
Specific Scheduling Support to Minimize the
Reconfiguration Overhead of Dynamically Reconfigurable

Hardware
Javier Resano, Daniel Mozos

Department of Computer Architecture (DACYA),

Universidad Complutense de Madrid, Spain

{javier1, mozos}@dacya.ucm.es

Diederik Verkest 1, 2, 3, Francky Catthoor 1, 2,
Serge Vernalde 1

1. IMEC vzw, Leuven, Belgium IMEC
2. Professor at Vrije Universiteit Brussel, Belgium

3. Professor at Katholieke Universiteit Leuven, Belgium
{Verkest, Catthoor, Vernalde}@imec.be

ABSTRACT

Dynamically Reconfigurable Hardware (DRHW) platforms
present both flexibility and high performance. Hence, they can
tackle the demanding requirements of current dynamic
multimedia applications, especially for embedded systems where
it is not affordable to include specific HW support for all the
applications. However, DRHW reconfiguration latency represents
a major drawback that can make the use of DRHW resources
inefficient for highly dynamic applications. To alleviate this
problem, we have developed a set of techniques that provide
specific support for DRHW devices and we have integrated them
into an existing multiprocessor scheduling environment. In our
experiments, with actual multimedia applications, we have
reduced the original overhead due to the reconfiguration latency
by at least 93%.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose and
Application-Based Systems – real-time and embedded systems.

General Terms

Algorithms, Management, Performance.

Keywords

Dynamic reconfigurable hardware, run-time scheduling.

1. INTRODUCTION

Current multimedia applications, such as digital video and 3D
games, present highly dynamic and non-deterministic behaviour,
and a very variable workload. To cope with these features, high
performance and flexibility are required. Moreover, for embedded
systems the amount of resources is highly constrained and, at the
same time, the number of applications that they have to support is
constantly increasing. Hence, it is infeasible to provide
Application Specific Integrated Circuits (ASICs) for all of them,

but on the other hand, Instruction Set Processors (ISPs) cannot
always provide the required performance. Hence, they need some
hardware support. Dynamically Reconfigurable Hardware
(DRHW) presents the ideal features to solve this problem, since it
provides both high performance and run-time flexibility. Thus, its
functionality can be updated at run-time to meet the variable
requirements of the running applications. In addition, current
commercial DRHW platforms (like FPGAs) have recently
included interesting new features such as partial reconfiguration
capabilities and support for IP design.
In order to take advantage of the DRHW features, dynamic task
allocation support and scheduling support are needed. To tackle
the dynamic task allocation to the DRHW resources, we have
adopted an Interconnection Network (ICN) model for the DRHW
[4]. This model provides not only task allocation support, but also
inter-task communication support (including HW/SW
communications), and operating system support. With this model
DRHW resources can be easily integrated in a heterogeneous
multiprocessor system since it presents a uniform view both for
the HW and SW resources. On top of this model, any existing
scheduler for multiprocessors systems can be applied. We have
selected an existing hybrid run-time/design-time scheduling
methodology called Task Concurrency Management (TCM) [9]
since it provides run-time flexibility and, at the same time, it
generates only a small run-time penalty due to its execution
because most of the exploration and computation is done at design
time. This methodology attempts to reduce the energy
consumption of the platform while meeting the real-time
constraints of the applications. Working together, the ICN model
and the TCM scheduling methodology provide the desirable
support to use DRHW in embedded systems. However, the run-
time flexibility of DRHW often comes at the price of a very large
reconfiguration overhead. For instance, reconfiguring one tenth of
a Virtex XC2V6000 requires at least 4 ms. This overhead is not
always acceptable for highly dynamic applications, since they
may demand reconfigurations every few milliseconds. Moreover,
multiprocessor schedulers for embedded systems often neglect
this overhead because, typically, a task can be loaded on a SW
processor in just a few microseconds as long as the task is stored
in its local memory. Hence, in order to tackle this large
reconfiguration overhead, DRHW resources need specific
scheduling support. The goal of our work is to drastically reduce
this reconfiguration overhead, making effective the use of partial
reconfiguration on DRHW resources even for those applications
that demand frequent partial reconfigurations. To this end, we

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC’04, June 7–11, 2004, San Diego, California, USA.
Copyright 1-58113-828-8/04/0006…$5.00.

