 1977.

Barbara Liskov. Data abstraction and hierarchy.
SIGPLAN Notices, 23(5):17-34, May 1988.

Robin Milner. The Standard ML core language.
Polymorphism, 11(2), October 1985. Also Technical
Report ECS-LFCS-86-2, University of Edinburgh,
Edinburgh, Scotland, March 1986.

Robert L. Nord. Deriving and manipulating mod-
ule interfaces. Ergo Report 89-081, Carnegie Mel-
lon University, Pittsburgh, September 1989.

Donald Sannella and Andrzej Tarlecki. Toward for-
mal development of ML programs: foundations and
methodology. Technical Report ECS-LFCS-89-71,
University of Edinburgh, 1989.

William L. Scherlis. Expression Procedures and
Program Derivation. PhD thesis, Stanford Univer-
sity, August 1980. Available as Technical Report
Stan-CS-80-818.

William L. Scherlis. Abstract data types, special-
ization a.nd pr0gra.m reuse. In International Work-
shop on Advanced Programming Environments.
Springer-Verlag LNCS 244, 1986.

David S. Wile. Type transformations. IEEE
Transactions on Software Engineering, SE-7(1):32-
39, January 1981.

Niklaus Wirth. Programming in Modula-2.
Springer-Verlag, Berlin, third edition, 1985.

99

