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ABSTRACT 

Dynamically Reconfigurable Hardware (DRHW) platforms 
present both flexibility and high performance. Hence, they can 
tackle the demanding requirements of current dynamic 
multimedia applications, especially for embedded systems where 
it is not affordable to include specific HW support for all the 
applications. However, DRHW reconfiguration latency represents 
a major drawback that can make the use of DRHW resources 
inefficient for highly dynamic applications. To alleviate this 
problem, we have developed a set of techniques that provide 
specific support for DRHW devices and we have integrated them 
into an existing multiprocessor scheduling environment. In our 
experiments, with actual multimedia applications, we have 
reduced the original overhead due to the reconfiguration latency 
by at least 93%.  

Categories and Subject Descriptors 

C.3 [Computer Systems Organization]: Special-Purpose and 
Application-Based Systems – real-time and embedded systems.  

General Terms 

Algorithms, Management, Performance. 

Keywords 

Dynamic reconfigurable hardware, run-time scheduling. 

1. INTRODUCTION 

Current multimedia applications, such as digital video and 3D 
games, present highly dynamic and non-deterministic behaviour, 
and a very variable workload. To cope with these features, high 
performance and flexibility are required. Moreover, for embedded 
systems the amount of resources is highly constrained and, at the 
same time, the number of applications that they have to support is 
constantly increasing. Hence, it is infeasible to provide 
Application Specific Integrated Circuits (ASICs) for all of them, 

but on the other hand, Instruction Set Processors (ISPs) cannot 
always provide the required performance. Hence, they need some 
hardware support. Dynamically Reconfigurable Hardware 
(DRHW) presents the ideal features to solve this problem, since it 
provides both high performance and run-time flexibility. Thus, its 
functionality can be updated at run-time to meet the variable 
requirements of the running applications. In addition, current 
commercial DRHW platforms (like FPGAs) have recently 
included interesting new features such as partial reconfiguration 
capabilities and support for IP design.  
In order to take advantage of the DRHW features, dynamic task 
allocation support and scheduling support are needed. To tackle 
the dynamic task allocation to the DRHW resources, we have 
adopted an Interconnection Network (ICN) model for the DRHW 
[4]. This model provides not only task allocation support, but also 
inter-task communication support (including HW/SW 
communications), and operating system support.  With this model 
DRHW resources can be easily integrated in a heterogeneous 
multiprocessor system since it presents a uniform view both for 
the HW and SW resources. On top of this model, any existing 
scheduler for multiprocessors systems can be applied. We have 
selected an existing hybrid run-time/design-time scheduling 
methodology called Task Concurrency Management (TCM) [9] 
since it provides run-time flexibility and, at the same time, it 
generates only a small run-time penalty due to its execution 
because most of the exploration and computation is done at design 
time. This methodology attempts to reduce the energy 
consumption of the platform while meeting the real-time 
constraints of the applications. Working together, the ICN model 
and the TCM scheduling methodology provide the desirable 
support to use DRHW in embedded systems. However, the run-
time flexibility of DRHW often comes at the price of a very large 
reconfiguration overhead. For instance, reconfiguring one tenth of 
a Virtex XC2V6000 requires at least 4 ms. This overhead is not 
always acceptable for highly dynamic applications, since they 
may demand reconfigurations every few milliseconds. Moreover, 
multiprocessor schedulers for embedded systems often neglect 
this overhead because, typically, a task can be loaded on a SW 
processor in just a few microseconds as long as the task is stored 
in its local memory.  Hence, in order to tackle this large 
reconfiguration overhead, DRHW resources need specific 
scheduling support. The goal of our work is to drastically reduce 
this reconfiguration overhead, making effective the use of partial 
reconfiguration on DRHW resources even for those applications 
that demand frequent partial reconfigurations. To this end, we 
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have developed two different techniques, namely the prefetch-
scheduling technique and the replacement technique. The 
prefetch-scheduling technique receives as input a set of tasks that 
must be loaded and decides when they are going to be loaded, 
attempting to hide the loading latency and taking into account the 
inter-task dependencies. The replacement technique increases the 
possibilities of reusing those subtasks that are more critical for the 
system performance. We have integrated our techniques in the 
TCM environment, and tested them with actual multimedia 
applications including a highly dynamic 3D rendering application 
where the reconfiguration overhead is reduced by at least 93%.  