9.3

119

have developed two different techniques, namely the prefetch-
scheduling technique and the replacement technique. The
prefetch-scheduling technique receives as input a set of tasks that
must be loaded and decides when they are going to be loaded,
attempting to hide the loading latency and taking into account the
inter-task dependencies. The replacement technique increases the
possibilities of reusing those subtasks that are more critical for the
system performance. We have integrated our techniques in the
TCM environment, and tested them with actual multimedia
applications including a highly dynamic 3D rendering application
where the reconfiguration overhead is reduced by at least 93%.

The rest of the paper is organized as follows; the next section
introduces the related work; section 3 presents our DRHW model;
section 4 explains our run-time scheduling flow; section 5 and 6
describe the replacement technique and the inter-task prefetch
technique; section 7 presents some experimental results and
finally section 8 summarizes our conclusions.

2. RELATED WORK
Previously, other research groups have addressed the
minimization of the reconfiguration overhead. Much of this work
proposes the development of new types of architectures, like
multi-context FPGAs and especially coarse-grain architectures
[2]. However, the reconfigurable market is still being clearly
dominated by the FPGAs, which are becoming more and more
broadly used in industry. For this reason we have selected FPGAs
to analyze the effectivity of our approach although it can be
equally applied to other architectures.

A very interesting approach to reduce the reconfiguration
overhead for FPGAs is found in the Ph. D. thesis of Zhiyuang Li
[11] where three techniques are proposed, namely configuration
compression, caching and prefetching. The first technique
compresses the configuration bits of a task to reduce their loading
latency. This technique is orthogonal with our approach. The
second technique, deals with the problem of allocating tasks in the
FPGA, trying to maximize their reuse. However, they assume that
a task can be placed anywhere in the FPGA which is not a
realistic assumption unless a very costly run-time routing process
would be performed each time that a new task is loaded. Finally,
the configuration prefetching technique attempts to hide the
latency of the load of a configuration by accomplishing this load
before it is needed. To this end, the next task to be executed is
predicted based on past events and profiled data. If the prediction
is a success, it is possible to hide at least partially its
reconfiguration latency; otherwise an erroneous configuration is
loaded with the consequent penalization. Although we share the
idea of applying a prefetch technique to reduce the
reconfiguration overhead, we are proposing a totally different
approach where the reconfiguration schedule is decided at run-
time after analyzing the output of a run-time scheduler. Our
approach presents several advantages. First, it allows reducing the
computational overhead, since all the prefetch decisions for a
whole graph are taken at once and most of the computation is
done at design-time. Second, it prevents prediction misses, since
our heuristic receives information about the subtasks scheduled in
the near future. Finally, it reduces the overall execution time of
the system, since our scheduling heuristic is aware of how its
prefetch decisions affect the system performance and it uses this
information to minimize the execution time.

Other good approaches regarding how to minimize the influence
of the reconfiguration overhead applying scheduling techniques at
design-time are found in [7] and [3]. However, they do not
include any run-time component. Therefore, they are not suitable
for dynamic applications.

3. THE ICN MODEL FOR DRHW
Our approach relies on the ICN model to provide the support for
run-time allocation of tasks on the DRHW. This model is
explained in detail in [4, 5]. The basic idea of the ICN model is
that the platform is split into a set of identical tiles. Each tile is
wrapped by a communication interface. These tiles can
communicate among them using message-passing primitives over
a network-on-a-chip. To support the communications there are
routing tables allocated inside the communication interface. Each
tile can hold one subtask at a time. When a new subtask is loaded
the routing tables are updated. Thus, the other subtasks can
communicate with it. One of the key points of the ICN DRHW
model is that since all the tiles have identical interfaces, and these
interfaces are known in advance, the routing process can be fully
performed at design time avoiding a costly run-time routing
process. In addition, this model provides basic operating system
primitives that allow, for instance, stopping or restarting a task.
This model has been successfully implemented on Virtex, and
Virtex-II FPGAs. As it is shown in figure 1, the ICN model
provides a SW-like view of the FPGA. Thus, an FPGA-based
platform can be considered as a multiprocessor system where
subtasks are assigned to FPGA tiles instead of to ISPs.

