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Abstract 

We present a formally based method for systematically 
integrating software components. This is accomplished 
through the adjustment and mediation of abstract sys- 
tems interfaces and their underlying data representa- 
tions. The method provides the software designer with 
the ability to delay or revise design decisions in cases 
when it is difficult to reach an a priori agreement on 
interfaces and/or data representations. 

A moderate-scale example, drawn from the develop- 
ment of a simple interactive text editor, is provided to 
demonstrate the application of these techniques. The 
text buffer in an editor must support a va.riety of oper- 
ations. These fall into groups determined by the most 
natural and efficient data representations that support 
the individual operations. \Ve demonstrate how such 
data representations can be combined using formal pro- 
gram manipulation methods to obtain an efhcient com- 
posite representation that supports all of the operations. 

This approach can provide meaningful support for 
later adaptation. Should a new editor operation be 
added at a later time, the initial representations can 
be reused to support another combination step that ob- 
ta.ins a new composite represent&ion t1ia.t works for all 
of the operations including the new one. 
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1 Introduction 

Key to the management of larger-scale software systems 
is the organization of interfaces among system compo- 
nents. For many large systems, a principal source of risk 
is the set of decisions concerning the placement of these 
interfaces - how the components are to be organized 
into a systems architecture. Language features for mod- 
ularity, including the various advanced type systems, 
provide a means for component structure to be made 
more explicit, thus facilitating management of systems 
interfaces. 

We suggest that formal methods can be applied to 
support the development and evolution of larger-scale 
systems through the formal manipulation of the inter- 
faces and components. As a system architecture ma- 
tures and evolves, interfaces and components may need 
to be adjusted in va.rious ways, by moving or shifting 
computations across interfaces, by introducing new in- 
terfaces to create new components, by combining similar 
interfaces to merge components, and so on. Indeed, the 
architecture of large systems is rarely determined fully 
in advance, and, in any case, evolves rapidly as develop- 
ment experience is gained. Formal methods can provide 
a basis for the creation of software tools that can sup- 
port this kind of iterative refinement. In this paper, 
we address the issue of how formal program manipula- 
tion techniques can be applied to support iterative re- 
finement while preserving those program meanings that 
need to be preserved. 

Consider, for example, the development of a.n inter- 
active display editor. A key subproblem is the defini- 
tion of opera.tions on the data structure for the test 
bufTer. There are many possible representa.tions for 
buffers, for example a sequence of characters, a sequence 
of lines, and so on, and for each operation, one rep- 
resentation may be more natural or appropria.te tl1a.n 
another. Rather than having to decide in advance on 
some compromise, would it not be preferable to collect 
into separate components the sets of individual editing 
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operations that agreed on associated “na.tural” repre- 
sentations for straightforward implementation? This is 
a very natural step to take as a paper exercise in the 
initial design of a system, before arriving at the ulti- 
mate data structure definition that must work for all 
the operations. The approach we suggest involves tak- 
ing individual components, each using its own “natural 
representation,” and aggregate them into a single com- 
posite implementation. This requires finding a way to 
mediate the interactions among the components. 

Program transformation techniques can be of assis- 
tance in accomplishing this. Before discussing this how- 
ever, we first consider the strategies that are currently 
available to the software-system designer. 

2 Formal Methods in Software Develop- 
ment 

Modern programming languages such as Ada [3], 
Clu [15], and Modula-2 [23] have data abstraction and 
enca.psulation constructs called pa.ckages, clusters, or 
modules that enable one to define and enforce the 
boundaries separating the components of a software 
system. Modularity facilitates reuse and analysis and, 
when properly structured (either by design or through 
evolution), isolates and localizes the revisions that occur 
as a system is maintained, ada.pted, and reused. In this 
pa.per, we refer to these data abstraction constructs as 
modules. Modules can be viewed a.s a kind of (usually 
complex) data type definition. Like data type defini- 
tions, modules consist of what we call an abstract inter- 
face, that is, the exported types a.nd signatures of the 
opera.tions; the underlying represeutations for the data 
objects; and the kmplementntions of the operations. We 
refer to an abstract interface and its a.ssociated data rep- 
resentations collectively as a module interface. (We are 
motivated to make this definition of module interface by 
the fact that both the abstract interface and the data 
representations affect the interactions among data ob- 
jects in a system.) 

