
Abstraction of Assembler Programs for
Symbolic Worst Case Execution Time Analysis

Tobias Schuele
Tobias.Schuele@informatik.uni-kl.de

Klaus Schneider
Klaus.Schneider@informatik.uni-kl.de

Reactive Systems Group, Department of Computer Science, University of Kaiserslautern
P.O. Box 3049, 67653 Kaiserslautern, Germany

ABSTRACT
Various techniques have been proposed to determine the worst case
execution time of real–time systems. For most of these approaches,
it is not necessary to capture the complete semantics of the system.
Instead, it suffices to analyze an abstract model provided that it re-
flects the system’s execution time correctly. To this end, we present
an abstraction technique based on program slicing that can be used
to simplify software systems at the level of assembler programs.
The key idea is to determine a minimal set of instructions such that
the control flow of the program is maintained. This abstraction
is essential for reducing the runtime of the analysis algorithms, in
particular, when symbolic methods are used to perform a complete
state space exploration.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]: Real-
time and embedded systems; C.4 [Performance of Systems]: Mea-
surement techniques, modeling techniques

General Terms
Performance, Algorithms, Verification

Keywords
Real–time systems, worst case execution time, abstraction, pro-
gram slicing, assembler programs, symbolic simulation

1. INTRODUCTION
The tight analysis of reaction times is a major criterion in the de-
sign of embedded systems. In particular, safety critical applica-
tions often require that certain tasks must be completed before a
strict deadline. To this end, a variety of methods to estimate the
worst case execution time (WCET)[23] of real-time systems have
been proposed. State of the art approaches use different techniques
like abstract interpretation [7, 8, 26], symbolic execution [14, 16],
special restrictions on loops [9], computer algebra [1], and integer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’04,June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

linear programming [11]. There are even frameworks that take into
account pipeline effects and cache behavior [8, 12, 13, 20, 26].

Usually, one distinguishes between two approaches: thehigh–
leveland thelow–levelWCET analysis [6]. High–level analysis is
applied to an architecture independent description of the system to
obtain approximate timing estimates in early design phases. For
example, in hardware/software codesign, WCET analysis provides
the designer with information to decide which parts of the system
should be implemented in hardware. At this stage, the primary goal
is to quickly get a rough estimate of the worst case execution time
without particular demands on accuracy and tightness.

In contrast, low–level analysis is performed in late design phases.
Thus, it depends on the hardware/software partitioning and on the
chosen architecture. At this stage, tight and safe estimates are
mandatory to ensure that all requirements on the timing are met.
For this reason, WCET analysis must be performed at least at the
level of assembler programs. Assembler programs do not only take
into account the instruction set architecture of the target, but also
provide a unifying framework for different design flows which is
independent of high–level languages and tools.

The major problem of a tight WCET analysis is that the maximal
number of computation steps, in particular, the number of iterations
of loops, may heavily depend on the input data. For this reason,
most approaches require that the programmer specifies an upper
bound on the number of loop iterations. For nontrivial programs,
this is an error-prone task and can lead to rather pessimistic WCET
estimates [6].

To solve these problems, symbolic methods have been proposed
that compute tight bounds on the execution time [15, 25]. In con-
trast to [1, 14, 16], these methods perform a complete state space
exploration using implicit set representations. However, symbolic
methods can be very time consuming since they explore all possible
computations.

In this paper, we present a novel technique to speed up symbolic
WCET analysis. Using this technique, it is possible to derive an
abstract model from a given program that can be analyzed much
more efficiently. The idea behind our approach is that we are not
interested in the complete semantics of a program, but merely in
its worst case execution time. In other words, we can eliminate
instructions that do not affect the program’s execution time.

In general, the elimination of parts of a program is calledpro-
gram slicing[27]. Using program slicing, we can determine those
instructions that do not affect the control flow of the program. For
that purpose, we introduce the notion of relevant registers. A reg-
ister is called relevant if it eventually affects a branch. In this way,
we are able to determine a minimal set of instructions that are nec-
essary to maintain the control flow of a program.