Figure 1. ICN model for DRHW (with nine tiles).

Another interesting feature of this model is that it is suitable for
heterogeneous systems with both DRHW tiles and ISPs. In fact, at
least one ISP must be always in the system, since it must execute
the operating system and perform the task schedule. A HW/SW
communication interface has been developed to support HW/SW
communications using the same message-passing paradigm. A
codesign environment, called OCAPI-XL, is used to develop
applications for such a heterogeneous platform [8].

4. INTERACTION WITH THE TASK
SCHEDULER
On top of this model, any existing scheduler for multiprocessors
systems can be applied. Typically, these schedulers are not aware
of the reconfiguration overhead. Hence, we have developed three
modules that at run-time update the output of the scheduler,
taking into account the impact of the reconfiguration overhead on
the system performance. Figure 2 illustrates what we expect from

DRHW tile

Communication
Interface

ICN router

DRHW tile

Communication
Interface

ICN router

120

this scheduler. Basically, it must be able to know which are the
tasks that must be executed and to provide an assignment of the
subtasks over the processing elements (PE) as well as a feasible
schedule. Each task is represented using a subtask graph, which
includes control and data dependencies among the subtasks and
real-time constraints. The scheduling process must generate the
minimum possible run-time penalty. Hence, most of the
computation must be performed at design time. However, since
we are targeting highly dynamic applications, we assume that part
of the scheduling process must be accomplished at run-time.

We assume that an application can be described as a set of tasks
(where each task is represented as a subtask graph) that interact
dynamically among them. Thus, the non-deterministic behaviour
must remain outside the boundaries of the tasks. If the behavior of
a task depends on external data, different versions (graphs) of the
same task are generated. Each of these versions is called a
scenario. Thus, the idea of scenario allows supporting data
dependencies and while loops inside the tasks. The run-time
scheduler must tackle the dynamic behaviour of the application
and select a schedule for the proper scenario of each running task

Figure 2. Run-time scheduler inputs and outputs.

To demonstrate our modules, we have integrated them into an
existing hybrid run-time/design-time scheduling methodology
(called Task Concurrency Management, TCM, methodology) [9].
This methodology attempts to reduce the energy consumption of
the platform while meeting the real-time constraints of the
applications. TCM carries out the scheduling process in two
phases. First, at design-time, a Pareto curve is generated for each
scenario of a task. A Pareto curve is a set of solutions where each
solution is better than all the others in at least one of the
parameters to optimize. An example of a Pareto curve is depicted
in figure 3. This Pareto curve corresponds to a motion JPEG video
decoder application, which runs in a platform with an FPGA and a
SA-1110 processor. Thus, different assignments and schedules of
the subtasks over this two PEs lead to different
energy/performance trade-offs. The second phase is carried out at
run-time. During the execution, a run-time scheduler is called
periodically. It has to identify the current scenario for each
running task and selects the most suitable Pareto point for them.
The scheduler attempts to select the Pareto point that consumes
less energy but still meets all the timing constraints of the
application.

Figure 3. Pareto curve of the motion JPEG video decoder.
Thus, in the case of the example of figure 3, if there is a 20 time
units timing constraint for the execution of this task, the scheduler
selects point A. However, if the constraint is 30 units point B is
selected with the consequent energy savings.
However, current TCM schedulers do not take into account the
specific reconfiguration overhead of the FPGA tiles. This
overhead not only can move the Pareto curve to a more time and
energy consuming area, but it can also change the shape of the
curve. We have provided support to tackle this specific overhead
by including our techniques in the TCM run-time scheduling flow
as is depicted in Figure 4. Once the run-time scheduler generates
its schedule, it is parsed in order to generate some initial data
structures with information needed for the following steps.
Afterwards, three main decisions are taken. Firstly, for each task
the reuse module decides which subtasks can be reused from a
previous iteration. Secondly, if some of the subtasks cannot be
reused, the prefetch module schedules their loads attempting to
minimize the execution time overhead. Finally, each time that a
new subtask is loaded, the replacement module decides to which
tile it is going to be assigned.

