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ABSTRACT
This paper presents a parametric area estimation method-
ology at SystemC level for FPGA-based designs. The ap-
proach is conceived to reduce the effort to adapt the area es-
timators to the evolutions of the EDA design environments.
It consists in identifying the subset of measures that can
be derived form the system level description and that are
also relevant at VHDL-RT level. Estimators’ parameters
are then automatically derived from a set of benchmarks.

Categories and Subject Descriptors: B.6.3 [Logic De-
sign]: Automatic Synthesis

General Terms: Design, Performance.

Keywords: FPGAs, SystemC, Area metrics.

1. INTRODUCTION
A fast and effective design space exploration implies focus-

ing on functional descriptions while providing metrics and
corresponding reliable estimators. We describe a methodolo-
gy to extract from a SystemC description a set of estimators
for an area metric [1], considering as target technology the
Xilinx VirtexII-Pro FPGA family [2], for which area can be
expressed in terms of number of Look-Up Tables (LUTs) and
the number of Flip-Flops (FFs). The design flow adopted
for assessing the methodology is based on Synopsys CoCen-
tric SystemC Compiler [4] and Mentor Graphics Leonardo
Spectrum.
A significant amount of research has been focused on area,

timing and power estimation of implementations whose tar-
get is an FPGA. These activities can be roughly partitioned
in two sets: those extracting information from RTL de-
scriptions (VHDL, Verilog) and those extracting informa-
tion form behavioral level descriptions. In the latter case,
the problem is faced by translating behavioral descriptions
(Matlab [5, 6], other [7, 8]) into VHDL-RT [5, 6] or DFG [7].
Though these transformations are required whenever close-
fitting results are needed, the effort necessary to transform a
high-level model into a more detailed model is not currently
justified. The reason is twofold: on one hand logic-level tools
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provide a fast and accurate estimation, on the other hand
the most time-consuming activity of the high-level synthe-
sis process is CDFG extraction and manipulation and mod-
ule pre-characterization. In short, an effective estimation
methodology requires identifying shortcuts instead of repli-
cations.
Experience suggests that different implementations can

be obtained depending on the combination of high-level and
logic synthesis tools. To overcome the above problem, we
structured the methodology in two levels: the higher one
models the SystemC to RTL-VHDL transformation while
the lower accounts for RTL-VHDL to FPGA netlist. Other
approaches for the lower portion of the methodology are pre-
sented in [9, 10]. Such a solution shields the overall accuracy
from possible changes of synthesis tools and algorithms. It is
a tradeoff between accuracy and applicability tailored for de-
sign space exploration, in the sense that the estimated area
is satisfactorily accurate, considering the amount of informa-
tion that needs to be extracted from the system description
and the complexity of their estimation.

2. METHODOLOGY
In most of the previous works, the main problem was to

identify a fast and accurate estimation procedure without
adopting synthesis-like algorithms while reducing the obso-
lescence of the estimators due to technology evolution. The
dilemma can be solved if a class of parametric estimators
that can be automatically re-tuned whenever tools and/or
technology change are identified. Despite the appealing of
generalizing the problem including the estimator identifica-
tion in an automatic procedure, a rough analysis of a generic
design flow highlights the following elements:

1. tools for logic synthesis are quite stable; thus, metrics
produced at this level can be used as a reference point;

2. high-level synthesis target architecture (CU, DP, mem-
ories) seems to be excluded from the brawl involving
high level languages and tools: it can be considered a
stable interface between the two abstraction levels;

3. the proposed architectures of the data path (mux or
bus based) do not impact on the methodology results;

4. high level synthesis is mainly based on templates.