9.1

107

Our approach offers the following advantages:

• Fully automatic, i.e., no manual interaction required.
• Independence of the design flow by considering assembler

programs.
• Accuracy (the number of executed instructions is guaranteed

to be the same for the original and the abstracted program).
• Easily adaptable to different architectures by using generic

frameworks for representing and analyzing programs.

On the one hand, our abstraction technique is related to code op-
timization techniques used in compilers [19]. On the other hand,
there are some fundamental differences: Many methods such as
dead–code elimination aim at improving the execution time of a
program without changing its semantics. In contrast, our method
must notchange the execution time, but it may alter the semantics.

In the next section, we sketch the symbolic approach to WCET
analysis. Then, we describe our abstraction technique (Section 3)
and present experimental results (Section 4). We conclude with a
summary and directions for future work (Section 5).

2. PRELIMINARIES
In this section, we briefly describe how the worst case execution
time of assembler programs can be determined by means of sym-
bolic state space exploration. We start with the translation of as-
sembler programs to transition systems which is important for our
abstraction procedure. For more detailed information, the reader is
referred to [25].

Transition systems are a framework for modeling finite and infi-
nite state processes. In general, a transition system consists of a set
of states and a transition relation. The states represent the config-
urations of a process and the transition relation describes possible
computations. In timed transition systems [15], each transition is
labeled with a weight that represents the time units required to take
the transition.

Given an assembler program, the states can be interpreted as
variable assignments that represent the current values of the pro-
cessor’s registers. As the program proceeds with its execution, it
changes some of the register contents and therefore, we have a new
assignment at the next point of time. Hence, we can represent the
transition relation of a program by a formula over a set of variables
V ∪ V ′ whereV andV′ are the register contents of the current and
the next state, respectively.

Assume that for each register we have an associated pair of vari-
ablesr andr′ that denote the current and the next register value,
respectively. In particular, letpc andpc′ be two variables that rep-
resent the program counter. Moreover, letP = I1, . . . , In be the
program to be modeled such that instructionIi is located at mem-
ory addressA(Ii). Then, a symbolic description of the transition
relationR can be obtained as follows whereS(Ii) defines the se-
mantics of an instructionIi:

R :≡
n_

i=1

((pc = A(Ii)) ∧ S(Ii))

In order to execute a program symbolically, we have to compute
the successors for a set of states. As usual in symbolic methods,
this can be performed by intersection, existential quantification,
and variable substitution [5]. Since all inputs are considered at
once during image computation, we can traverse the state space
in a breadth first manner where at each step all successor states are
explored simultaneously.

Besides the transition relation, we also need a set of initial states
I and a set of final statesF . The initial states specify the first

instruction to be executed and the initial register contents where
preconditions can be used to restrict the set of possible inputs. Final
states are those states where the program counter points to the last
instruction (e.g.,return from subroutine).

The worst case execution time of a program is given by the
longest path betweenI andF . For ordinary transition systems,
the length of a path is simply the number of transitions. For timed
transition systems, the length of a path is the sum of its weights.
Note that the length of a path is only well-defined if the transition
relation is acyclic. Otherwise, there exists at least one infinite path
which means that the program does not terminate for all input val-
ues. In this case, the worst case execution time is infinite.

In the sequel, we consider the MIPS32 instruction set architec-
ture which defines a well-structured and powerful instruction set
[18]. Table 1 shows the semantics of some selected instructions.1

The functionC ensures that registers, which are not affected by an
instruction, remain unchanged:

C(R) :≡
^

r∈W

(r′ = r) with W = V\(R ∪ {pc})

As an example, Figure 1 shows the translation of a MIPS assembler
program to a transition system where$i denotes registerri.

