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Traditional denotational models of languages with

control operators rely on Strachey and Wadsworth’s

continuation semantics. Such models represent the ef-

fects of control operations by tacking on an additional

function argument, the continuation, to all denota-

tions. In essence, a continuation semantics encodes

a stack machine for the language where the continu-

ation is a functional representation of the stack. As

we have shown recently, a continuaticm model can ac-

curatel y describe the behavior of a control language,

provided the latter has a sufficiently strong control

structure.

In this paper we investigate a new class of models

for control operators. These models do not rely on the

continuation-passing technique but build the required

information for control operations upon demand. In

cent rast to the cent inuat ion framework, there is a

pair of simple projection/injection functions between

the direct model for the core language without con-

trol operators and the extended model for the full lan-

guage. Like the continuation model, the new models

provide accurate descriptions of languages with con-

trol operators and control delimiters. For the design

of programming languages, our analysis points out

that control operators need a cooperative exception-

handling facility.
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1 Modeling control without

special effects

Programming language operators for control manip-

ulation provide expressive and efficient programming

abstractions. These constructs grant access to (ftrst-

class) abstractions of the control state in the form of

control objects. Virtually all programming languages

are equipped wit h some form of cent rol operators.

Although the study of denotational models is use-

ful for understanding and reasoning about languages,

these analysis techniques have not been exploited for

languages with control.

The traditional semantics for control operators and

control objects uses the Strachey and Wadsworth con-

tinuation model [25]. Our recent study of this model

showed that it has the ability to restrict the reach of

control operators. This capability is usually not avail-

able in modern languages. The language requires a

control-delimiting operator to allow an accurate cor-

respondence between model and language.

However, the continuation model, while popular

(indeed, the control objects provided by the language

are often dubbed “continuations” ), differs radically

from the basic direct model for languages without

control. The denotations of language phrases demand

an additional continuation argument, and it is diffi-

cult to relate them to the denotations in the direct

model for the language without control [19, 21, 24].

In this work, we investigate the consequences of us-

ing the more uniform approach of having extensions

of the basic direct semantics [8] as models for lan-

guage extensions. Extending a direct model requires

only an incremental alteration to the base model. In

our specific case, languages wit h “continuations” have

models without special continuation functions. Our

study also shows that, like the continuation model,

the extended direct model furnishes a perfect match

with a language, provided the latter has a sufficiently

expressive control structure.
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The following section introduces the syntax and an

informal description of the language PS and some of

its control extensions. Section 3 describes the direct

model for PS. The fourth section explains the tech-

niques used to obtain extended models for PS en-

hanced with control facilities. Section 5 discusses re-

lated work, and the final section interprets our techni-

cal results for the design of programming languages.

2 PS and its control extensions

PS is the purely functional subset of Scheme. It is

essentially the untyped call-by-value A-calculus [16]

with integers and some basic procedures, A control

extension of PS is plain PS enhanced with one or more

cent rol constructs.

2.1 Ps

Figure 1 describes the syntax of PS. PS terms are ei-

ther values such as numbers, basic procedures, and

A-abstractions, or non-values such as variables and

(procedure) applications, The basic procedures in-

clude a conditional (with O serving as false and any-

thing else as true), arithmetic functions and the pred-

icate int?. The A-abstractions introduce new by-value

procedures.

A program is a PS term without free variables. On

evaluation, a program either converges to an answer

value or diverges. In the evaluation process, basic

procedures have their expected behavior; applications

are evaluated from left to right before the argument

is passed to the procedure.

2.2 Control extensions

Evaluating subterms in a PS program involves keep-

ing track of the rest of the evaluation, or the evaiua-

iion context. In a machine, this information is usually

represented as a stack; in rewriting systems, it is the

textual context surrounding the current redex. Con-

trol operators exploit an abstraction of the evaluation

context to allow manipulation of the control flow in a

program. We shall consider abort, call/cc [26], C [10],

and control [9] as additions to PS:

abort stops the normal evaluation of a program,

and replaces its evaluation context with its

subexpression.

can/cc is a procedure that applies its argument to a

procedure that is an abstracted form of the sur-

rounding evaluation context. It leaves the evalu-

ation context intact. In analogy to denotational

semantics, Scheme refers to the abstracted con-

text as a continuation. (Indeed, call/cc abbre-

viates “call-with-c urrent-continuation”.) On ap-

plication, this cent inuation replaces its current

evaluation context in favor of the one that was

captured, sending its argument to the old con-

text.