Figure 4. Run-time scheduling flow

Since our modules, apart from applying a prefetch-scheduling
approach, also attempt to reuse previously loaded configurations,
they require some flexibility regarding the assignment of a task on
to the DRHW. For instance, a subtask that was loaded in last
iteration on to tile 2 may be assigned in the next iteration to the
tile 1 preventing any possibility of reuse. In order to solve this
problem the run-time scheduler works with virtual addresses for
the DRHW tiles. Hence, it generates a schedule where subtasks
are assigned to virtual tiles. Afterwards, the reuse module and the
replacement module identify the virtual tiles with the physical
tiles. The ICN model supports this approach. Firstly, because it
has a symmetric structure where all the tiles are identical and
secondly, because simply by updating the routing tables all the
communications are guaranteed.
The scheduling and replacement decisions are taken sequentially
for all the tasks following the order of the initial schedule. The
goal of the prefetch module is to schedule the load of a set of
configurations minimizing the loading latency. Since current

R un-tim e
Scheduler

Set o f tasks running during th is
iteration , in ter-task dependencies
and real-tim e constrain ts

A ssignation & schedule
of the tasks.

1
2 3 4

T ask1

T ask 3
9 10

1211 13

5
7

6
8

T ask 2

1

2
3
4

5
11

128
10
9

13
76

T ask1 T ask2

PE 1
PE 2
PE 3

T ask3

R un-tim e
Scheduler

Set o f tasks running during th is
iteration , in ter-task dependencies
and real-tim e constrain ts

A ssignation & schedule
of the tasks.

1
2 3 4

T ask1

T ask 3
9 10

1211 13

5
7

6
8

T ask 2

1
2 3 4

1
2 3 4

T ask1

T ask 3
9 10

1211 13

9 10

1211 13

5
7

6
8

5
7

6
8

T ask 2

1

2
3
4

5
11

128
10
9

13
76

T ask1 T ask2

PE 1
PE 2
PE 3

T ask3

TCM Run-Time SchedulerPlatform
Description

Running Tasks Information

Initialization phase

For each task do:
Reuse Module

Prefetch Module
Replacement Module

Final Schedule

-Pareto curve of each
task
-Real-time constraints

Initial schedule that
neglects the
reconfiguration
overhead

TCM Run-Time SchedulerPlatform
Description

Running Tasks Information

Initialization phase

For each task do:
Reuse Module

Prefetch Module
Replacement Module

Final Schedule

For each task do:
Reuse Module

Prefetch Module
Replacement Module

Final Schedule

-Pareto curve of each
task
-Real-time constraints

Initial schedule that
neglects the
reconfiguration
overhead

4

6

8

10

12

18 20 22 24 26 28
Time (time units)

Pareto points

Non-optimal
points

A

B

Energy

4

6

8

10

12

18 20 22 24 26 28
Time (time units)

Pareto points

Non-optimal
points

A

B

Energy

121

FPGAs do not support simultaneous reconfigurations, only one
reconfiguration can be carried out at a time. The prefetch module
schedules these reconfigurations as soon as possible applying a
heuristic based on list scheduling. This heuristic is explained in
detail in [6]. Basically it attempts to overlap the latency of a
reconfiguration with the computation of previous subtasks. If this
is possible this reconfiguration does not penalize the system
performance.