while y > 0 do
t := x ⊕ y;
y := 2 × (x ∧ y);
x := t;

end

I1 : AND $2, $3, $4
I2 : XOR $3, $3, $4
I3 : SLL $4, $2, 1
I4 : BNE $4, $0, -3

R :≡ W4
i=1((pc = A(Ii)) ∧ S(Ii))

I :≡ (pc = A(I1)) ∧ (0 ≤ r3 < 232) ∧ (0 ≤ r4 < 232)
F :≡ (pc > A(I4))

S(I1) = (r′2 = r3 ∧ r4) ∧ (pc′ = pc + 4) ∧ C({r2})
S(I2) = (r′3 = r3 ⊕ r4) ∧ (pc′ = pc + 4) ∧ C({r3})
S(I3) = (r′4 = r2 × 2) ∧ (pc′ = pc + 4) ∧ C({r4})
S(I4) = ((r4 �= 0) ⇒ (pc′ = pc + 4 × (−3)) |

(pc′ = pc + 4)) ∧ C(∅)

0/0
3/4

4/0
3/4

8/0
7/4

12/0
7/0

16/0
7/0

...

0/0
5/2

4/0
5/2

8/0
7/2

pc/r2
r3/r4

Figure 1: Sample program and transition system

In practice, we need a suitable logic as the basic formalism for rep-
resenting transition systems by means of the above equations. In
particular, the logic should be decidable to obtain automatic tools.
In [25] we used Presburger arithmetic [22] as the base logic to cap-
ture the semantics of assembler programs at a high level of abstrac-
tion. Presburger arithmetic is a decidable subset of the theory of
natural numbers where multiplication is not allowed as a single op-
eration. However, multiplication can be accomplished iteratively
by shifting and addition.
1Conditional expressions are denoted byx ⇒ y | z.

108

Table 1: Semantics of selected MIPS32 instructions

Instruction(I) Description Semantics(S(I))

LW rt, c(rs) load word (r′
t = Mrs+c) ∧ (pc′ = pc + 4) ∧ C({rt})

SW rt, c(rs) store word (M ′
rs+c = rt) ∧ (pc′ = pc + 4) ∧ C(∅)

ADDI rt, rs, c add immediate (r′t = rs + c) ∧ (pc′ = pc + 4) ∧ C({rt})
SUB rd, rs, rt subtract (r′

d = rs − rt) ∧ (pc′ = pc + 4) ∧ C({rd})
SLT rd, rs, rt set on less than ((rs < rt) ⇒ (r′d = 1) | (r′d = 0)) ∧ (pc′ = pc + 4) ∧ C({rd})
AND rd, rs, rt and (r′d = rs ∧ rt) ∧ (pc′ = pc + 4) ∧ C({rd})
SLL rd, rt, sa shift left logical (r′

d = rt × 2sa) ∧ (pc′ = pc + 4) ∧ C({rd})
BEQ rs, rt, c branch on equal ((rs = rt) ⇒ (pc′ = pc + 4 × c) | (pc′ = pc + 4)) ∧ C(∅)
NOP no operation (pc′ = pc + 4) ∧ C(∅)

In contrast to the original definition, we interpret the logic over the
integers rather than over the natural numbers. Furthermore, we em-
ploy logical operations on numbers since these are common to all
instruction set architectures and frequently used in assembler pro-
grams. From a theoretical point of view, one can model every pro-
gram as a transition system using Presburger arithmetic, since one
can simulate register machines [17] in this way. From a practical
point of view, the formalization of most instruction sets is straight-
forward using Presburger arithmetic.

It is well-known that every Presburger formula can be translated
to a finite automaton that encodes its models [2, 4, 28]. Finite au-
tomata are an efficient data structure for storing and manipulating
large sets during symbolic simulation. As there exists for every
finite automaton an equivalent minimal one, automata can be used
as canonical representations for Presburger formulas. This is analo-
gous to the use of binary decision diagrams [3] as canonical normal
forms for propositional logic.