C is similar to can/cc except that a C-application

does not implicitly invoke its continuation. C

and the combination abort and call/cc can ex-

press [7] each other: see Figure 2.

control, in contrast to call/cc and C, provides a func-

tional continuation to its argument. Upon in-

vocation, the functional continuation installs its

context without throwing away the current one.

As shown in Figure 2, control can express all the

other constructs.

A different kind of control construct is the control

delimiter or prompt (#) [6, 22]:

# constrains control manipulation occurring within

its dynamic extent. In other words, a prompt-

expression treats its sub expression as an inde-

pendent program, insofar as control action is

concerned,

Prompts are an important component of the full

abstraction result for cps models [23]; we shall

find them useful here, too.

These operators are sufficiently abstract to capture

other popular variations such as escape [18], Iswim’s

J [13], GL’s state [12], spawn [11], shift and reset [5].

2.3 A small library

Many elementary procedures and forms are easy

derivations from the core of PS. Here we list a couple

that are useful below.

● A conditional form if is the syntactic extension

(d@ N, P):

if M N P = (ef M (Ad. N) (Ad. P))rO’.

Here, Ad.iV is the thunk form of IV, and is dis-

charged by applying it to a dummy value, rol,

. A typical PS program that fails to converge is

● The fixpoint combinator Y provides a tool for

defining recursive procedures:

Y s Af. (Aw.ww)(Az.f(Az. (z2)z)),
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—

M := Vlzlkfiw
v := Cl flk.kf

c .—

f ;: t+ I 1– I int?

(values)

(integers)

ef (basic procedures)

Control additions to PS

ill := abort J4 I call/cc M I C M I control M I # M

Figure 1: Syntax of PS.

abort M s C(M.M)

call/cc s Af.c(Ak.k(f-k))

C ~ Af.call/cc (Jk.abort (fk))

C s Aj.contrd(M.f(Av. control (M.ku)))

Figure 2: The expressiveness of abort, call/cc, C, and control.

e Any value that is not a number is a procedure:

proc? E Av.if (int? V) ‘()’ ‘1’,

3 Modeling PS

A model for a language consists of a structure, the

domain, and an interpretation or meaning function

that maps phrases from the language to values in

the structure. This section summarizes the tools for

building models, the direct model for PS, and some

of its properties.

3.1 Information systems

We use Scott’s [20] information systems approach to

construct the domains for the basic direct model and

its extensions. The appendix summarizes the salient

features of information systems.

An information system domain is a collection of

consistent, deductively closed sets of propositions. A

finite element is (the deductive closure of) a finite set

of propositions. The complete domain is isomorphic

to the ideal closure of its finite elements, and hence

the latter suffice for studying the domain. The sub-

set relation on the sets composing the elements gives

an ordering ~ on the domain. Domain constructions,

e.g., disjoint sums (~), strict functicm spaces (~~),
reflexi~e dorrmim, etc., consist in enu,merat ing the fi-

nite elements in terms of the finite elements of the

constituent domains.

3.2 The direct model for PS

The direct model for PS is a reflexive domain D that

contains integers and strict functions on itself

D= &, @ (D+. D).

integers procedures

The appendix shows how to build such a domain as

an information system. The tags inO and inP refer to

elements in the sub domains for atomic Observables

and Procedures, respective y. E.g., the elements for

the number 9 and the procedure that maps 1 to 1

(and everything else to 1) are respectively inO(9)

and in P({(inO(l), inO(l))}). In the latter case, the

set containing the pair denotes a finite consistent

proposition in the information system for D ~ D

and the overline denotes its deductive closure. This

notation rapidly becomes unwieldy for larger proce-

dures. We subsequently use the more concise notation

in P(inO(l) = inO(l)) to denote the same procedure.

To avoid clutter, we can further omit the tags when

there is no ambiguity.