Unfortunately, the integration of such data types in a 
larger-scale system is difficult; types that interact must 
agree not only on the abstract interfaces, but also on 
da.ta representations in the cases where they share data. 
Also, as a software system evolves, the need to adapt 
existing interfaces can arise. Thus, this problem of inte- 
gration persists for as long a.s the system is maintained. 

The Existing Choices in Software Development. 
Confronted with the problem of integra.ting interfa.ces in 
larger-scale systems, the softwa.re-system designer has 
the following choices: 

1. hlake an a priori correct choice of abstract interface 
and data representa.tion deIinitions tha.t will suffice 

2 Introduce functions for translating between repre- 
sentations in the situations where the abstract in- 
terfaces agree but the data representations do not. 

Separately designed modules that share data may 
be used together by writing translation functions 
that convert from one module’s representation for 
data objects to the other%. Unfortunately, effi- 
ciency is lost in the overhead of mapping back and 
forth among modules. 

3. Use a very-high-level langua.ge with built-in high- 
level types. 

In this ca.se data representations are not explic- 
itly defined. Instead, design decisions regarding 
data representations are left to a compiler. Unfor- 
tunately, the performance of the implementation 
and expressiveness of the programming language 
are limited by the existing compilation technology. 
If a designer wants to develop a system using rich 
abstractions that will have exacting performance 
requirements, then it seems that the designer must 
be involved in defining data representations. 

4. Adapt or refine the abstract interfa.ces of existing 
modules by defining new modules as extensions of 
the existing ones. 

For exa.mple, object-oriented techniques ca.n be 
used to define new types (and hence abstract inter- 
faces) in terms of existing ones [16]. Objects having 
the new type will share meaning with objects of the 
the existing type, typically by inheriting its opera- 
tions and a.dding something more. The new objects 
will also share implementation by directly reusing 
the code for the existing objects. Unfortunately 
there is no way to specialize that implementation 
in the context of the new type in order to obtain 
better performance. 

for all anticipated needs. 

Unfortunately, common data representations may 
be difficult to design a priori, especially when there 
is not much experience in the particular applica- 
tion domain. Once built, systems also evolve as 
users desire additional functionality which may not 
be anticipated. Clearly all needs for novel applica- 
tion domains and evolving systems cannot be an- 
ticipated. Adapting components is usually difficult 
once design decisions are made and, indeed, the 
cost of implementing change often becomes unman- 
ageable. These problems have led software design- 
ers toward iterative and evolutionary models of de- 
velopment [4], but little advice is given on how to 
get from one stage to the next. 
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The Role of Formal Methods. Each approach ad- 
dresses the problem of integration with varying degrees 
of success. We are interested in investiga.ting how pro- 
gram transformation methods might be used to comple- 
ment or enhance them. In particular, we are exploring 
the use of transformation-ba.sed techniques to (1) pro- 
vide a source of guidance on how to get from one stage to 
the next in evolutionary models of development, (2) alle- 
viate the overhead of translation functions through pro- 
gram manipulation, (3) optimize programs in very-high- 
level languages, and (4) specialize implementations to 
obtain better performance in object-oriented programs 
that reuse code through inheritance. The goal of our 
research is to determine how transforma.tion techniques 
might be developed to aid the process of building and 
managing complex types (or modules). 