3. ABSTRACTION
Using the techniques described in the previous section, we are able
to compute tight bounds on the worst case execution time of as-
sembler programs. However, this can be very time consuming and
therefore, we present an abstraction technique that can be used to
simplify the programs prior to WCET analysis. As mentioned pre-
viously, the key idea of our method is to identify and eliminate
those instructions that do not affect the control flow of a program.

Consider for example the program shown in Figure 2 which mul-
tiplies two natural numbersx andy. Since the control flow, i.e., the
loop condition and the if–statement, only depends on the value ofy,
we do not need to compute the productp in order to determine its
execution time. As a consequence, computing the new value forx
at each iteration is also dispensable.

p := 0;
while y �= 0 do

if y mod2 = 1 then
p = p + x;

end;
x := x · 2;
y := y / 2;

end;

Figure 2: Multiplication of natural numbers

Let us now consider the assembly code for the above algorithm
(Figure 3). For the moment, we assume without loss of general-
ity that all instructions are executed in a single cycle. Then, the

instructions that computep andx can be replaced with NOPs with-
out affecting the execution time. In Section 3.3, we will present a
more general technique that does not replace redundant instructions
with NOPs, but simplifies their semantics such that the execution
time of an instruction is retained. In this way, we are able to model
multi-cycle instructions and to take into account pipeline hazards.

MOVE $3, $0 // p := 0
L1 : BNE $2, $0, L2 // y != 0 => L2

J $31 // return
L2 : ANDI $4, $2, 1 // r4 := y mod 2

BEQ $4, $0, L3 // r4 = 0 => L3
ADDU $3, $3, $1 // p := p + x

L3 : SLL $1, $1, 1 // x := x * 2
SRL $2, $2, 1 // y := y / 2
J L1 // => L1

Figure 3: Assembler program for Figure 2

It is important to note that the size of a program’s transition relation
and the state sets do not primarily depend on the number of instruc-
tions, but on the amount of information they encode. In particular,
symbolic WCET analysis can be performed much more efficiently
if the transition relation contains only necessary information.

3.1 Program Representation
Before we describe our abstraction algorithm in detail, we need the
notion of Kripke structures to model the control flow of assembler
programs.

DEFINITION 1 (KRIPKE STRUCTURE). Let V be a finite set
of variables. A Kripke structureK = (S ,R,L) is a transition
system whereS is the set of states,R ⊆ S × S is the transition
relation, andL : S → 2V is a labeling function that maps each
state to a set of variables.

Given a programP = I1, . . . , In, we construct a Kripke structure
K = (S ,R,L) such that each state represents exactly one instruc-
tion, i.e.,S = {s1, . . . sn}. The transition relation2 is defined as
follows:

• (si, si+1) ∈ R ⇔ Ii is not a jump
• (si, sj) ∈ R ⇔ Ii is a branch or a jump andIj is the target

instruction

2Note that a transition system as described in Section 2 represents
the complete semantics of a program. In contrast, a Kripke struc-
ture as defined above only represents those parts of a program that
are relevant for the abstraction algorithm.

109

Let V = {b, i1, . . . , i31, o1, . . . , o31} be the set of variables, then
we have for the labeling function:

• b ∈ L(si) ⇔ Ii is a branch or a jump
• ik ∈ L(si) ⇔ Ii reads registerrk (input)
• ok ∈ L(si) ⇔ Ii writes registerrk (output)

Figure 4 shows the Kripke structure for our sample program. In
the MIPS instruction set architecture, registerr0 is always zero and
can hence be treated as a constant [18].

s1 {o3} MOVE $3,$0

s2 {b, i2} L1 : BNE $2,$0,L2

s3 {b} J $31

s4 {i2, o4} L2 : ANDI $4,$2,1

s5 {b, i4} BEQ $4,$0,L3

s6 {i1, i3, o3} ADDU $3,$3,$1

s7 {i1, o1} L3 : SLL $1,$1,1

s8 {i2, o2} SRL $2,$2,1

s9 {b} J L1

Figure 4: Kripke structure for Figure 3

3.2 Computation of Relevant Registers
As the next step, we have to identify those computations that main-
tain the control flow of a program. To this end, we determine for
each register a set of instructions for which the register isrelevant.
A registerrk is relevant for an instructionIi if

(1) rk is an operand ofIi andIi is a branch,
(2) rk is an operand ofIi and the results ofIi are relevant for

one of its successors,
(3) rk is not written byIi but it is relevant for one of its succes-

sors.