These observations enforce a pragmatic approach to the
estimators identification problem: high level and logic level
have to be considered separately, taking into account their
interaction only. This means considering the subset of those
VHDL-RTL descriptions that are produced by high-level
synthesis tools.
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2.1 Introduction to methodology
The proposed methodology is composed by three sepa-

rated and consecutive steps: Models, Variables and Param-
eters. The Models step copes with the problem of identifying
the form of the estimator (algebraic and/or algorithmic). In
this phase the analysis of the results produced by the tools
is particularly significant. Model identification is a human
activity to be carried out until the estimator set is satisfac-
tory. The Variables step focuses on the identification of the
variables set that is statistically significant and fulfill user
directives and constraints. Variables set identification is a
semi-automatic procedure: model variables are automati-
cally extracted by a larger set of variables manually iden-
tified. The Parameters step identifies the parameters for
each estimator by using two sets of benchmarks: set-up and
validation. In this phase, coefficients for algebraic estima-
tors and compensation coefficients for algorithmic estima-
tors (when required) are automatically determined. Param-
eters identification is an operation that must be frequently
performed, in particular, when a new set of benchmarks is
available, when tools changes and, finally, when the target
device changes.

2.2 Methodology framework
A generic system D, whose system-level description is

L(D), can be decomposed into five sets of functional units:
combinational (RC), multiplexer (MX), sequential (FSM),
operators (OP) and register (REG). Let Λa and Pa be the
actual number of LUTs and registers required to implement
the design D and Πa the whole set of parameters character-
izing the sets of functional units (number of inputs, number
of processes, hierarchy level, number of VHDL lines, . . .).
Goal of the methodology is to identify an estimators set (λ,
ρ and π) and a subset of variables Θa ⊂ Πa such that:

Λe,i = λ(Θe,i); Pe,i = ρ(Θe,i); Θe,i = π(L(Di)) (1)

min ||Λa − Λe|| ∧min ||Pa − Pe|| ∀Di ∈ ∆setup (2)

where Λa, Λe, Pa and Pe are vectors, || · || is the Euclidean
norm and ∆setup is a set of benchmarks. It is worth noting
that the adopted procedure is valid in general but that the
solution space has been reduced assuming that the design is
synthesized without hierarchy flattening. This hypothesis,
which surely holds for large designs, allows considering the
system as a set of decoupled components so that area can
be expressed as the sum of single components. Equations
(1) and (2) thus become:

Λe =
∑

ω∈ΩαωΛe,ω (3)

where Ω = {RC, MX, FSM, OP, REG} and:
Λe,ω = λω(Θe,ω) (4)

Θe,ω = πω(L(Di)) (5)

Although this paper focuses on area estimation, other pa-
rameters can as well be estimated using this property. In
particular, energy [11] can be expressed as a linear combi-
nation of the estimated energy of each part whereas time (in
term of frequency or throughput) is bound by one or more
components of the system. By considering the last formula-
tion, the core of the estimation procedure is the identifica-
tion of a subset of variables Θa ⊂ Πa that can be both mea-
sured on the system description L(Di) and correlated with
FFs and LUTs. Although other promising approaches can
be considered, the variables used are derived from a clas-
sical high-level synthesis procedure. In particular, among

information like loop nesting, number of code lines, input
and output counts and size, variables lifeness, control steps,
etc., the selected subset only includes the number of control
steps, number of control inputs, number of control outputs,
number and size of data registers, number and size of mul-
tiplexers and number, type and size of operators. At RT
level, these variables are easily correlated to FFs and LUTs.
Though at this level other variables are even better corre-
lated with LUTs and FFs (e.g. the number of transitions in
a FSM), their potential gain in accuracy does not balance
the increased computational effort. These issues emphasize
that, although several variables are available at high- and
low-level, the constraint of exportability from HL to LL, the
ease to calculate their value and the accuracy of the estima-
tion reduce the variable sets. At high-level (HL), a prelimi-
nary operation consists in determining a subset of variables
that can be extracted with a specific computational effort
(the upper bound being that of high-level synthesis). At
this level, the analysis of the synthesis procedure could point
out some synthesis templates that can be profitably used to
determine the value of some variables. For example, on a
SystemC model compiled by Synopsys CoCentric SystemC
Compiler, the relation between the number of control steps
and some description characteristics (e.g. wait statements,
loop boundaries, etc.) can be identified. At low-level (LL),
the set of available variables is pruned by a statistical analy-
sis (variable correlation with FFs/LUTs). Successively, the
two subsets of variable (LL and HL) are automatically cor-
related to each other and analyzed to determine their rele-
vance (principal component analysis). After this stage the
two subsets constitute the base of the estimators.