The function Zl (Figure 3) defines the meanings

of PS terms. Enu is a set of environments or map-

pings from variables to domain values (other than

1), The meaning of a PS program P is simply

fliJIP] = ?XIP]l, where 1 is the empty environment,

In the following, the functions freeze and thaw :

D + D are the semantic counterpart of forming and
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discharging a thunk:

jree.ze(v) = inP(~d.v)

thaw(j) = apply (f, inO(0))

3.3 Semantic equivalence relations

The model determines two natural equivalence rela-

tions on the language terms [14]. First, there is the

relation based on their meanings in the model.

Definition 3.1 Two terms M and N are denotation-

ally equivalent, M S N, if Zl[ill] = Z[N].

The second relation describes the behavior of terms

as it appears to the programmer. For the latter,

the only way to witness a term’s effect is by using

it as a subterm in a program, and then observing

the program’s behavior (meaning). In this view, two

terms are indistinguishable if one can be substituted

for the other in any program without affecting that

program’s meaning. For our purposes, it is enough to

measure the termination behavior .1 In the following,

a context C[ ] is a PS term with a “hole” where a

subterm should be; a program context for a term is

a context that becomes a program when filled with

that term.

Definition 3.2 Two terms Al and N are observa-

tionally equivalent, M H N, if for all C[ ] that are

program contexts for Al and N, 24’[C[lvf]] = 1 iff

LI’[C[N]] = 1.

For example, A~.f2 N ~~.(fll’)f): no program

context can distinguish them. On the other hand,

Az .!2x # 0: the first term converges in the empty

context, whereas the latter diverges.

Owing to the compositional definition of X, it fol-

lows that A4 = N implies C[&f] = C[N] for all pro-

gram contexts C[ ], i.e., ill LX iV. The converse prop-

erty is more interesting, viz., a model should not give

different meanings to two language terms, if it cannot

distinguish their behavior through any program con-

text. This property is called full abstraction [14, 17].

Definition 3.3 A model is fuily abstract if for any

two terms M and IV in the language, M ~ N iff

MEN.

3.4 Full abstraction of the direct model for

PS+pif

Full abstraction fails for a model when the latter

has some capability that cannot be mimicked in

] For a better understanding of higher-order data, we would
have to use a more sophisticated denotational framework [4].

the language. For PS, this capability is the deter-

ministic parallel conditional [17]. The model uses

this conditional to distinguish the terms MU (u =

o, 1):

Mu = Az.if (ic(M.’l’)(M.$J))

(if (X(kl.fl)Od.rl’))

(if (8( M.”0’)(M.’01)) Q ‘u’)

Q)

Q.

Although M = N, M # N, for applying their deno-

tations to the denotation for parallel disjunction on

thunks:

{

i nO(0) if both thaw(m)

and thaw(n) are

pore = inP~m, n. zero

J_ if both are J-

inO( 1) otherwise

yields O and 1 respectively. In other words, ‘21[Mo]p

and !2i[M1]p are different functions in D +~ D.

To rectify this, PS is enhanced with the operator

pif, which is similar to if, but can yield a result even

when the test fails to converge. For convenience we

shall use the thunk form pif@ where:

pif M N P G pifd

The semantics of pife

fl[pife]p = inP(pi~O)

where pif e~

(M.M) (M.N) (kl.P).

is given by:

{ thaw(t) if thaw(b) is neither zero nor

1-

thaw(e) if thaw(b) is zero

inO(i) if thaw(t) = thaw(e) =

&b, t,e. { inO(i), a number

in P(~v.pif ~ t (freeze) (freeze (PV)))

if %[N]p = in P(n),

2i[P]p = inP(p), i.e., both

are procedures\

The form pif defines parallel-or on thunks as fol-

lows;

por = )irn, n.pif (rnrO’) ’11

(pif (n’O’) ‘1’ ‘O’)

It is easy to verify that %[por] 1 = poro, and that

by using the context [ ]por in PS+pif, MO + Ml.
Unlike the typed languages PCF and

PCF , [17, 23], the PS form of pif has to deal with

procedures in the branches of the conditional, in
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D = O(B(D+,D)

!2(: Tevms + Env + D

Xrn’]p = inO(n)

fl[f]p = inP(f)

‘z!qz]p = p[.]
2i[k.M]p = inP(Av : D.fl[Mlp[~/~1)

21[ikrN]p = c4pphJ(2q’’]p, !2qfv]p)

apply : DXD+. D

apph(inp(f), a) = $(a)
appig(f, a) = 1, for other domain values

Figure 3: The semantic functions for PS.

which case it postpones the decision until the proce-

dures are applied. Call-by-name versions of PS with-

out constants require similar treatment [1, 15].