5. REPLACEMENT TECHNIQUE
Multimedia applications are commonly composed of recurring
tasks. Hence, it is possible to reuse some tasks (or some subtasks
of a task) among different iterations. From the point of view of
the replacement techniques, a DRHW resource with the ICN
model is equivalent to a physical memory, with subtasks instead
of memory pages (with the exception that in our case the latency
is much bigger). Hence, in order to minimize the number of
reconfigurations, we have developed a replacement heuristic
based on a well-known memory-page replacement strategy
(LFD). When a new task must be loaded, LFD replaces the page
that is going to be requested farthest in the future. LFD has been
proven to be an optimal memory-page replacement strategy [1]
when the sequence of accesses to the memory blocks is known in
advance. In our case, we do not have information about the entire
future since we are targeting dynamic applications. However,
after parsing the initial schedule selected by the run-time
scheduler, we do have some information about the near future,
since the output of the scheduler is a sequence of scheduled
subtasks. Hence, we can use this information to reduce the
number of reconfigurations by using this sequence when applying
the LFD replacement strategy. After the run-time scheduler
selects its schedule, an initialisation module parses it. The goal is
to identify which of the subtasks that are currently located in
some of the FPGA tiles can be reused. With this information the
tiles of the FPGA are divided in two categories, namely, non-
reusable tiles (those that hold a subtask that is not going to be
executed in the FPGA during the current scheduled sequence of
tasks) and reusable tiles (those that hold a subtask that has been
scheduled for execution in the FPGA). This module generates two
lists as output. The first list contains all the non-reusable tiles,
whereas the second contains the re-usable tiles sorted by their
execution start time. This list is called the replacement list.
Each time that a subtask is going to be loaded on to the FPGA, the
replacement module decides where must be loaded. There are two
possibilities. First, if the non-reusable list is not empty, the first
tile of the list is selected and afterwards it is removed from this
list and added to the replacement list. Otherwise, the module
selects one of the tiles in the replacement list. In this case, the
module applies our LFD-based replacement heuristic to select the
subtask to replace from the replacement list. In this list three
categories exist. Firstly a set of tiles with a subtask that is going to
be executed in the current iteration. Secondly, a set of tiles that
have been already reused during the current period (and that are
not going to be reused again during this period, otherwise they
still belong to the first category), and finally, a set of tiles with the
subtasks that have been loaded during this iteration. The LFD
strategy gives more priority to remain in the FPGA to those
subtasks that belong to the first category.
This initial replacement technique considers all the subtasks as
equally important. However, some subtasks are more critical for

the system execution than others. Hence, we have modified this
technique to give more priority to these critical subtasks (called
CNs). To this end, two replacement lists are used instead of one.
One list contains the tiles with critical subtasks and the other the
non-critical. In order to find which are the critical subtasks at
design time we follow the pseudo-code depicted in figure 5. This
code detects those subtasks which reconfiguration latency cannot
be hidden by our scheduling technique. If these critical subtasks
are reused it is guaranteed that no time overhead will be
introduced due to the load of the other subtasks (since its
reconfiguration latency can be hidden by our scheduling
heuristic).

Figure 5. Pseudo code for the selection of the critical subtasks.

6. INTER-TASK PREFETCH TECHNIQUE
In [6] we have applied our prefetch heuristic separately to each
task. However, since we have information about a sequence of
tasks, it is also possible to apply it just one time to the whole
sequence. Nevertheless, the complexity of the heuristic is
O(Nl*log(Nl)) where Nl is the number of subtasks that must be
loaded. Hence, the larger the number of subtasks to load, the more
computational time is needed to execute our scheduling heuristic.
Figure 6 depicts the execution time needed to schedule 192
subtasks loadings with our heuristic, when these subtasks are
grouped in tasks of different sizes. In addition, it also depicts the
reconfiguration overhead for the different sizes. The figure shows
that scheduling 192 loadings in just one graph requires five times
more computational time than scheduling the same number of
loadings in 32 graphs of 6 subtasks per graph. On the other hand,
the bigger the graphs, the better the results, since they provide
more flexibility for the prefetch-scheduling process. Since this
technique must be applied at run-time, combining all the subtask
graphs into just one may generate an excessive run-time penalty.
However, clearly, important reductions of the reconfiguration
overhead can be achieved when inter-task prefetch is applied.

Figure 6. (a) Normalized execution time needed to schedule 192
subtasks grouped in graphs of different sizes. (b) Impact of the
reconfiguration overhead on the resulting schedules.