For example, registerr4 is relevant for instructionI5 sincer4 is an
operand ofI5 andI5 is a branch, i.e., the outcome of the branch
depends on the content ofr4.

In the following, we use theµ–calculus [10, 21] to compute the
set of registers that are relevant for an instruction. Given a Kripke
structureK = (S ,R,L), a variablev with v ∈ V holds in a state

s ∈ S iff v ∈ L(s). This is naturally extended to the Boolean
operators. The formula✸ϕ holds in a states ∈ S iff there exists
ans′ ∈ S such that(s, s′) ∈ R andϕ holds ins′. The set of states
where a formulaϕ holds is usually denoted as�ϕ�K.

The rules (1) – (3) can then be expressed by a system of equa-
tionsR1, . . . , R31 whereRk represents the set of instructions for
which registerrk is relevant:

R1
µ
= i1 ∧ (b ∨ W31

i=1(oi ∧ ✸Ri)) ∨ (¬o1 ∧ ✸R1)
...

R31
µ
= i31 ∧ (b ∨ W31

i=1(oi ∧ ✸Ri)) ∨ (¬o31 ∧ ✸R31)

Since we are interested in an optimal solution, we compute the least
solutions forRk. Thus,�Rk�K denotes the minimal set of states
(instructions) for which registerrk is relevant. The solution of the
equation system can be computed using Tarski’s fixpoint theorem
in timeO(n2) wheren is the number of instructions [24].

More precisely, for each equation we have a set that contains the
current solution. At the beginning, all the sets are empty. During
the fixpoint iteration the right-hand sides of the equations are evalu-
ated and the new solutions are stored in the corresponding sets. The
evaluation of a✸ operator is simply accomplished by determining
the set of predecessor states.

PROPOSITION 1. The fixpoint iteration for computing relevant
registers by means of the given equation system terminates.

Proof According to Tarski’s fixpoint theorem, it suffices to show
that the right-hand sides of the equations are monotonic. Since
none of theRi’s occurs complemented in any of the equations,
monotonicity is guaranteed. ✷

For the program of Figure 3, we obtain the following solution:

�R1�K = ∅
�R2�K = {s1, s2, s4, s5, s6, s7, s8, s9}
�R3�K = ∅
�R4�K = {s5}
�R5�K = ∅

...
�R31�K = ∅

3.3 Elimination of Redundant Instructions
Now we are able to identify redundant instructions and to replace
them with NOPs. More precisely, an instructionIi can be replaced
with a NOP iffIi is not a branch (jump) and its result is not relevant
to any successor instructions:

N = ¬b ∧ ¬W31
i=1(oi ∧ ✸Ri)

Figure 5 shows the simplified assembler program for the algorithm
of Figure 2 withN = {s1, s6, s7}.

The above techniques aim at reducing the complexity of a pro-
gram’s transition relation to speed up symbolic WCET analysis.
However, replacing redundant instructions with NOPs is not an op-
timal solution for that purpose. This is due to the fact that NOPs
apply the identity function to each register which is superfluous for
irrelevant registers.

Moreover, replacing an instruction with a NOP is only possible if
we presuppose that all instructions are executed in the same amount
of time. As mentioned previously, a more general solution is to
modify the instruction semantics, such that only relevant registers
are considered.