The proof of full abstraction for PS+pif requires

that all finite elements of the model be definable in

the language.

Lemma 3.4 For all finite elements e, ~,

1.

2.

3.

e is definable;

inP(e + 1), if it exists, is definable (this is a proce-

dure that takes e and anything above it to true,

others to 1); and

inP((e * l)u(~ + O)), if it exists, is definable (this

is a procedure that takes anything dominating e

to true, anything dominating ~ to false, and the

rest to 1).

Proof sketch. The proof of the lemma basically

follows Plotkin’s proof for PCF [17], with two excep-

tions. First, there are no strong types that allow an

induction on the type structure. Second, since the

dynamic type of an application is unpredictable, tak-

ing lubs does not translate to checking the equality of

integer values as in the PCF proofs. .4n induction on

the “size” (based on the constituent propositions) of

a finite element and the generalized pif address these

issues, ■

The proof of full abstraction of the model follows

from the lemma.

Theorem 3.5 The direct model is fully abstract for

PS+pif,

Proof sketch. Assume that M $ N. We now need

to show that M # N, i.e., there is a program context

distinguishing the terms. Both 2i[M]p and fl~~]p

(for any p) cannot be 1. If one of them is 1, a con-

text that merely closes the terms differentiates them.

If one of them is a number and the other a proce-

dure, the procedure int? tells them apart. If both are

numbers, simple arithmetic operations suffice. And if

both are procedures, then applying them to a finite

number of finite elements produces a number or J_ for

one and something else for the other, which can then

be distinguished as above. ■

4 Modeling PS’S control ex-

tensions

Extended direct models [8] accommodate

guage extensions of PS. The basic domain D

integers procedures
P \

~1 = Q @ D+ SD’

D=D’

the lan-

satisfies:

An extended domain introduces an additional subdo-

main for the denotations introduced by the language

extension:

integers procedures
/ \

D: = T @ (D: -, De)

De= D:@ r(% ‘e)

extension values

We use tags in L and in R to refer to the left and right

sub domains of De.

Additional clauses for the semantic function X de-

fine the meanings associated with the language ex-

tensions:

M. : PSe +Env +Da.

189



The environments map variables to values that are

neither 1 nor the extended values. A modified ver-

sion of the semantic function app~y shows the deno-

tational effect of the new domain values. Finally, a

function strip transforms the meanings of programs

into denotations that are the counterparts of values

from the original subdomains.

Extending a domain may modify some existing sub-

domains that depend reflexively on the whole do-

main, but it does so in an easily predictable manner.

More precisely, a pair of functions @ : D ~ D, and

V : D. A D connect the domain D and its extended

counterpart De. @ injects values from the unextended

domain D to their counterparts in the larger domain

D.; Q projects values from the extended domain D,

to the smaller D:

{

inL(v)
o(v) =

if v = inO(n)

in L(in P(@ o f o W)) if v = inP(~)

{

w if w = in L(inO(rt))

w(w) = inP(Vo~o Q) if w = inL(inP(~))

L if w = inR(u)

In short, the two mappings are a pair of projections.

With these projections, it is possible to approximate

the extended denotations of phrases in the core lan-

guage using their old denotations, and to recover the

old meanings of such phrases using their new mean-

ings.

Theorem 4.1 ([8]) If M is a PS expression, and p

and p’ are environments such that p : Vars + D and

p’ : Vars + D:, then

n[l$f]p = w(!2te[M](outl o @ o p))

and

0( ZI[A4](T o inL o p’)) ~ 21. [M]p’

where outl removes the in L tag of its argument.

4.1 Modeling PS +abort

The extended model for PS+abort illustrates the

technique of extending a direct semantics to include

a new language feature. The extended domain Da

satisfies the following equat ione:

integers procedures
/ %

ill: = 9 @ (D: +, Da)

Da= D:@ Da

abort values

The tag inA (same as in R) refers to elements in the

subdomain for Abort values. The semantic function

tia maps terms in PS+abort and environments to

values in Da, an d is similar to 2( for terms that do

not include abort.