 For each task scenario do:
Apply the local scheduling technique;
Mark as CN the first reconfiguration
that penalizes the system performance;
While (there is still overhead)

Apply local scheduling without
considering the overhead due to the CNs;
Mark as CN the first reconfiguration
that penalizes the system performance;

0

2

4

6

6 12 24 48 96 192
Size of the graphs

Overhead
(%)

0
1
2
3
4
5
6

6 12 24 48 96 192
Size of the graphs

 time

Overhead due to the use of larger graphs
Graphs with 6 nodes

(a) (b)

0

2

4

6

6 12 24 48 96 192
Size of the graphs

Overhead
(%)

0
1
2
3
4
5
6

6 12 24 48 96 192
Size of the graphs

 time

Overhead due to the use of larger graphs
Graphs with 6 nodes

0

2

4

6

6 12 24 48 96 192
Size of the graphs

Overhead
(%)

0
1
2
3
4
5
6

6 12 24 48 96 192
Size of the graphs

 time

Overhead due to the use of larger graphs
Graphs with 6 nodes

(a) (b)

122

Using again the idea of critical nodes, we have found a way to
reduce the reconfiguration overhead without increasing the run-
time penalty due to the execution of our heuristic. Basically, when
all the loads of a graph have been scheduled, we check if there is
still time to load more subtasks. In this case, we will attempt to
load the CNs of the subsequent task. This modification does not
significantly increase the execution time of our heuristic, since on
average the number of loads to carry out for each task remains
unchanged. However, as it will be shown later, it leads to very
important reconfiguration-overhead reductions.

7. EXPERIMENTAL RESULTS
Since this is in part a run-time scheduling approach, our major
concern is to create the minimum possible run-time overhead
while providing good solutions. In this context, we have
developed modules that generate a very small run-time penalty.
When analysing the execution time of our modules, we have
observed that the execution time of the prefetch module is much
more time consuming than the others. However, it still remains
low enough to be applied at run-time. The execution time of this
module running on a processor at 200MHz is 4µs for a graph with
13 subtasks to be loaded. If there are 20 task graphs to be
scheduled with this module, the overhead will be 0.08ms, and the
overhead of all the modules together will be below 0.1ms. In
order to assess the total run-time overhead, the execution time of
the run-time scheduler must be considered as well. The current
TCM run-time scheduler [10] provides a near-optimal schedule
for a set of 20 tasks in less than 0.1 ms. Hence, for 20 tasks the
entire run-time scheduling process can be executed in less than
0.2 ms., which is still affordable, especially when it is compared
with the reconfiguration overhead of loading a new task on to an
FPGA tile (in our system we assume that this overhead is 4 ms).
We believe that this time overhead is acceptable, since our
approach can lead to large time-savings due to the reuse of
configurations and the near-optimal schedule of the FPGA
reconfigurations.

Table 1. Set of multimedia benchmarks.
Set of Task Sub-tasks Ideal Ex.Time Overhead Prefetch
Pattern Rec. 6 94 ms +17% +4%
JPEG dec. 4 81 ms +20% +5%
Parallel JPEG 8 57 ms +35% +7%
MPEG encoder 5 33 ms +56% +18%

We have carried out two experiments to analyze the results of our
techniques. In both experiments we assume that the time needed
to load a subtask onto a DRHW tile is 4ms (this is the time needed
to reconfigure one tenth of a Virtex XC2V6000), and that all the
subtasks are executed in the DRHW resources. This is a worst-
case assumption since in a heterogeneous platform some of the
subtasks would be assigned to other resources. Hence, they would
not introduce this 4ms overhead.
In order to compare our current approach with the approach
presented in [6] we have applied our techniques to the same set of
multimedia tasks used there. These tasks are a sequential and a
parallel version of the JPEG decoder, an MPEG encoder, and a
Pattern Recognition application that applies the Hough transform
over a matrix of pixels in order to look for geometrical figures. In
table 1 the features of these tasks are presented. “Ideal Ex. Time”
is the execution time of the application when there is no

reconfiguration overhead. “Overhead” is the percentage of the
initial execution time that is added when the entire set of subtasks
must be loaded on to the DRHW. Finally, ”Prefetch” is the same
overhead when our scheduling prefetch heuristic is applied. For
the MPEG encoder there are three different scenarios
corresponding to the decoding of B, P, and I frames (the table
includes the average data). The appropriate scenario is selected at
run-time following the sequence of frames. We have simulated
1000 iterations of the execution of this set of applications for
different number of tiles. In order to introduce more dynamic
behaviour, the applications executed during each iteration vary
randomly. Figure 7 depicts the results of this simulation. In this
figure, the random represents the results obtained when using the
approach presented in [6], where the replacement policy was
almost random. Belady presents the results when our LFD-based
replacement strategy is applied. Cooperative presents the results
when the CNs have higher priority in the replacement strategy. In
these three cases, the results have been obtained applying the
scheduling-prefetch technique separately to each task. Finally
Cooperative2 represents the results when inter-task prefetch is
also applied. We called our replacement strategy cooperative
because its goal is not only to reduce the number of
reconfigurations but also to help the scheduling-prefetch
technique to achieve the best possible results.