The rest of the paper is organized as follows; the next section 
introduces the related work; section 3 presents our DRHW model; 
section 4 explains our run-time scheduling flow; section 5 and 6 
describe the replacement technique and the inter-task prefetch 
technique; section 7 presents some experimental results and 
finally section 8 summarizes our conclusions. 

2. RELATED WORK 
Previously, other research groups have addressed the 
minimization of the reconfiguration overhead. Much of this work 
proposes the development of new types of architectures, like 
multi-context FPGAs and especially coarse-grain architectures 
[2]. However, the reconfigurable market is still being clearly 
dominated by the FPGAs, which are becoming more and more 
broadly used in industry. For this reason we have selected FPGAs 
to analyze the effectivity of our approach although it can be 
equally applied to other architectures.   

A very interesting approach to reduce the reconfiguration 
overhead for FPGAs is found in the Ph. D. thesis of Zhiyuang Li 
[11] where three techniques are proposed, namely configuration 
compression, caching and prefetching. The first technique 
compresses the configuration bits of a task to reduce their loading 
latency. This technique is orthogonal with our approach. The 
second technique, deals with the problem of allocating tasks in the 
FPGA, trying to maximize their reuse. However, they assume that 
a task can be placed anywhere in the FPGA which is not a 
realistic assumption unless a very costly run-time routing process 
would be performed each time that a new task is loaded. Finally, 
the configuration prefetching technique attempts to hide the 
latency of the load of a configuration by accomplishing this load 
before it is needed. To this end, the next task to be executed is 
predicted based on past events and profiled data. If the prediction 
is a success, it is possible to hide at least partially its 
reconfiguration latency; otherwise an erroneous configuration is 
loaded with the consequent penalization. Although we share the 
idea of applying a prefetch technique to reduce the 
reconfiguration overhead, we are proposing a totally different 
approach where the reconfiguration schedule is decided at run-
time after analyzing the output of a run-time scheduler. Our 
approach presents several advantages. First, it allows reducing the 
computational overhead, since all the prefetch decisions for a 
whole graph are taken at once and most of the computation is 
done at design-time. Second, it prevents prediction misses, since 
our heuristic receives information about the subtasks scheduled in 
the near future. Finally, it reduces the overall execution time of 
the system, since our scheduling heuristic is aware of how its 
prefetch decisions affect the system performance and it uses this 
information to minimize the execution time. 

Other good approaches regarding how to minimize the influence 
of the reconfiguration overhead applying scheduling techniques at 
design-time are found in [7] and [3]. However, they do not 
include any run-time component. Therefore, they are not suitable 
for dynamic applications.  

3. THE ICN MODEL FOR DRHW 
Our approach relies on the ICN model to provide the support for 
run-time allocation of tasks on the DRHW. This model is 
explained in detail in [4, 5]. The basic idea of the ICN model is 
that the platform is split into a set of identical tiles. Each tile is 
wrapped by a communication interface. These tiles can 
communicate among them using message-passing primitives over 
a network-on-a-chip. To support the communications there are 
routing tables allocated inside the communication interface. Each 
tile can hold one subtask at a time. When a new subtask is loaded 
the routing tables are updated. Thus, the other subtasks can 
communicate with it. One of the key points of the ICN DRHW 
model is that since all the tiles have identical interfaces, and these 
interfaces are known in advance, the routing process can be fully 
performed at design time avoiding a costly run-time routing 
process. In addition, this model provides basic operating system 
primitives that allow, for instance, stopping or restarting a task.  
This model has been successfully implemented on Virtex, and 
Virtex-II FPGAs. As it is shown in figure 1, the ICN model 
provides a SW-like view of the FPGA. Thus, an FPGA-based 
platform can be considered as a multiprocessor system where 
subtasks are assigned to FPGA tiles instead of to ISPs.  