Criteria to help focus our evaluation of the utility of 
these techniques include: 

l Scala&lily. What techniques are available for con- 
structing larger programs? This is a ma.jor source 
of motivation for this investigation of transforma- 
tions and module interfaces. 

l Expressiveness. To what degree a.re the conceptual 
properties of the problem reflected in the syntax 
of the language? It is conventional wisdom that 
module facilities enable more explicit representa- 
tion of systems architecture, and, through infor- 
mation hiding, enable components to be designed 
and developed separately. The challenge is to de- 
velop module mechanisms and formal methods ap- 
proaches that can exploit modularity, and to de- 
velop formal methods approa.ches that support ag- 
gregation and integration of components. 

l Appropriateness of Representations. How do data 
representations reflect the requirements of each 
component? As a system evolves, compromises are 
inevitably made to data representations in order to 
meet diverse needs; often expedient solutions are 
developed from which a later retreat is required. 

l Inlerface Agreement. When must agreement on in- 
terfaces in the design of software be reached? De- 
laying design decisions when a priori agreement 
can not be reached may make the design process 
easier initially but additional work is usually re- 
quired to integrate the components later. 

l Adaptability. How easy is it to modify existing in- 
terfaces and incorporate new components into the 
system? 

l Reliability. Bow can higher assurance of correct- 
ness be provided for larger systems, or, rather, for 
aspects of behavior of la.rger systems? 

Performance. What choices are available to the 
designer for improving the efficiency of a program? 
These might include techniques that affect the fre- 
quency of execution of parts of the program and 
how readily information is made available. 

Automation. How can the process of producing ef- 
ficient programs from high-level programs be mech- 
anized? The main emphasis here should be on 
achieving productive interactions of automated sys- 
tems with developers and maintainers. 

We will return to these criteria after presenting our 
approach, in order to compare it with other approaches 
to formalized software development. 

Our Approach. We are developing program transfor- 
mation methods to integrate module interfaces yielding 
efficient implementations. With these techniques, com- 
plex data type definitions can start as a collection of 
separate modules. Then, translation functions are used 
to reach agreement on data representations, and module 
extensions for defining new interfaces are used to reach 
agreement on abstract interfaces. The initial interfaces 
are then integrated by using an extended form of data- 
type transformations. Thus, a consistent and efficient 
implementation, but possibly with complex composite 
interfaces, is obtained. The techniques may facilitate 
the application of program transformation to larger- 
scale programs. 

3 Deriving and Manipulating Module 
Interfaces 

In order to demonstrate our techniques for integrating 
module interfaces by transformations, we will show part 
of the development of a simple interactive text editor. 
There is space enough only for a few highlights of the 
complete derivation. (More details may be found in a 
separate report [lg].) 0 ur editor is designed as a collec- 
tion of separate modules. The collection of modules is 
then integrated and ada.pted by deriving module inter- 

faces to achieve an executable prototype. This prepares 
the way to introduce efficiency transformations later in 
the derivation process. The entire process is depicted 
in Figure 1, which will be referred to in the following 
example as the steps are elaborated. But before we go 
into the details of our example, we must first sa.y a few 
words about the previous work on data transformations 
that forms the basis for our techniques. 

Data Transformations. The use of data abstraction 
in programming suggests there is value in examining 
transformation techniques on modules. Early meth- 
ods focused on the relationship between abstract pro- 
grams and their implementations. Hoare [12] presents 
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Figure 1: Deriving a Buffer 

a method for proving the correctness of a data repre- 
sentation for an abstract program. This approach has 
been adopted by VDM [a]. An alternative a.pproach 
is to derive the concrete representa.tion using program 
transformation [5, 81 rather tl1a.n invent the concrete 
representation and then prove it correct. Darlington [7] 
shows how a concrete program can be derived from an 
abstract program using program tra.nsformations that 
ensure that the implementation is correct. Wile [22] de- 
velops this idea further by considering the interrelation- 
ships along data paths in programs and outlining a set 
of informally described operations on data types. These 
include operations for delaying or a.dva.ncing computa- 
tion and operations for changing type signatures based 
on the “theory operations” of Burstall and Goguen [6]. 
Jarring and Scherlis [14, 211 develop and generalize these 
ideas to obtain a framework that permits programmers 

to take general purpose abstract type definitions and, 
using type transformations, obtain types tailored to the 
application. 

We now present our example derivation. 

Notation. In the following examples, the typewriter 
font is used for data types, lower-case greek letters for 
type variables, sans-serif font for functions, and italics 
for variables. The product type constructor “x” binds 
more tightly than the function type constructor “+“. 
Function definition is denoted by “e”. Data type def- 
initions are represented as modules using an extended 
form of Standard ML [17]. The extensions and addi- 
tional notation will be described as they are introduced 
in the examples. 