110

Table 2: Results and runtimes of WCET analysis

Benchmark 8 Bits 16 Bits 24 Bits
WCET Time [s] WCET Time [s] WCET Time [s]

w/o abs. with abs. w/o abs. with abs. w/o abs. with abs.
SquareRoot 97 0.25 0.23 1537 16.24 15.77 24577 826.04 806.57
RussMult 60 > 1h 0.19 116 > 1h 1.70 172 > 1h 7.80
Booth 84 > 1h 0.58 160 > 1h 6.06 236 > 1h 30.12
Fibonacci 1530 1115.59 2.88 393210 > 1h 3331.45 − > 1h > 1h
DCT 716 − 0.36 716 − 0.36 716 − 0.36
MatrixMult 402755 − 265.61 402755 − 265.61 402755 − 265.61

NOP
L1 : BNE $2, $0, L2 // y != 0 => L2

J $31 // return
L2 : ANDI $4, $2, 1 // r4 := y mod 2

BEQ $4, $0, L3 // r4 = 0 => L3
NOP

L3 : NOP
SRL $2, $2, 1 // y := y / 2
J L1 // => L1

Figure 5: Assembler program after abstraction

Let Xi andX′
i be the set of irrelevant registers for instructionIi

and its successors, respectively, with

Xi = {rk | si �∈ �Rk�K}
X ′

i = {r′k |¬∃sj ∈ S . (si, sj) ∈ R ∧ sj ∈ �Rk�K}.
Then, the simplified transition relation is obtained as follows (cf.
Section 2):

R :≡
n_

i=1

((pc = A(Ii)) ∧ (∃Xi, X
′
i . S(Ii)))

Existentially quantifying over the variables inXi andX′
i means

that irrelevant registers can change their contents arbitrarilydur-
ing a transition. As a result, the transition relation is simplified
even more than with NOPs. In addition, this approach is also ap-
plicable to timed transition systems [15], since it does not change
the transition weights that represent the time units required to take
a transition.

For example, consider the fourth instruction of the program shown
in Figure 3:

I4 : ANDI $4, $2, 1

Sincer2 is the only relevant register forI4 (s4 is only contained in
R2), we haveX4 = {r1, r3, . . . , r31}. For instructionI5, the suc-
cessor ofI4, the registersr2 andr4 are relevant and hence, we get
X ′

4 = {r′1, r′3, r′5, . . . , r′31}. Thus, we have for the corresponding
part of the transition relation:

(pc = A(I4)) ∧ (∃r1, r3, . . . , r31, r
′
1, r

′
3, r

′
5, . . . , r

′
31 . S(I4))

4. EXPERIMENTAL RESULTS
To evaluate our approach, we implemented the algorithms and ap-
plied them to some benchmarks. All experiments were performed
on an AMD Opteron processor with 2 GHz clock frequency. The
benchmarks were written in C and compiled3 with the GNU C-
compiler to obtain assembly code for the MIPS R3000 family.
3Code optimization was enabled using option -O2.

Table 2 shows the results for different inputs given as preconditions
of the form0 ≤ x < 2n and−2n/2 ≤ x < 2n/2, respectively.
The worst case execution times are given as number of executed
instructions. For all the benchmarks, abstraction was performed in
less than one second which is negligible in most cases compared to
the time for WCET analysis.

For the first benchmark program (square root), abstraction did
not yield a significant improvement. This is not a problem, since
it can be analyzed in acceptable time without abstraction. For the
RussMult and the Booth benchmark, the situation is different. For
these programs, WCET analysis could not be performed in less than
one hour without abstraction. Using our abstraction technique, the
runtimes are reduced to less than one minute.

The runtimes for the Fibonacci benchmark could be reduced
from 1300 to 6 seconds for 8 bit wide numbers. Nevertheless, it
is hardly tractable for larger inputs since its execution time is expo-
nential in the input size.

The execution times of the last two benchmarks are independent
of the input data, and hence, the results are the same for differ-
ent bitwidths. For these programs abstraction is essential to obtain
tight bounds, since our algorithms do not support multiplication as
a single operation. This is due to the fact that Presburger arithmetic
would otherwise be undecidable. However, using abstraction the
multiplication operations were eliminated and the programs could
be analyzed in less than one and twelve minutes, respectively.