Figure 7. Reconfiguration overhead for the set of 4 tasks depicted
in table 1 and a variable number of DRHW tiles, when running
with a random dynamic behavior.
It must be remarked that the reconfiguration overhead virtually
disappears (without optimisations the reconfiguration overhead
was 23%) when our modules are active. Thus, when all our
techniques are applied (in Cooperative2) we reduce the overhead
from 23% to 1.2%. This is a reduction of 95%. Moreover, we
have achieved this reduction when just 8 tiles are present. Since
we are executing 23 different subtasks on the DRHW, with just 8
tiles the percentage of reused tasks is very small (for
cooperative2, it is just 24%). As the number of tiles grows, the
same happens with the percentages of reuse, leading to even
further reductions. In figure 7 there is a result that must be
explained. Surprisingly, for the LFD-based strategy, the
reconfiguration overhead grows when the number of tiles goes
from 16 to 17. This does not mean that the heuristic works worse
with 17 tiles than with 16 since the goal of this heuristic is to
reduce the number of reconfigurations and in this case, it is
reduced from 22% (for 16 tiles) to 20% (for 17). However, as it
has been explained previously, not all the reconfigurations
generate the same overhead. Hence, it is perfectly possible that
even when the number of reconfigurations decreases the
reconfiguration overhead increases. This cannot happen to our
cooperative heuristic, since it is aware of the impact of each
reconfiguration.

0

1

2

3

4

5

6

8 1 0 1 2 1 4 1 6 1 8
N u m b e r o f t ile s

ra n d o m
B e la d y
C o o p e ra tiv e
C o o p e ra tiv e 2

O v e rh e a d
(%)

123

As a second experiment we have tested our modules with a highly
dynamic 3D rendering application. This application is composed
of 6 dynamic tasks that have in total 10 subtasks. For each task
several scenarios can be selected at run-time. The amount of
scenarios depends on the dynamism of the task. Thus, task 5 has
four scenarios, whereas task 4 has ten. In total there are 40
different scenarios. However, due to the inter-task dependencies,
at run-time just 20 feasible combinations exits, which are called
inter-task scenarios. The run-time scheduler does the selection
among the inter-task scenarios. The average execution time of a
subtask in this application is 5.7ms, which is comparable with the
4ms needed to load a subtask onto a DRHW tile. Moreover this
execution time heavily varies, going from 0.2 ms to 30ms. Figure
8 depicts the results of applying our technique to this application.
In this case, the reconfiguration overhead was initially 71% of the
ideal execution time. Applying the approach presented in [6] it is
reduced to 25%. When our new techniques are also applied, the
overhead is reduced to just 5% when there are just 5 tiles. Thus,
our techniques have eliminated 93% of the initial overhead.
Moreover, this remaining overhead is not constant. In fact, when
there are 5 tiles, 48% of the overhead is created in 3 of the 20
inter-task scenarios, and with 6 tiles, the same scenarios generate
52% of the whole overhead. The reason is that these scenarios
have a very small computational load. Thus, the average
execution time for a subtask in these scenarios is just 1.1 ms, i.e.
four times less than the time needed to load a subtask. Hence,
when a subtask must be loaded in these scenarios, our scheduling
technique does not receive enough flexibility to hide the entire
overhead. However, if we assign to the application a fixed timing
constraint that represents the frames per second requirements, the
more critical scenarios are those that require more execution time.
Fortunately, our approach works very appropriately in these
scenarios, since the greater the execution time, the more
possibilities exist to hide the reconfiguration latency. For
instance, in the five inter-task scenarios with more execution time,
the overhead generated is just 0.001%.