The additional semantic clause for abort is:

!Xa[abort M]p = W(fl. [M]p),

where W = inL o strip.

Figure 4 defines apply and strip. The new func-

tion app~y describes how abort-values ignore their

surrounding context. Unlike in the cps model, it is

trivial to specify left-to-right or right-to-left evalua-

tion for applications involving aborts. The function

strip removes the tags associated with abort values

to yield the result of a program. The denotation of a

program P is !ilj [P]= strip(%a [P]l).

The parallel-if construct for PS+abort differs

slightly from the one for plain PSI since it must ac-

commodate control action in the branches. The se-

mantics of the new pif is:

%[pifO]p =

{-

. . . as for plain PS

abort(pif@ b (freeze(p)) (freeze(g)))

if thaw(t) = inA(p) and

thaw(e) = inA(q)

l?ull abstraction for PS+abort

Models for control usually have the ability to de-

limit control [23]. This is also case for the extended

direct model, e.g., D: ~ D: contains the function

~0.strip(thaw (0)) that constrains the aborts in its

argument thunk. This function can distinguish the

denotations of the terms

MU S Az.equal?

(.z(ki.abort’l’))

(.z(kt.abort’u’)),

where u = 1, 2, and equal? has the usual defini-

tion. Differentiating the terms in a program con-

text requires that the context should both invoke

the abort’s and perform the equal? test. An abort-

delimiter in the language solves this problem by al-

lowing the procedure z to prevent the abort’~ from

escaping past the equal?.

Thus, to restore full abstraction to the extended

direct model for control, the language requires a fur-

ther extension in the form of a control delimiting con-

struct. We choose the prompt [6].

The denotational semantics of prompt is an ab-

straction of the strip function:
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~PP~Y : Dax Da+s Da

appJy(inP(inL(f)), inL(a)) = fa

appzy(inA(a), b) = inA(a)
CVJply(a, inA(b)) = inA(b)

applg(a, b) = L for other domain values

strip : Da -+sD:
drip(inA(a)) = a

strip(inL(a)) = a

Figure 4: The semantic functions apply and strip for PS+abort.

With pif and prompt added to the language, the

extended model for PS+abort becomes fully ab-

stract.

Theorem 4.2 The extended direct model

(with domain Da) is fully abstract for

PS+abort +pif+#.

Proof sketch. As a slight variation on Lemma 3.4,

we now need to show that for all finite elements e, ~

in Da:

1.

2.

3.

e is definable;

in P((O + e) + 1),2 if it exists, is clefinable (this is

a procedure that takes the thunk form of e, ~d.e

(discharged only with O), and anything above it

to true, others to 1); and

in P(((O * e) * 1) 1-l ((O +~) * ())), if it exists,

is definable (this is a procedure that takes an~-

thing dominating the thunk ~d.e to true, any-

thing dominating the thunk ~d,f to false, and

all else to -L).

The proof that the extended direct model is fully

abstract follows from the above lemma, using a strat-

egy similar to that of the last section. In addition to

int? and proc?, the proof needs a predicate that tests

if its argument t hunk aborts:

abort? E Af. sameint?

(#((Ad. rO’)(~O’)))

(#(( Ad.rl’)(~O’))).

where sa mei nt? returns false only if its arguments are

unequal numbers:

sameint? s k, y.if (and (int? it) (int? y))

$qual? z V)I
■

2Actually, inP(inP(inO(0) + e) + inL(inO(l)))!

4.2 Modeling PS with control

As for PS+abort, the extended direct model for PS

with a higher-order control operators such as call/cc,

C, or control requires an additional sub domain, this

time a domain of procedures called “receivers”, A

receiver denotes the argument procedure of a control

construct, and receives the latter’s continuation ob-

ject as its argument.

Taking X to be any one of {call/cc, C, control}, the

specifications of the corresponding extended domain

D. are as follows:

integers procedures
P A

\

D: = T ‘&3 (g +-, D=)

Dc=D~f?3D.

X-receivers

The tag inX indicates elements belonging to the sub-

domain for X-receivers.

The semantic clause for the X’s are :

‘21C[X M]p = inX(’21z[M]p).