 

 
 
 
 
 
 

 
Figure 1. ICN model for DRHW (with nine tiles). 

Another interesting feature of this model is that it is suitable for 
heterogeneous systems with both DRHW tiles and ISPs. In fact, at 
least one ISP must be always in the system, since it must execute 
the operating system and perform the task schedule. A HW/SW 
communication interface has been developed to support HW/SW 
communications using the same message-passing paradigm. A 
codesign environment, called OCAPI-XL, is used to develop 
applications for such a heterogeneous platform [8].  

4. INTERACTION WITH THE TASK 
SCHEDULER 
On top of this model, any existing scheduler for multiprocessors 
systems can be applied. Typically, these schedulers are not aware 
of the reconfiguration overhead. Hence, we have developed three 
modules that at run-time update the output of the scheduler, 
taking into account the impact of the reconfiguration overhead on 
the system performance. Figure 2 illustrates what we expect from 
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this scheduler. Basically, it must be able to know which are the 
tasks that must be executed and to provide an assignment of the 
subtasks over the processing elements (PE) as well as a feasible 
schedule. Each task is represented using a subtask graph, which 
includes control and data dependencies among the subtasks and 
real-time constraints. The scheduling process must generate the 
minimum possible run-time penalty. Hence, most of the 
computation must be performed at design time. However, since 
we are targeting highly dynamic applications, we assume that part 
of the scheduling process must be accomplished at run-time.  

We assume that an application can be described as a set of tasks 
(where each task is represented as a subtask graph) that interact 
dynamically among them. Thus, the non-deterministic behaviour 
must remain outside the boundaries of the tasks. If the behavior of 
a task depends on external data, different versions (graphs) of the 
same task are generated. Each of these versions is called a 
scenario. Thus, the idea of scenario allows supporting data 
dependencies and while loops inside the tasks. The run-time 
scheduler must tackle the dynamic behaviour of the application 
and select a schedule for the proper scenario of each running task  

 
 
 
 
 
 
 
 

 
 

Figure 2. Run-time scheduler inputs and outputs. 

To demonstrate our modules, we have integrated them into an 
existing hybrid run-time/design-time scheduling methodology 
(called Task Concurrency Management, TCM, methodology) [9]. 
This methodology attempts to reduce the energy consumption of 
the platform while meeting the real-time constraints of the 
applications. TCM carries out the scheduling process in two 
phases. First, at design-time, a Pareto curve is generated for each 
scenario of a task. A Pareto curve is a set of solutions where each 
solution is better than all the others in at least one of the 
parameters to optimize. An example of a Pareto curve is depicted 
in figure 3. This Pareto curve corresponds to a motion JPEG video 
decoder application, which runs in a platform with an FPGA and a 
SA-1110 processor. Thus, different assignments and schedules of 
the subtasks over this two PEs lead to different 
energy/performance trade-offs. The second phase is carried out at 
run-time. During the execution, a run-time scheduler is called 
periodically. It has to identify the current scenario for each 
running task and selects the most suitable Pareto point for them. 
The scheduler attempts to select the Pareto point that consumes 
less energy but still meets all the timing constraints of the 
application.  
 
 
 

 
 
 
 
 

 
 

Figure 3. Pareto curve of the motion JPEG video decoder. 
Thus, in the case of the example of figure 3, if there is a 20 time 
units timing constraint for the execution of this task, the scheduler 
selects point A. However, if the constraint is 30 units point B is 
selected with the consequent energy savings.   
However, current TCM schedulers do not take into account the 
specific reconfiguration overhead of the FPGA tiles. This 
overhead not only can move the Pareto curve to a more time and 
energy consuming area, but it can also change the shape of the 
curve.  We have provided support to tackle this specific overhead 
by including our techniques in the TCM run-time scheduling flow 
as is depicted in Figure 4. Once the run-time scheduler generates 
its schedule, it is parsed in order to generate some initial data 
structures with information needed for the following steps. 
Afterwards, three main decisions are taken. Firstly, for each task 
the reuse module decides which subtasks can be reused from a 
previous iteration. Secondly, if some of the subtasks cannot be 
reused, the prefetch module schedules their loads attempting to 
minimize the execution time overhead. Finally, each time that a 
new subtask is loaded, the replacement module decides to which 
tile it is going to be assigned.  
 