Figure 8. Reconfiguration overhead for a Pocket GL 3D
rendering application, for different number of DRHW tiles.

8. CONCLUSIONS
The reconfiguration latency of current DRHW commercial
platforms creates huge execution-time overheads. This fact has
prevented the use of DRHW resources for highly dynamic
applications, where reconfigurations are demanded every few
milliseconds. With our work, we aim to demonstrate that, with the
appropriate support, this drawback can be overcome and, as a
consequence, DRHW can play an important role to tackle the
dynamism of current multimedia applications especially for
embedded systems, where is not feasible to provide ASIC support
for each different application.

To test our techniques we have integrated them into an existing
scheduling environment for heterogeneous multiprocessor
systems, using the support provided by the ICN DRHW model. In
this environment our techniques have eliminated at least 93% of
the initial overhead. In addition we have observed that the
remaining overhead penalizes more the scenarios with less
computational load. Since we are targeting multimedia
applications, which are typically frame-based and have constant
Quality-of-Service (QoS) requirements, the scenarios with less
computational load are also the less critical ones. In fact, a
coherent task assignment policy is to just execute in the DRHW
resources the scenarios with more computational load, since they
need to be accelerated in order to meet the QoS requirements. In
these scenarios our techniques virtually suppress the entire initial
overhead (the other scenarios can be executed on a low-power ISP
which is normally more energy efficient). Hence, our modules
allow taking advantage of the partial reconfiguration capabilities
of current DRHW resources with an affordable reconfiguration
overhead. In addition, our modules achieve good results while
still generating a very small run-time penalty due to their
execution. Hence, they can be executed at run-time to deal with
the dynamism of current multimedia applications

9. ACKNOWLEDGMENTS
The authors would like to acknowledge all our colleagues from
the T-Recs and Matador groups at IMEC. This work has been
partially supported by TIC 2002-00160.

10. REFERENCES
[1] Belady, L.A.,”A Study of Replacement Algorithms for

Virtual Storage Computers” In IBM Systems Journal, 5, pp.
78-101, 1966.

[2] Hartenstein, R. “A decade of reconfigurable computing: A
visionary retrospective”. Proc. DATE, 2001. pp. 642-649,
Munich, Germany, 2001.

[3] Maestre, R. et al, "Configuration Management in Multi-
Context Reconfigurable Systems",ISSS'00, pp.107-113, 2000

[4] Marescaux, T. et al., "Interconnection Network enable Fine-
Grain Dynamic Multi-Tasking on FPGAs", Proc. of FPL'02,
pp. 795-805, 2002.

[5] Marescaux, T. et al., “Networks on chips as Hardware
Components of an OS for Reconfigurable Systems”, Proc. of
FPL'03, p.595-605, 2003.

[6] Resano, Javier et al, “Run-Time Minimization of
Reconfiguration Overhead in Dynamically Reconfigurable
Systems”, FPL’03, LNCS 2778, pp. 585-594, 2003.

[7] Shang, Li et al., "Hw/Sw Co-synthesis of Low Power Real-
Time Distributed Embedded Systems with Dynamically
Reconfigurable FPGAs", ASP-DAC'02, pp. 345-360, 2002.

[8] Vanmeerbeeck, G. et al, “Hardware/Software Partitioning for
Embedded Systems in OCAPI-XL” CODES’01, 2001.

[9] Yang, Peng et al., "Energy-Aware Runtime Scheduling for
Embedded-Multiprocessors SOCs", IEEE Journal on
Design&Test of Computers, pp. 46-58, 2001.

[10] Yang, Peng et al. "Pareto-Optimization-Based Run-Time
Task Scheduling for Embedded Systems". Proc. of ISSS'03.
2003. p.120-125.

[11] Zhiyuan Li, “Configuration management techniques for
reconfigurable computing” Ph.D. thesis, ISBN: 0-493-
65106-3. 2002

0

5

1 0

1 5

2 0

2 5

3 0

5 6 7 8 9 1 0

N u m b er o f tiles

rand o m

B e lad y

co o p e rative

co o p e rative 2

O verh ead
(%)

124

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