An Editor Buffer. The abstract interface for an 
editor buffer is defined as a signature containing, for 
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the purposes of our example, seven buffer operations: 
makebuf, delete, insert, move-left, move-right, show-char, 

and next-line. 

Signature BUF = sig 
type buf 

makebuf : buf 
delete : buf + buf 
insert : ch x buf - buf 
move-left : buf - buf 
move-right : buf -+ buf 
show-char : buf - ch 
next-line : buf --+ buf 
end 

Our intended goal is to arrive at one data representation 
that implements all of these operations efficiently. Since 
designing an efficient data representation that satisfies 
all of the operations may be difficult, we will chose to 
implement subsets efficiently, and then try to integrate 
them. 

Program Composition. An appropriate model to 
represent a buffer on which move operations can be eas- 
ily defined is a sequence of characters with an explicit 
index for the point where editing takes place. This point 
is marked by the cursor. The cursor is moved left by 
decrementing the index, “p-“, and moved right by in- 
crementing the index, “p+“. The chara.cter at the cursor 
is shown by looking up the cha.racter in the text to the 
left of the index, “t [p-l”. We call this a componen& 
rather than a Standard ML “structure” since it imple- 
ments only a subset of the buffer signature. Abstraction 
boundaries are maintained using a quasi-equational no- 
tation that is similar to abstraction and clausal defini- 
tions in Standard ML. (Constraints on the component, 
for example, that the cursor rema.ins within the text, 
have been omitted to simplify the presentation.) 

Component Buf 1 : BUF = struct 
type buf = Buf of (int x ch’) 

move-left(Buf (p, t)) -+= Buf (p-, 1) 
move-right(Buf (p, 1)) G Buf (p+, 1) 
show-char(Buf (p, t)) -+ t [p-l 
end 

This provides simple and natural definitions for the 
three operations shown. To include insertion and dele- 
tion of characters in this Bufl representation, on the 
other hand, requires a bit of manipulation of subse- 
quences within the text. A more appropriate repre- 
sentation for these new operations (from the view of 
conceptual simplicity) might be a pair of sequences, rep- 
resenting the characters to the left and to the right of 
the point of editing. The index for the point of editing 
is implicit. A character is deleted by removing the last 

element from the left sequence, “front(l).” A character 
is inserted by appending it to the left sequence, “I o [cl”. 

Component Bufz : BUF = struct 
type buf = Buf of (ch* x ch’) 

makebuf + Buf(u, 0) 
delete(Buf(l, T)) + Buf(front(l), r) 
insert(c,Buf(Z,r)) X= Buf(l o [cl, T) 
end 

The next-line operation moves the cursor to the follow- 
ing line with the character position in the line remaining 
the same. This is difficult to do using either of the pre- 
vious representations, since it would require searching 
for newlines and computing the distance between the 
point of editing and the preceeding newline. For this 
new operation, a new component, Bufs, is introduced 
where the text is a sequence of lines (where a line is a 
sequence of characters not containing a newline) and the 
point of editing is a line and character position. Now 
the cursor is moved to the next line by incrementing the 
line position by one, “IT+“. 

Component Buf3 : BUF = struct 
type buf = Buf of ((int x int) x line’) 

type line = (ch - ‘nl’)* 

next-line(Buf((lp, cp), 1~)) + Buf((lp+, cp), ls) 
end 

The newlines are implicit, giving a compact represen- 
tation; however, an a.lterna.tive representation could be 
used that keeps a newline character at the end of each 
line. The choice is up to the designer. 