2.3 Methodology structure
The methodology is based on two cascaded models re-

lated to the two synthesis phases as depicted in Figure 1.
The upper slice of the figure shows a generic synthesis flow
from SystemC to FPGA netlist. The lower portion depicts
the proposed two-level methodology based on HL and LL
models. A key point of this works is the automation of the
tuning procedure to minimize the effort required to adapt
the whole flow to changes of the synthesis tools that, in such
process, can be seen as black-boxes.

SystemC
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behavioral
VHDL−RT

synthesis
behavioral

netlist

tuning
HLM

tuning
LLM

parameters
HLM

parameters
LLM

model
HLM

model
LLM #FF

#LUT

Figure 1: Methodology structure

The estimators for HL models are both algorithmic and
algebraic; LL estimators are only algebraic.

3. MODELS, VARIABLES, PARAMETERS
The High-Level model starts from the analysis of the Sys-

temC description and estimates a number of intermediate
variables to be then fed to the LL model. At this level the
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relevant figures are:

#CS, #CI, #CO Number of control steps, inputs, outputs
DREGS Number and size of data registers
MUXS Number and size of multiplexers
OPS Number, type and size of operators

The estimation is performed as shortly described below (de-
tails in [1]). First, each method in the source code is ana-
lyzed sequentially to determine the number of control steps
#CS of the FSM resulting from behavioral synthesis (explicit
CDFG construction is avoided). The result is the identifi-
cation of a certain number of cut-points corresponding to
the beginning of a new control state. The cut-points are de-
termined either directly (wait() statements) or indirectly,
based on the type of construct (loops, conditionals, . . .).
Concurrently, the number of control inputs #CI can also be
derived; in particular, they can be easily approximated with
the overall number of control constructs (loops, conditionals,
function calls) found in each method. Registers belonging to
the datapath (DREGS) can be divided into two sets: output
registers and internal registers. The number and size of the
former are directly related to the number and size of out-
put ports in all modules, while the number and size of the
latter depend both on the explicit signals (local variables)
and implicit signals introduced by the synthesis algorithm
to implement the loops. A combination of common sub-
expression elimination and lifeness analysis of all such vari-
ables leads to the estimate of DREGS. The number, type and
size of the operators (OPS) are determined by analyzing the
source code, already divided into the previously defined con-
trol steps and accounting for mutual exclusion and possible
reuses. The algorithm used to this purpose mimics a sim-
ple allocation and binding procedure. A subsequent analysis
on the set of operators associated to all control steps leads
to the estimation of the number and size of multiplexers
MUXS. To simplify this phase, only worst-case solutions are
considered. Finally, the number of control outputs #CO can
be estimated based on #CI, DREGS and MUXS by a statistical
analysis yielding a multilinear relation.
The Low-Level model combines the high-level figures to

determine the number of LUTs and FFs necessary for the
final implementation of the system. In particular the follow-
ing contributions are identified:

#FFFSM Number of FFs for FSM registers
#FFDREGS Number of FFs for data registers
#FF Overall number of FFs
#LUTDREGS Number of LUTs for data registers
#LUTFSM Number of LUTs for FSM registers
#LUTMUXS Number of LUTs for Multiplexers
#LUTOPS Number of LUTs for operators
#LUTGLUE Number of LUTs for glue logic
#LUT Overall number of LUTs

The estimation of the number of flip-flops is simple:

#FFFSM = 
log2 #CS� (6)