 
 
 
 
 
 

 
Figure 4. Run-time scheduling flow 

Since our modules, apart from applying a prefetch-scheduling 
approach, also attempt to reuse previously loaded configurations, 
they require some flexibility regarding the assignment of a task on 
to the DRHW. For instance, a subtask that was loaded in last 
iteration on to tile 2 may be assigned in the next iteration to the 
tile 1 preventing any possibility of reuse. In order to solve this 
problem the run-time scheduler works with virtual addresses for 
the DRHW tiles. Hence, it generates a schedule where subtasks 
are assigned to virtual tiles. Afterwards, the reuse module and the 
replacement module identify the virtual tiles with the physical 
tiles.  The ICN model supports this approach. Firstly, because it 
has a symmetric structure where all the tiles are identical and 
secondly, because simply by updating the routing tables all the 
communications are guaranteed.  
The scheduling and replacement decisions are taken sequentially 
for all the tasks following the order of the initial schedule. The 
goal of the prefetch module is to schedule the load of a set of 
configurations minimizing the loading latency. Since current 
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FPGAs do not support simultaneous reconfigurations, only one 
reconfiguration can be carried out at a time. The prefetch module 
schedules these reconfigurations as soon as possible applying a 
heuristic based on list scheduling. This heuristic is explained in 
detail in [6]. Basically it attempts to overlap the latency of a 
reconfiguration with the computation of previous subtasks. If this 
is possible this reconfiguration does not penalize the system 
performance.  

5. REPLACEMENT TECHNIQUE 
Multimedia applications are commonly composed of recurring 
tasks. Hence, it is possible to reuse some tasks (or some subtasks 
of a task) among different iterations. From the point of view of 
the replacement techniques, a DRHW resource with the ICN 
model is equivalent to a physical memory, with subtasks instead 
of memory pages (with the exception that in our case the latency 
is much bigger).  Hence, in order to minimize the number of 
reconfigurations, we have developed a replacement heuristic 
based on a well-known memory-page replacement strategy 
(LFD). When a new task must be loaded, LFD replaces the page 
that is going to be requested farthest in the future. LFD has been 
proven to be an optimal memory-page replacement strategy [1] 
when the sequence of accesses to the memory blocks is known in 
advance. In our case, we do not have information about the entire 
future since we are targeting dynamic applications. However, 
after parsing the initial schedule selected by the run-time 
scheduler, we do have some information about the near future, 
since the output of the scheduler is a sequence of scheduled 
subtasks. Hence, we can use this information to reduce the 
number of reconfigurations by using this sequence when applying 
the LFD replacement strategy. After the run-time scheduler 
selects its schedule, an initialisation module parses it. The goal is 
to identify which of the subtasks that are currently located in 
some of the FPGA tiles can be reused. With this information the 
tiles of the FPGA are divided in two categories, namely, non-
reusable tiles (those that hold a subtask that is not going to be 
executed in the FPGA during the current scheduled sequence of 
tasks) and reusable tiles (those that hold a subtask that has been 
scheduled for execution in the FPGA). This module generates two 
lists as output. The first list contains all the non-reusable tiles, 
whereas the second contains the re-usable tiles sorted by their 
execution start time. This list is called the replacement list.    
Each time that a subtask is going to be loaded on to the FPGA, the 
replacement module decides where must be loaded. There are two 
possibilities. First, if the non-reusable list is not empty, the first 
tile of the list is selected and afterwards it is removed from this 
list and added to the replacement list. Otherwise, the module 
selects one of the tiles in the replacement list. In this case, the 
module applies our LFD-based replacement heuristic to select the 
subtask to replace from the replacement list. In this list three 
categories exist. Firstly a set of tiles with a subtask that is going to 
be executed in the current iteration. Secondly, a set of tiles that 
have been already reused during the current period (and that are 
not going to be reused again during this period, otherwise they 
still belong to the first category), and finally, a set of tiles with the 
subtasks that have been loaded during this iteration. The LFD 
strategy gives more priority to remain in the FPGA to those 
subtasks that belong to the first category.  
This initial replacement technique considers all the subtasks as 
equally important. However, some subtasks are more critical for 