Designing Interfaces. Collectively the components 
implement all of the operations of the signature for 
BUF. IIowever, an a.greement among representations of 
the components must be reached to link them together 
so that all the operations can be executed on a single 
buffer. That is, when the move-right operation is ex- 
ecuted, for example, not only is the Bufl component 
updated, but the Bufz and Buf3 components must be 
updated as well. The aggregate buffer can thus be de- 
fined in terms of the components, along with functions 
that translate among the components. Each component 
is a projection of the buKer and is made consistent with 
each other component via the translation functions. 
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axiom proj, (move-right(b)) = BufI.move-right(proj,(b)) 

axiom map:(proj,(b), proj,(b)) z=+ map:(proj,(move-right(b)), proj,(move-right(b))) 

axiom mapl(proj,(b), proj,(b)) a map:(proj,(move-right(b)), proj,(move-right(b))) 

Figure 2: Buffer Specification 

Structure Buf : BUF = struct 
structure Bufl, Bufz, Buf3 
type buf = Buf of (int x ch’ x ch* x ch’ x (int x int) x line*) 

makebufl x2 -+ span,(Bufz.makebuf) 
unspan,(makebuf) e makebufi x2 
. . . 

unspan,(move-right(Buf (p, 1,1, T, (lp, cp), ls))) -+= 
Bufl.move-right(unspanc(Buf(p,i,l,r, (Zp, cp),ts))) 

show-char(Buf (p, t, 1, T, (Zp, cp), 1s)) + Bufrshow-char(unspan,(Buf(p, t, I, T, (Ip, cp), Is))) 

next-hner,~(span,(Bufs.Buf((lp, cp),ts))) e= span,(Bufs.next-line(Bufa.Buf((lp, cp),ts))) 

unspan,(next-line(Buf(p, t, 1, r, (lp, cp), ts))) + next-hner,3(unspan,(Buf(p, t, 1, r, (Ip, cp), ts))) 

map,-,(Buf2.Buf(l,r)) + Bufl.Buf(#I, 1 o r) 

map,-,(Bu%Buf((h CP), is)) (-r Bufl.Buf(#(lines-to-chars(ls[..Zp-1)) + cp, lines-to-chars(ts)) 
where lines-to-chars(s) = if null(s) then 0 else [hd(s)] o [‘I#] o lines-to-chars(tl(a)) 

span,(Bufz.Buf(l,r)) + Bufrx2(p, t, 2, T) 

where Bufl.Buf(p,t) = map2,,(Buf2.Buf(l,~)) 

unsPanb(Buf(p,t,h T, (h~~),ts)) * BuflXz({ P i PJ 1, { t 1 t3 1, 1, T) 

where Buf 1 .Buf (p3, t3) = map,-, (BuLBuf((b, CP), Is)) 

. . . 

end 

Figure 3: Buffer Definition 

The effect of an operation on the buffer is defined in 
terms of the component in which it was defined. The 
new operation updates the buffer correctly a.nd all other 
components are kept consistent as expressed in the fol- 
lowing commutative diagram. 

The relationships depicted in this diagram ca.n be spec- 
ified via axioms on the operations in the va.rious com- 
ponents. Such axioms can be written along with the 
signature of the data type. The a.nnota.ted signature 
then constitutes a specification of the integration of the 
components. We show the axioms for move-right in Fig- 
ure 2. 

These axioms suggest that an extended form of data 
transformations might be useful in the design and im- 
plementation of the buffer data type (Figure 1, design 
step). The basic principle of data transformations is as 
follows: Given a program f on a domain D and a func- 
tion that maps elements of the domain D’ to elements of 
the doma.in D, we can define the following “expression 
procedure” [2O]: 

Abs(f’(d)) -+ f(Abs(d)) 

Then, syntactic transformations can be used to obtain 
an executable definition for the program f on the do- 
main D’. 

\Ve can extend these methods to data aggregates as 
well. When we a.re given a collection of components for 
the buffer, perhaps the easiest way to integrate them is 
to detine the buffer representation as the product of the 
component representations. The buffer definition shown 
in Figure 3 uses this a.pproach. (As is data transforma- 

95 



Structure Bufproto : BUF = struct 
typebuf =Buf of (intx ch* x ch' x ch' x (intx int)x line*) 

makebuf + Buf(O, n, 0, fl, (ho), II) 

move-right(Buf(p, t, I, T, (/I), cp), ts)) e 
let Ip’, cp’ = if (cp = #Is [1p]) then Ip+, 0 else Ip, cp+ in 