#FFDREGS =
∑

R∈DREGSw(R) (7)

Equation (6) refers to a binary encoding of the state vector
but can be easily adapted to other encoding schemes and
the function w() in Equation (7) returns the bit-width of a
specific register in the set DREGS. As far as lookup tables are
concerned, let considered those dedicated to the reset logic
of the flip-flops:

#LUTDREGS =
∑

R∈DREGSw(R) · reset(R) (8)

where the function reset() returns 1 when the register is sub-
ject to global reset and 0 otherwise. This can be determined
by locating all the output ports written (write() method)
before the beginning of the main loop of each method. The
number of LUTs taken by combinatorial logic belonging to
the control unit is:

#LUTFSM = 
1.99 · #CS− 0.24 · #CI+ 1.50 · #CO− 9.97� (9)

The area required for the operators depends on the type
and size of each of them. Relations for some operators can
be found in literature [12] and easily converted from gates
or equivalent-gates to LUTs. For each multiplexer M, two
parameters must be considered: the number of inputs in(M)
and the bit-width w(M). The number of LUTs is then given
by:

#LUTMUXS =
∑

M∈MUXS
(0.68 · in(M)− 0.14) · w(M)� (10)

These last relations express the overall area of combinato-
rial logic but neglect the contribution related to glue logic.
Though such contribution cannot be derived from analytical
considerations starting from information available at source
level, it is reasonable to suppose that the larger the design,
the more glue logic is required. A statistical analysis con-
firmed this hypothesis and led to the equation:

#LUTGLUE = 0.19(#LUTFSM + #LUTOPS + #LUTMUXS + #LUTDREGS)
(11)

The overall number of LUTs is thus the sum of all contri-
butions. The next two sections will describe the procedure
and the experimental setup adopted for model tuning and
the consequent results obtained on some complex examples.

4. TUNING
Model tuning begins by identifying all the syntactic and

semantic information (number of operators, variable sizes,
loop nesting, code size, . . .) that can be extracted from both
the SystemC description and the resulting RTL-VHDL code.
An accurate black-box analysis of the behavior of the Sys-
temC compiler has driven the identification of the models
and their parameters. The models parameters are first iden-
tified by considering as input the complete set of such in-
formation. A second step allowed pruning the initial set of
parameters by removing: not exportable parameters, hardly
identifiable parameters and statistically negligible parame-
ters, in this order. A parameter is exportable when a good
correlation can be found between its measure at SystemC
level and at RTL-VHDL level. A parameter is hardly identi-
fiable when the syntactic and/or semantic analysis required
on the source code is too complex (e.g. algorithms very sim-
ilar to those used for synthesis). The reduced set of parame-
ters resulting from these first two steps has been subjected to
principal component analysis in order to further shrink the
set of parameters to be eventually considered that are highly
independent from the synthesis tools. Whenever the synthe-
sis and/or optimization algorithms change, a smooth degra-
dation of the estimation accuracy is to be expected. Such
loss of accuracy can be easily compensated by automatically
retuning the models. The tuning process considered the 20
SystemC designs listed in Table 1. The parameters values
have been extracted following a least-square approach. The
high errors that, in a few cases, affect the estimates have
a twofold motivation: the high level of abstraction and the
fact that smaller benchmarks are better synthesized than
larger ones. For all the parameters described in Section 3, a
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thorough statistical analysis has been performed. At high-
level the worst-case corresponds to #CO which has an average
error around 25% and a correlation 0.95. At low-level the
worst-case is #LUTFSM with an average 30% error. All param-
eters, on the other hand have an average correlation of 0.98.
The analysis on all parameters shows that the critical point
is glue logic with errors as high as 120% and low correlation.