the system execution than others. Hence, we have modified this 
technique to give more priority to these critical subtasks (called 
CNs). To this end, two replacement lists are used instead of one. 
One list contains the tiles with critical subtasks and the other the 
non-critical. In order to find which are the critical subtasks at 
design time we follow the pseudo-code depicted in figure 5. This 
code detects those subtasks which reconfiguration latency cannot 
be hidden by our scheduling technique. If these critical subtasks 
are reused it is guaranteed that no time overhead will be 
introduced due to the load of the other subtasks (since its 
reconfiguration latency can be hidden by our scheduling 
heuristic). 
 

Figure 5. Pseudo code for the selection of the critical subtasks. 

6. INTER-TASK PREFETCH TECHNIQUE 
In [6] we have applied our prefetch heuristic separately to each 
task. However, since we have information about a sequence of 
tasks, it is also possible to apply it just one time to the whole 
sequence. Nevertheless, the complexity of the heuristic is 
O(Nl*log(Nl)) where Nl is the number of subtasks that must be 
loaded. Hence, the larger the number of subtasks to load, the more 
computational time is needed to execute our scheduling heuristic. 
Figure 6 depicts the execution time needed to schedule 192 
subtasks loadings with our heuristic, when these subtasks are 
grouped in tasks of different sizes. In addition, it also depicts the 
reconfiguration overhead for the different sizes.  The figure shows 
that scheduling 192 loadings in just one graph requires five times 
more computational time than scheduling the same number of 
loadings in 32 graphs of 6 subtasks per graph. On the other hand, 
the bigger the graphs, the better the results, since they provide 
more flexibility for the prefetch-scheduling process. Since this 
technique must be applied at run-time, combining all the subtask 
graphs into just one may generate an excessive run-time penalty. 
However, clearly, important reductions of the reconfiguration 
overhead can be achieved when inter-task prefetch is applied.  
 
 
 
 
 
 
 
 
 
Figure 6. (a) Normalized execution time needed to schedule 192 
subtasks grouped in graphs of different sizes. (b) Impact of the 
reconfiguration overhead on the resulting schedules. 

  For each task scenario do:  
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Using again the idea of critical nodes, we have found a way to 
reduce the reconfiguration overhead without increasing the run-
time penalty due to the execution of our heuristic. Basically, when 
all the loads of a graph have been scheduled, we check if there is 
still time to load more subtasks. In this case, we will attempt to 
load the CNs of the subsequent task. This modification does not 
significantly increase the execution time of our heuristic, since on 
average the number of loads to carry out for each task remains 
unchanged. However, as it will be shown later, it leads to very 
important reconfiguration-overhead reductions. 

7. EXPERIMENTAL RESULTS 
Since this is in part a run-time scheduling approach, our major 
concern is to create the minimum possible run-time overhead 
while providing good solutions. In this context, we have 
developed modules that generate a very small run-time penalty. 
When analysing the execution time of our modules, we have 
observed that the execution time of the prefetch module is much 
more time consuming than the others. However, it still remains 
low enough to be applied at run-time. The execution time of this 
module running on a processor at 200MHz is 4µs for a graph with 
13 subtasks to be loaded. If there are 20 task graphs to be 
scheduled with this module, the overhead will be 0.08ms, and the 
overhead of all the modules together will be below 0.1ms. In 
order to assess the total run-time overhead, the execution time of 
the run-time scheduler must be considered as well. The current 
TCM run-time scheduler [10] provides a near-optimal schedule 
for a set of 20 tasks in less than 0.1 ms. Hence, for 20 tasks the 
entire run-time scheduling process can be executed in less than 
0.2 ms., which is still affordable, especially when it is compared 
with the reconfiguration overhead of loading a new task on to an 
FPGA tile (in our system we assume that this overhead is 4 ms). 
We believe that this time overhead is acceptable, since our 
approach can lead to large time-savings due to the reuse of 
configurations and the near-optimal schedule of the FPGA 
reconfigurations. 