Buf(p+, t, 10 [hd(T)], t(T), (~P’,cP’), ts) 

show-char(Buf (p, t, 1, T, (Zy, cp), ls)) + 
{ t Cp-] 1 last(l) ) (if (cp = 0) then ‘111’ else ts[lpl [q-l) } 

next-line(Buf(p, 1, I, T, (Ip, cl,), 2s)) += 
let d = (nlpos(2s)) [I111 - (nlpos(ts)) Up-1 in 

Buf(p + d, t, / o T[..d], Ted+..], (lp+,Cp), ts) 

end 

Figure 4: Buffer Prototype 

tions, these opera.tions are defined by expression proce- 
dures which are more genera.1 than ML patterns since an 
expression can appear on the left hand side of the func- 
tion definition.) The operations a.re defined in terms of 
the aggregate buffer representation, or some portion of 
this representation. To map between the components 
and the various aggregates, “span” and “unspan” func- 
tions are used-this also has the effect of putting things 
into a form suitable for data transformation. 

In the definition, Buf implements the signa.ture BUF 
using the components Buf 1, Buf 2, and Bufs. A repre- 
sentative sample of operations is shown. Defining the 
makebuf operation for the aggregate requires two stages 
beca.use the Bufz component,, in which it is defined, is 
not directly connected to a.ll t!le other components. It 
is connected directly to Buf 1 via a transla.tion function, 
but is connected indirectly to Buf3. In the first stage, 
an intermediate definition of makebuf is defined on an 
intermediate aggregate (the product of Buf 1 and Buf 2). 
In the second sta.ge, the final operation on the aggregate 
buffer is defined by merging this intermediate definition 
with the Buf3 component. Since the Buf 1 component is 
directly connected to all other components, new imple- 
mentations for the operations defined in this component 
(e.g., move-right and show-char) can be defined in a sin- 
gle step. 

The components are kept consistent through the 
translation functions map2,I and map3,1. It is not nec- 
essary that all tra.nslations among components be given; 
it is sufficient that the components are connected, possi- 
bly through some number of intermediate components. 
Component Buf2 is mapped into component Buf 1 by 
making the point of editing explicit (which is the num- 
ber of characters to the left of the point, “#I”), and 
by appending the left and right scqucnce of characters 

together. Component Bufs is mapped into component 
Bufl by converting the line and character indices into a 
character index and by converting the sequence of lines 
into a sequence of characters. The auxiliary function 
lines-to-chars takes a sequence of lines, adds a newline 
to the end of each one a.nd appends them to make a 
sequence of characters. (The notation “s [..;I ” denotes 
the subsequence of s from the beginning of s to i inclu- 
sive.) The span functions can be easily defined in terms 
of the map equations. A value that can be computed 
in more than one way is denoted “{c~~c~~cs}.” Multiple 
alternative ways to compute a value are maintained to 
ensure consistency among the components. 

Deriviug Interfaces. Next a prototype (Figure 4) 
is derived (Figure 1, prototype step) where the expres- 
sion procedures defining the buffer operations are trans- 
formed into functional definitions. For brevity, the steps 
have been omitted. As with other data-type transfor- 
mations, they consist of a number of purely mechanical 
steps and a few insight steps that require input from 
the designer. It is not, actually necessary to derive span 
functions that are computable. Instead, the tra.nsfor- 
mation process makes use of them in syntactic manip- 
ulations to obtain computable functions for the buffer 
operations. 

In the prototype the data representation is simply the 
product of the da.ta representations of the components. 
All components are updated simultaneously. 