Note that multiplication operations can be replaced with succes-
sive shift operations and additions. In this case, WCET analysis is
possible without abstraction. However, this increases the number
of executed instructions and thus requires timed transition systems
to avoid overestimation.

5. SUMMARY AND CONCLUSION
We presented an abstraction technique based on program slicing
that can be used to simplify assembler programs prior to WCET
analysis. Abstraction is important for symbolic methods that per-
form a complete state space exploration to obtain tight bounds on
the worst case execution time. Tight estimates are essential for core
routines which are frequently called and contribute to a large part to
the total execution time, e.g., interrupt service routines of real–time
operating systems and inner loops.

Our approach is based on the observation that the high complex-
ity of symbolic methods is largely due to computations that are
irrelevant with respect to a program’s control flow. Such compu-
tations can be eliminated without affecting the number of executed
instructions. To this end, a minimal set of instructions is deter-
mined that are necessary to maintain the control flow. Experimen-
tal results show that abstraction significantly reduces the runtime
of WCET analysis. For some programs, abstraction is mandatory
to prevent an exponential blow–up during symbolic simulation.

111

As a major advantage, our method is fully automatic and does not
require manual interaction or annotation of the programs to be an-
alyzed. Moreover, it is independent of the design flow by con-
sidering assembler programs and it is easily adaptable to various
instruction set architectures. However, it does not aim at determin-
ing cycle accurate timing estimates. In particular, we do not yet
consider superscalar execution and cache memories. Since the lat-
ter can have significant impact on the worst case execution time,
various approaches have been proposed to incorporate cache be-
havior into WCET analysis [8, 12, 20]. We believe that the best
results are achieved by a combination of different methods. To this
end, our approach can be extended such that not only the control
flow of a program, but also its memory behavior is preserved. In
other words, the abstraction rules can be modified such that load
and store instructions are not eliminated.

As another approach, one could use our method to determine the
number of times a loop is executed. Recall, that symbolic methods
yield tight estimates even if the number of iterations depends on the
input data. Then, cycle accurate techniques for WCET analysis can
be used to estimate the execution time of the loop body. In this way,
it is possible to obtain precise bounds on the worst case execution
time of data dependent loops.

6. REFERENCES
[1] G. Bernat and A. Burns. An approach to symbolic worst-case

execution time analysis. InWorkshop on Real-Time
Programming, Palma, Spain, 2000.

[2] A. Boudet and H. Comon. Diophantine equations, Presburger
arithmetic and finite automata. In H. Kirchner, editor,Trees
in Algebra and Programming (CAAP), volume 1059 of
LNCS, pages 30–43, Linköping, Sweden, 1996. Springer.

[3] R. Bryant. Graph-based algorithms for Boolean function
manipulation.IEEE Transactions on Computers,
C-35(8):677–691, August 1986.

[4] J. Büchi. On a decision method in restricted second order
arithmetic. In E. Nagel, editor,International Congress on
Logic, Methodology and Philosophy of Science, pages 1–12,
Stanford, CA, 1960. Stanford University Press.

[5] O. Coudert, C. Berthet, and J. Madre. Verification of
synchronous sequential machines using symbolic execution.
In Workshop on Automatic Verification Methods for Finite
State Systems, volume 407 ofLNCS, pages 365–373,
Grenoble, France, June 1989. Springer.

[6] J. Engblom, A. Ermedahl, M. Sjödin, J. Gustafsson, and
H. Hansson. Towards industry strength worst-case execution
time analysis. ASTEC Technical Report 99/02, Uppsala
University, Sweden, 1999.

[7] A. Ermedahl and J. Gustafsson. Deriving annotations for
tight calculation of execution time. InInternational
European Conference on Parallel Processing (EuroPar),
volume 1300 ofLNCS, pages 1298–1307, Passau, Germany,
1997. Springer.