Table 1. Set of multimedia benchmarks. 
Set of Task Sub-tasks Ideal  Ex.Time Overhead Prefetch 
Pattern Rec. 6 94 ms +17% +4% 
JPEG dec. 4 81 ms +20% +5% 
Parallel JPEG 8 57 ms +35% +7% 
MPEG encoder 5 33 ms +56% +18% 
 
We have carried out two experiments to analyze the results of our 
techniques. In both experiments we assume that the time needed 
to load a subtask onto a DRHW tile is 4ms (this is the time needed 
to reconfigure one tenth of a Virtex XC2V6000), and that all the 
subtasks are executed in the DRHW resources. This is a worst-
case assumption since in a heterogeneous platform some of the 
subtasks would be assigned to other resources. Hence, they would 
not introduce this 4ms overhead.  
In order to compare our current approach with the approach 
presented in [6] we have applied our techniques to the same set of 
multimedia tasks used there. These tasks are a sequential and a 
parallel version of the JPEG decoder, an MPEG encoder, and a 
Pattern Recognition application that applies the Hough transform 
over a matrix of pixels in order to look for geometrical figures. In 
table 1 the features of these tasks are presented. “Ideal Ex. Time” 
is the execution time of the application when there is no 

reconfiguration overhead. “Overhead” is the percentage of the 
initial execution time that is added when the entire set of subtasks 
must be loaded on to the DRHW. Finally, ”Prefetch” is the same 
overhead when our scheduling prefetch heuristic is applied. For 
the MPEG encoder there are three different scenarios 
corresponding to the decoding of B, P, and I frames (the table 
includes the average data). The appropriate scenario is selected at 
run-time following the sequence of frames. We have simulated 
1000 iterations of the execution of this set of applications for 
different number of tiles. In order to introduce more dynamic 
behaviour, the applications executed during each iteration vary 
randomly. Figure 7 depicts the results of this simulation. In this 
figure, the random represents the results obtained when using the 
approach presented in [6], where the replacement policy was 
almost random. Belady presents the results when our LFD-based 
replacement strategy is applied. Cooperative presents the results 
when the CNs have higher priority in the replacement strategy. In 
these three cases, the results have been obtained applying the 
scheduling-prefetch technique separately to each task. Finally 
Cooperative2 represents the results when inter-task prefetch is 
also applied. We called our replacement strategy cooperative 
because its goal is not only to reduce the number of 
reconfigurations but also to help the scheduling-prefetch 
technique to achieve the best possible results. 