The makebuf opera.tion generates each component 
representation. The move-right operation increments 
the index appropriately for each component. (The func- 
tions hd a.nd tl return the first element and the rest of 
a sequence.) The show-char operation returns the char- 
acter at the cursor position of the buffer. The value 
may be produced frown any of the three representations; 
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Structure Bufimpl : BUF = struct 
type buf = Buf of ((int x ch’) x (int x int*)) 

makebuf (; Buf(0, 0, 0, 0) 
. . . 
move-right(Buf(p, 1, i, nl)) G Buf(p+, t, (if nlp(d[p]) then i+ else i), nl) 
show-char(Buf (p, 2, i, ~11)) e= 1 [II-] 
next-line(Buf(p, t, i, nl)) G Buf(p + (nl[i] - &[&I), t, i+, nl) 
end 

Figure 5: Buffer Implementation 

these three alternatives are denoted ‘({cl 1~2 IQ} .” This 
is the only extension to Standard ML in the prototype. 
The extension could easily be implemented by selecting 
the first alternative so that the prototype could be ex- 
ecuted. Multiple alternative ways to compute a value 
are kept in order to avoid losing informa.tion that may 
be useful in later transformation or analysis steps. (The 
function last returns the last element of a sequence.) In 
the next-line operation, the positions of the surrounding 
newlines are used to advance to the next line for the 
Bufl component. (The function nlpos takes a sequence 
of lines and returns a sequence of newline positions.) 
Note that the character index for the Bufl component 
1la.s been transformed to use information from the Bufs 
component, where it is easier to compute newline in- 
formation. The representation of each component is 
a.vaila.ble to update any other component representa- 
tion. 110~ they are used provides the motivation for the 
final representation that follows. 

Shifting Computation. A specialized implementa- 
tion (Figure 5) is derived using data-type transforma- 
tion techniques to obtain a representa.tion that caches 
newline positions (Figure 1, implement step). For 
brevity, the steps a.gain have been omitted. Performance 
is improved by eliminating the computation for the Buf 2 
component, and computing newline information directly 
ratller than maintaining a sequence of lines a.nd map- 
ping it into newline positions when needed. The former 
is an instance of releasing components from the data 
type, while the latter is an insta.nce of slrifti~~g compu- 
tation from access to creation time, techniques that are 
described in [13, 211. 

The new specialized representation is a sequence of 
characters with a.n index for the cursor and a sequence 
of newline positions with a.n index tracking which line 
contains the cursor. The makebuf operation now gener- 
ates an empty buffer and newline cache. The move-right 

operation updates the newline index wllcn crossing over 
a hue. (The predicate nlp returns true when its argu- 
ment is a newline.) The show-char opera.tion is one of 

the three choices. The next-line operation uses the new- 
line cache to move more eficiently. 

Adapting Interfaces. The editor buffer can now be 
ada.pted further, for example by including a display. A 
display will need to know the cursor position and the 
content of the buffer; operations that the editor buffer 
module does not currently support. An agreement be- 
tween the abstract interfaces of the editor buffer and 
display can be reached by extending the editor buffer 
module to include these additional two operations. One 
way to do this is to add a new component consisting 
of the operations required by display and re-derive the 
module interfaces (Figure 1, adapt step). 

4 Conclusions 

Our research extends data transformations by introduc- 
ing transformation techniques for the module and inter- 
face design process. Once a complex type definition 
is defined as a collection of components, these trans- 
formation techniques provide a systematic way to in- 
tegrate them. The components are first aggregated to 
produce a “canonical” data representation, which is a 
straightforward combination of component representa- 
tions. Additionally, the representation-translation func- 
tions are incorporated into the operations. Then, the 
components are coalesced by using transformations to 
specialize the components in the context of the aggre- 
gate data structure and eliminate redundant informa- 
tion or computation, thereby producing an efficient ag- 
gregate implementation. 

Our experience with the derivation of an editor buffer 
has given us some encouragement that formal program 
manipulation techniques might be applicable to larger 
softwa.re systems. The encouragement derives not from 
the sca.le of the burer example, which is modest, but 
from the complexity of the interfaces and the means 
by which they lvere obtained. Scalability, nonetheless, 
must be demonstra.ted by sca.ling up, and therefore a 
larger derivation is underway that will cover a larger, 
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more realistic set of operations and components, and 
also will include display manipulation. 