[8] C. Ferdinand and R. Wilhelm. Fast and efficient cache
behavior prediction for real-time systems.Real-Time
Systems, 17(2/3), 1999.

[9] C. Healy, R. van Engelen, and D. Whalley. A general
approach for the tight timing predictions of non-rectangular
loops. InReal-Time Technology and Applications
Symposium, 1999.

[10] D. Kozen. Results on the propositionalµ-calculus.
Theoretical Computer Science, 27:333–354, December 1983.

[11] Y.-T. S. Li and S. Malik. Performance analysis of embedded
software using implicit path enumeration. InDesign
Automation Conference (DAC), pages 456–461, 1995.

[12] Y.-T. S. Li and S. Malik.Performance Analysis of Real-Time
Embedded Software. Kluwer, 1999.

[13] S.-S. Lim, Y. H. Bae, G. T. Jang, B.-D. Rhee, S. L. Min, C. Y.
Park, H. Shin, K. Park, and C. S. Kim. An accurate worst
case timing analysis for RISC processors.IEEE Transactions
on Software Engineering, 21(7):593–604, 1995.

[14] Y. Liu and G. Gomez. Automatic accurate time-bound
analysis for high-level languages. InLanguages, Compilers
and Tools for Embedded Systems (LCTES), 1998.

[15] G. Logothetis and K. Schneider. Exact high level WCET
analysis of synchronous programs by symbolic state space
exploration. InDesign, Automation and Test in Europe
(DATE), pages 196–203, Munich, Germany, March 2003.
IEEE Computer Society.

[16] T. Lundqvist and P. Stenström. Integrating path and timing
analysis using instruction-level simulation techniques. In
Languages, Compilers and Tools for Embedded Systems
(LCTES), 1998.

[17] M. Minsky. Computation: Finite and Infinite Machines.
Prentice Hall, Englewood Cliffs, New Jersey, 1967.

[18] MIPS Technologies. Website, 2003. http://www.mips.com.
[19] S. S. Muchnick.Advanced Compiler Design and

Implementation. Morgan Kaufmann Publishers, San
Francisco, California, 1997.

[20] F. Mueller, D. Whalley, and M. G. Harmon. Predicting
instruction cache behavior. InACM SIGPLAN Workshop on
Language,Compiler, and Tool Support for Real-Time
Systems, 1994.

[21] V. Pratt. A decidableµ-calculus. InSymposium on
Foundations of Computer Science (FOCS), pages 421–427,
New York, 1981. IEEE Computer Society.

[22] M. Presburger. Über die Vollständigkeit eines gewissen
Systems der Arithmetik ganzer Zahlen, in welchem die
Addition als einzige Operation hervortritt. In F. Leja, editor,
Sprawozdanie z I Kongresu Matematyków Krajów
Słowiańskich, pages 92–101, Warszawa, Skład Głowny,
1929.

[23] P. Puschner and C. Koza. Calculating the maximum
execution time of real-time programs.Real-Time Systems,
1(1):159–176, 1989.

[24] K. Schneider.Verification of Reactive Systems – Formal
Methods and Algorithms. Texts in Theoretical Computer
Science (EATCS Series). Springer, 2003.

[25] T. Schüle and K. Schneider. Exact runtime analysis using
automata-based symbolic simulation. InFormal Methods
and Models for Codesign (MEMOCODE), Mont
Saint-Michel, France, 2003. IEEE Computer Society.

[26] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise
WCET prediction by separate cache and path analyses.
Real-Time Systems, 18(2/3), May 2000.

[27] F. Tip. A survey of program slicing techniques.Journal of
Programming Languages, 3(3):121–189, 1995.

[28] P. Wolper and B. Boigelot. On the construction of automata
from linear arithmetic constraints. InConference on Tools
and Algorithms for the Construction and Analysis of Systems
(TACAS), volume 1785 ofLNCS, pages 1–19, Berlin, March
2000. Springer.

112

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