Figure 7. Reconfiguration overhead for the set of 4 tasks depicted 
in table 1 and a variable number of DRHW tiles, when running 
with a random dynamic behavior.  
It must be remarked that the reconfiguration overhead virtually 
disappears (without optimisations the reconfiguration overhead 
was 23%) when our modules are active. Thus, when all our 
techniques are applied (in Cooperative2) we reduce the overhead 
from 23% to 1.2%. This is a reduction of 95%. Moreover, we 
have achieved this reduction when just 8 tiles are present. Since 
we are executing 23 different subtasks on the DRHW, with just 8 
tiles the percentage of reused tasks is very small (for 
cooperative2, it is just 24%). As the number of tiles grows, the 
same happens with the percentages of reuse, leading to even 
further reductions. In figure 7 there is a result that must be 
explained. Surprisingly, for the LFD-based strategy, the 
reconfiguration overhead grows when the number of tiles goes 
from 16 to 17. This does not mean that the heuristic works worse 
with 17 tiles than with 16 since the goal of this heuristic is to 
reduce the number of reconfigurations and in this case, it is 
reduced from 22% (for 16 tiles) to 20% (for 17). However, as it 
has been explained previously, not all the reconfigurations 
generate the same overhead. Hence, it is perfectly possible that 
even when the number of reconfigurations decreases the 
reconfiguration overhead increases. This cannot happen to our 
cooperative heuristic, since it is aware of the impact of each 
reconfiguration. 
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As a second experiment we have tested our modules with a highly 
dynamic 3D rendering application. This application is composed 
of 6 dynamic tasks that have in total 10 subtasks. For each task 
several scenarios can be selected at run-time. The amount of 
scenarios depends on the dynamism of the task. Thus, task 5 has 
four scenarios, whereas task 4 has ten. In total there are 40 
different scenarios. However, due to the inter-task dependencies, 
at run-time just 20 feasible combinations exits, which are called 
inter-task scenarios. The run-time scheduler does the selection 
among the inter-task scenarios. The average execution time of a 
subtask in this application is 5.7ms, which is comparable with the 
4ms needed to load a subtask onto a DRHW tile. Moreover this 
execution time heavily varies, going from 0.2 ms to 30ms. Figure 
8 depicts the results of applying our technique to this application. 
In this case, the reconfiguration overhead was initially 71% of the 
ideal execution time. Applying the approach presented in [6] it is 
reduced to 25%. When our new techniques are also applied, the 
overhead is reduced to just 5% when there are just 5 tiles. Thus, 
our techniques have eliminated 93% of the initial overhead. 
Moreover, this remaining overhead is not constant. In fact, when 
there are 5 tiles, 48% of the overhead is created in 3 of the 20 
inter-task scenarios, and with 6 tiles, the same scenarios generate 
52% of the whole overhead. The reason is that these scenarios 
have a very small computational load. Thus, the average 
execution time for a subtask in these scenarios is just 1.1 ms, i.e. 
four times less than the time needed to load a subtask. Hence, 
when a subtask must be loaded in these scenarios, our scheduling 
technique does not receive enough flexibility to hide the entire 
overhead. However, if we assign to the application a fixed timing 
constraint that represents the frames per second requirements, the 
more critical scenarios are those that require more execution time. 
Fortunately, our approach works very appropriately in these 
scenarios, since the greater the execution time, the more 
possibilities exist to hide the reconfiguration latency. For 
instance, in the five inter-task scenarios with more execution time, 
the overhead generated is just 0.001%.       
 
 
 
 
 
 
 

Figure 8. Reconfiguration overhead for a Pocket GL 3D 
rendering application, for different number of DRHW tiles. 

8. CONCLUSIONS 
The reconfiguration latency of current DRHW commercial 
platforms creates huge execution-time overheads.  This fact has 
prevented the use of DRHW resources for highly dynamic 
applications, where reconfigurations are demanded every few 
milliseconds. With our work, we aim to demonstrate that, with the 
appropriate support, this drawback can be overcome and, as a 
consequence, DRHW can play an important role to tackle the 
dynamism of current multimedia applications especially for 
embedded systems, where is not feasible to provide ASIC support 
for each different application. 

To test our techniques we have integrated them into an existing 
scheduling environment for heterogeneous multiprocessor 
systems, using the support provided by the ICN DRHW model. In 
this environment our techniques have eliminated at least 93% of 
the initial overhead. In addition we have observed that the 
remaining overhead penalizes more the scenarios with less 
computational load. Since we are targeting multimedia 
applications, which are typically frame-based and have constant 
Quality-of-Service (QoS) requirements, the scenarios with less 
computational load are also the less critical ones.  In fact, a 
coherent task assignment policy is to just execute in the DRHW 
resources the scenarios with more computational load, since they 
need to be accelerated in order to meet the QoS requirements. In 
these scenarios our techniques virtually suppress the entire initial 
overhead (the other scenarios can be executed on a low-power ISP 
which is normally more energy efficient). Hence, our modules 
allow taking advantage of the partial reconfiguration capabilities 
of current DRHW resources with an affordable reconfiguration 
overhead. In addition, our modules achieve good results while 
still generating a very small run-time penalty due to their 
execution. Hence, they can be executed at run-time to deal with 
the dynamism of current multimedia applications 
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