Figure 5 shows the semantic function for PS+control

along with the auxiliaries apply and strip. The func-

tion apply deals with receiver arguments by expand-

ing them to include progressively more surrounding

context through the pending applications. The func-

tion strip simulates the final discharge of the accu-

mulated receiver procedure with an identity continu-

ation.

Both apply and strip change based on the control

operator, and furthermore, call/cc requires an addi-

tional subdomain for abort-values as for PS+abort.

Figure 7 describes the modified functions.

Full abstraction

The programming languages PS+X need control de-

limiters too, to make their models fully abstract.
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D:

D.

‘Z:

‘2:[M]

‘xc

Mcvn’]p

%C[f]p

%JX]P

!21C[kc.kf]p

!2ic[MN]p

?21C[control M]p

%.[% M H]p

apply
applg(inL(in P(f)), inL(a))

apply (in C(a), b)

apply (inL(a), inC(b))

aPpMa, ~)

s trip

strip(a, inC(f))

9tr2p(inC(f), h)

strip(in L(a), h)

——
.

——

=
——
=

.

.
——
.

.

.

——

——

.

.
——

o @ (D: +, D.)

D:@ D.

Terms + D:

st~ip(ZXJM]l, in L(in P(Az.inL(x)))

Terms + Env + Dc

inL(inO(n))

inL(inP(f))

inL(p[z])

inL(inP@v : DL.~c[Jf]P[x/v]))

appty(%[lkf]p, flc[~lP)

inC(21[M]p)

inL(strip(~c[M] p, flc[H]p))

D. x D. --+. D.

fa
inC(in L(in P(~k : D:.

apptg(a, inL(inP(~v : W.apph(inl-(lc), aPPMinL(~),~) )))))))

inC(in L(in P(~k : D:.

appiy(b, inL(inP@v : D~. apply (inL(k), appb(inL(a), inL(~)))))))))
L for other domain values

D= x DC -, D:

L

strip(applg(applu(h, j), inL(in P(& : ~j.inL(z)))), h)

a

Figure 5: The semantic functions for PS+control.

awb(inC(a), b) = as for PS+control

awb(in L(a), inC(b)) = as for Ps+control

striPinC(~), h) = strip(appig(appi~ (h, j), inL(inP(&z.inC( inL(inp(&LinL(~ ))))))))

Figure 6: Modified apply and strip clauses for PS+C.

aMNnK(a), b) = in K(in L(in P(~k : IDj.
apply (applv(a, inL(inP(~u : Dj. apply (inL(k), apphJinL(v), b))))), b))))

apply (in L(a), in K(b)) = in K(in L(in P@k : Dj.
applg(inL(a), apply (b, inL(inP(~v : Dj. appig(inL(k), awk(inL(a), inL(~))))))))))

str-ip(inK(f), h) = strip(applg(apply(h, ~), inL(inP@x : W.inN~)))), ~)

strip(inA(z), h) = apply (applg(h, inL(inP(~v : Dj. inL(v)))), inL(z))

Figure 7: Modified appiy and strip clauses for PS+call/cc.
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However, this control delimiter should not only con-

strain control but also identify the number of invoca-

tions of the control operator in its dynamic extent.

Here, we shall consider the most general of these lan-

guages, viz., PS+control; the others allow a similar

treatment.

For example, the terms control (M.r3’) and

control (Ak.control (M.r3’)), though indistiguishable

wit h the plain prompt, have different denot at ions.

The first term invokes cent rol twice, whereas the sec-

ond does it just once.

A new form of prompt, (% M M), that takes a han-

dler expression as an additional parameter solves this

mismatch.3 The additional subexpression is a han-

dier. If the first subexpression returns without any

control incident, the prompt does nothing. However,

a control-application inside a prompt sends both re-

ceiver and continuation to the handler, which is then

invoked on them in a fresh prompt with the same

handler. A program is always run within an initial

prompt with the identity handler, A $, k. f k.

This extended prompt can

distinguish the two terms above as follows. Letting

H E Y(Ah.Af, k.l+(%(fk)h)), the programs

% (control (M.r3’)) H

and

% (control (M.control (Ak.r3’))) H

yield 4 and 5 respectively.