Actual Estimated Error (%)
Design #LUT #FF #LUT #FF #LUT #FF
SH16 56 16 75 10 34 38
CONIB 77 37 55 27 -29 27
FSM 86 7 144 7 67 0
SSUM 90 44 124 52 38 -18
DIS 110 45 128 44 16 2
WHEREN 157 61 162 56 3 8
CMUL 159 102 210 102 32 0
CNT16 189 55 124 52 -34 5
REC 217 28 173 29 -20 -4
PB 258 73 350 74 36 -1
POW8 297 125 357 100 20 20
CU 338 103 408 93 21 10
HS 403 106 593 103 47 3
CMOD 541 166 637 166 18 0
MA 721 221 719 221 0 0
FIFO 816 173 544 172 -33 1
CONBHO 928 133 939 119 1 11
FIR 1339 215 727 216 -46 0
DESKEY 1447 251 1026 219 -29 13
DESENC 1434 307 1033 299 -28 3

Table 1: Tuning results

5. VALIDATION
The identified models and parameters have been applied

to a new set of designs (serial/parallel converter, statistical
data analysis, Manchester encoding, Peterson ALFSR, 32-
bit cyclic redundancy check, triple DES encoder/decoder)
with different complexity. Table 2 reports the number of
LUTs and the number of FFs, both actual and estimated,
and the relative estimation error. Errors can be further re-
duced leaving the methodology unchanged but retuning it
with a larger and more uniform set of designs and/or ex-
tracting more than one set of parameters specifically tailored
for particular classes of designs. Decomposing the overall
estimators for #LUT into their basic components and follow-
ing the same procedure adopted in the tuning phase leads
to the results in Table 3. The weighted error affecting the
estimated number of LUTs dedicated to the implementa-
tion of the glue logic is significantly higher than those of
all others. This is due to two main facts. On one hand,
it is intrinsically complex to associate the glue logic to its
origin in a high-level specification that concentrates on the
functional and algorithmic behavior, leaving all the details
to the synthesis process. This is the reason behind the high
absolute error (59%) shown in Table 3. On the other hand,
for the specific designs considered in this work, there is a
mismatch on the expected weight of the glue logic in the
tuning set and in the validation set. The coefficient 0.19 of
equation (11) suggests that glue logic accounts, on average,
for a fraction of 0.19/(1.0+0.19) of the whole design, i.e. ap-
proximately 16%. In the validation set, on the other hand,
the glue logic requires as much as 31% of the overall combi-
natorial resources confirming that a more accurate tuning of
the model parameters based on a larger set of benchmarks
has to be performed.

Actual Estimated Error (%)
Design #LUT #FF #LUT #FF #LUT #FF
TR 104 53 118 53 14 0
HI 189 55 206 52 9 -5
ME 213 68 189 63 -11 -7
P 1359 200 1114 187 -18 -7
CRC 2799 180 2426 175 -13 -3
DES 5557 583 3518 460 -37 -21

Table 2: Validation results

Estimator Weight Absolute Error Weighted Error
#LUTFSM 0.07 13% 9.0%
#LUTOPS 0.06 3% 2.0%
#LUTGLUE 0.31 59% 18.3%
#LUTMUXS 0.53 9% 4.8%
#LUTDREGS 0.03 68% 2.7%

Table 3: Estimators analysis

6. CONCLUSIONS
The paper presented a two-level model to estimate the

area of a complex SystemC design. The model is supposed
to be described in behavioral style and the area is expressed
in terms of number of flip-flops and look-up tables. The re-
sults presented refer explicitly to a specific toolchain (Syn-
opsys SystemC Compiler and Mentor Graphics Leonardo
Spectrum) and a specific target device (Xilinx VirtexII-Pro)
but the structure of the methodology allows semi-automated
retargeting towards different combinations. The proposed
framework is intended for fast area estimation with the ex-
plicit goal of design space exploration within a co-design
environment. The overall accuracy of the models and es-
timators is more than satisfactory under such a point of
view. Furthermore, an academic toolset supporting such
and others (timing, power) metrics and allowing partitioning
of hardware/software systems is currently being developed.
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