Automated assistance would be useful for managing 
the derivation, especially for the larger problems. In 
this case, the bulk of the transformation steps could be 
automatically applied, with the user left only with the 
task of selecting the appropriate strategies and provid- 
ing the “insight steps” in the derivation. Still, discovery 
of the insight steps will likely turn out to be a significant 
bottleneck. We cannot expect to eliminate this entirely, 
but can work toward isolating the steps into manageable 
local pieces each of which requires a minimal amount of 
context. 

The Existing Choices in Software Development 
- Revisited. The approach we have demonstrated 
addresses the problems of integrating module interfaces 
(raised earlier in this paper) in the following ways: 

1. Rather than requiring a priori agreement on data 
representations, complex data types are defined as 
a collection of separate modules that are systemat- 
ically merged using formal methods to derive the 
module interfaces and efficient representations. 

2. Rather than mediating representations through in- 
termediate translation functions, new module in- 
terfaces can be derived tha.t interact directly. 

3. Rather than leaving data design decisions to a com- 
piler when using very-high-level languages, the soft- 
ware designer is involved in delining aud organizing 
module interfaces. 

4. Rather than requiring a priori agreement on ab- 
stract interfaces, new types may be defined as ex- 
tensions of existing ones using module extensions 
(e.g., object-oriented techniques using inheritance) 
and new module interfaces can be derived. 

The Role of Formal Methods - Revisited. 
There are a number of other approaches to formal- 
ized software development. In this section, we indi- 
cate the different choices and tradeofl’s some of them 
make with respect to the criteria that a.re suggested in 
Section 2: scalability, expressiveness, appropriateness of 
representations, interface a.greement, adaptability, reli- 
ability, performance, and autonmtion. 

There are a number of formal frsmeworlrs for devel- 
oping larger-scale programs by transforming high-level 
specifications into executa.ble code. Like our approach, 
they seek to extend transformation techniques to larger- 
scale systems, and similarly involve the software de- 
signer in the design of data representations (usua.lly in 

order to avoid limiting the expressiveness of the specifi- 
cation language). The developers of CIP [l], for exam- 
ple, advocate using algebraic specifications as the start- 
ing point for a top-down method of program develop- 
ment. The developers of Extended ML [19] and VDM [2] 
use formal verification to invent new implementations 
and prove them correct. 

Our approach differs from these in its support for the 
integration of separate components. This gives the de- 
signer the flexibility to delay agreement on, as well as 
adapt, the interfaces of a (module) system. Goguen [lo] 
has studied the issue of component integration for large- 
scale systems, and proposes a module interconnection 
language with a program methodology for composing 
software components that facilitates reuse. We specu- 
late that it may be possible to embed our methods for 
integrating multiple data representations into his sys- 
tem. 

The views approach of Garlan [9] has motivations 
similar to ours; rather than having to decide in advance 
on some compromise representation, separate compo- 
nents with appropriate representations are designed and 
later integrated. This allows agreement on interfaces to 
occur later in the design process. Unlike our approach, 
however, merging is restricted to a small number of fixed 
data types, thus yielding a greater degree of automation 
at the expense of expressiveness, power, and flexibility. 
The programming with views approach of the Gandalf 
group [ll] extends Garlan’s work to support the merg- 
ing of arbitrary a.bstract da.ta types (that are connected 
via “compatibility maps”), but is less automatic since 
it requires all operations to be rewritten by hand for a 
merged type. Our techniques for deriving module inter- 
faces may provide a basis for formalizing this process of 
merging. 

The example sketched in this paper, in which a buffer 
data structure for a text editor is derived from a col- 
lection of simple components, is a first step of experi- 
mentation in exploring the applicability of data trans- 
formation techniques in the management of larger-sca,le 
softwa.re systems. The example shows how module in- 
terfaces can be systematically derived in an iterative 
way. The formal ma.nipulations are generally carried out 
within narrow syntactic contexts. There are, nonethe- 
less, a small number of cases where more global trans- 
formations a.re made, but the areas of heuristic difficulty 
are almost entirely associated with the more narrow con- 
texts. The examples create optimism that scaling up to 
apply formal program manipulation methods to larger 
softwa.re systems is possible, but it is also evident that 
this scaling up will most likely require additional tech- 
niques such a.s the data-type transformations illustrated 
in this paper. 
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