The function strip in Figure 5 reflects the effect of

the handler in addition to the prompt’s control de-

limiting aspect. On encountering a receiver aa an

argument, strip supplies the identity function as the

functional continuation to the composition of the han-

dler and the receiver, and awaits the result for further

receivers that may turn up.

The semantic clause for a prompt-expression and

the semantic function %; for complete programs is

shown in Figure =5.

The parallel-if construct for PS+control undergoes

the same change as for PS+abort to address control

action in its branches. Further, a predicate control?

is defined along the same lines as abort?.

The model for PS+control+pif is fully abstract,

provided the language is enhanced with the prompt-

with-a-handler. The related languages PS+call/cc

and PS+C go through in like fashion.

Theorem 4.3 1. The extended direct model

with domain Dc is fully abstract for

PS+control+pif+%.

3Bruce Dubs ~uggested prompts with han~ers.

2.

3.

An extended direct model is fully abstract for

PS+call/cc+pif+%.

An extended direct model is fully abstract for

PS+C+pif+%.

The proof is as for PS and PS+abort, with special

care taken for receiver denotations. One interesting

consequence of having the enhanced prompt is that

it dissolves the differences between the control oper-

ators. Each pair of prompt and control operator can

simulate any other pair. Thus, the extended direct

model demands a delimiter that compensates for the

drawbacks of the particular control operator in the

language.

5 Related Work

Previous studies on the relationship between direct

and continuation semantics [19, 21, 24] rely on re-

traction functions, and do not furnish the projec-

tion/injection maps supported by extensible direct

models. — The Vienna School of denotational se-

mantics [2, 3] treats gotos in a first-order imper-

ative setting using an extension of a direct seman-

tics, but contains no investigation of the formal as-

pects of these models or their relationship to direct

models. — Felleisen and Cartwright’s work on ex-

tended direct semantics [8] introduces the extension

technique aa a generalized mechanism to accommo-

date a variety of language extensions and studies the

projection relations between their models. However,

they do not seek extensions with a view to full ab-

straction. — The local reduction rules for C and

cent rot [9, 10] motivated the work on the denot ational

framework of extended direct models. Indeed, they

are the operational counterpart of the apply clauses

for

for

6

In

the denotations of receivers in the extended model

Ps+x.

Conclusions

this study, we investigated fully abstract, ex-

tended direct models for the purely functional subset

of Scheme and its cent rol extensions. In particular,

studying the correspondence between the meanings

of language phrases in the model and the observable

effect that these phrases have in complete programs

both pinpoints and suggests remedies for deficiencies

in the language design.

The direct models for the extended languages are

the extensions of the basic direct model for pure

PS. Projections connect the basic model and its
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extensions. All the models are fully abstract for

their respective languages, provided the latter contain

parallel-if and, in the case of the control extensions,

a suitable control delimiter.

The new form of the control delimiter not only con-

strains control action but also invokes a handler pro-

cedure for every control-application in its dynamic ex-

tent. Such prompts allow easy implementations and

form a powerful generalization of existing exception

handling mechanisms.
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A Domains as information sys-

tems

This work approaches the construction of reflexive

domains using Scott’s information systems [20]. The

following outlines the definition of such domains from

finite sets of propositions, constructions of domains

from other domains, and their salient properties.

Information systems

An information system is a structure

(D, A, Con, fi)

where

● D is a set of data objects or propositions;

● A is the [east informative member of D;

● Con is a set of finite subsets of D, the finite con-

sistent sets of propositions; and

. t--, entailment, is a binary relation on Con.

The set of consistent propositions and the entailment

relation satisfy the following properties:

Properties of Con:

● if u ~ v G Con, then u c Con;

● if X c D, then {X} c Con;

oifu~v, then uUv ECon;

Properties of ~:

. if u E Con, then u +{ A};

●ifu EConandu~v, then u~v;

.ifu~vandv~w, then u~w.

The elements of the information system

A = (’DA, AA, ConA, fi~)

are all those subsets z of DA such that:

● all finite subsets of z are in ConA;

e if, a finite (i. e., E ConA) u G z and u t v, then

vgz;

The deductive closure ~ of an element u G Conn is

the union of all v G ConA such that u ~~ v: From

the definition of the elements of A, if u E ConA, then

EEA.

The class of domains studied here are exclusively

information syst ems. A domain element is thus a

deductively closed (closed under I---) and consistent

(all its finite subsets are in Con) set of propositions.

The subset relation forms an ordering relation (~) be-

tween the domain elements. The information-system-

as-domain with its ordering relation G is a complete

partial order.

Domain properties

Finite elements: A domain element d E A is jinite

if for all directed subsets (d.s.) X ~ A, d ~-U X

implies d ~ e for some e E X.

Alternately, an element is finite if it is the de-

ductive closure (d.c.) li for some u G ConA. The

two definitions are equivalent.

Minimal representations of finit e elements: A

minimal representation (it need not be unique)

of a finite element d is a finite consistent set

u E cOf’IA such that d = E and for any v E COnA,

if d = 5 and u p-- v, then u C v. For function do-

mains, minimal represent at;ons form a succinct

finite description of the finite elements. Most

proofs involving finite elements need only con-

sider their minimal representations.

Algebraicit y: A domain A is algebraic if for any x E

A, the set {d I d is finite and d ~ z} is directed

with x as its Iub.

Consistent completeness: A domain is consis-

tently complete if two elements with an upper

bound also have a least upper bound.

Domain constructions

Information systems provide a succinct description of

various domain constructions, including /ifiing, dis-

joint unions, function spaces, and reflexive domains.
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/11: Lifiing a domain A adds a new bottom to the

space. The set of propositions DA ~ is DA U

{AAL}, where the new l.i.m. A~4 is consistent

with all the original propositions.

N: The traditional cpo of natural numbers. The set

of propositions corresponding to N treated as an

information system “ ——

{AN, 0,1,2,.. .}, with no t~o ele~nts being

consistent unless one of them is AN.

A @ El: This is the disjoint union domain of A and

~. The propositions in VA~~ are of the form

DA@~ =

1
{inL(X) I X G DA}

the left subdomain

U{inR(Y) I Y GDB}
the right sub domain

u {-LA@B}

a new least inform.

member

A proposition in the left subdomain is always in-

consistent with a proposition in the right subdo-

main. Within the propositions stemming from

one of the constituent domains, the entailment

relation ~A~~ is exactly that domain’s entail-

ment relation, viz., &A or ~~ respectively.

A + El: This is the function domazjt from A to B.

The set of propositions DA+~ consists of pairs

(u, v) where u G ConA and v G Con~. The least

informative member AA+~ is (Q5, 0).

The set w = {.. . , (ui, vi), . ..} belongs to

corm.+~ iff

(forQeJ”’})ECOnA

implies

( )u {W} E Corm.
for the smne z’s

A finite function c E A + El hss a minimal rep-

resentation w, where w E ConA+~ and G = c.

A finite step function (a* b) E A -+ B, where

a G A and b CEEl are finite elements, is the func-

tion that takeg anything dominating a to b and

everything else to 1. A function c 6 A + B can

thus be represented more directly as the Iub of a

finite number of step functions (rather than data

objects) approximating it:

c=. . .Uai+bi u....

A ~. B: This is the strict function domain from A to

B. The construction is as above with the restric-

tion that if w = {.. .,(u~, v~)} ...} e ConA_,~,

then @ *A ‘u~ implies @ ~~ ‘Vi.

Reflexive construct ions: A reflexive domain is

one that satisfies an equation such as, e.g.,

DHA(B(D--+D),

where D cent ains some at omit values and all the

functions on itself. To construct the informa-

tion system D, given A, the usual methods for @

and ~ are followed, but the constructions of sets

of propositions and the set of consistent proposi-

tions interlace as foilows:

1. inR((u, v)) G DD if u,v E Con~;

2. {.. .,inR(u v),, , ,...} G COnD ifinR(w, v~) G
% and

implies

( u ){vi} c Con~,

for the satne i’s

All domain constructions preserve consistent com-

pleteness and algebraicity.

Environments

The semantic function M that maps language phrases

to denotations uses an auxiliary argument, the envi-

ronment. An environment is a map from a finite set of

variables to domain values. The not at ion 1 denotes

the empty environment. The lookup p[z] denotes

the image of z in the environment p. Extending an

environment p to include the map z * v gives the

environment p[z/v]. Both these operations are strict,

and hence, in particular, it is impossible to extend an

environment with the map z * 1.
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