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ABSTRACT
We present a method for designing operational amplifiers
using reversed geometric programming, which is an exten-
sion of geometric programming that allows both convex and
non-convex constraints. Adding a limited set of non-convex
constraints can improve the accuracy of convex equation-
based optimization, without compromising global optimal-
ity. These constraints allow increased accuracy for critical
modeling equations, such as the relationship between gm

and IDS . To demonstrate the design methodology, a folded-
cascode amplifier is designed in a 0.18µm technology for
varying speed requirements and is compared with simula-
tions and designs obtained from geometric programming.

Categories and Subject Descriptors:
B.7.2[Integrated Circuits]: Design Aids

General Terms: Algorithms, Design

Keywords: CMOS integrated circuits, operational transcon-
ductance amplifiers, reversed geometric programming

1. INTRODUCTION
The evolution of the microelectronics industry is charac-

terized by an ever increasing level of integration and com-
plexity. This trend has resulted from the industry’s ability to
exponentially decrease over time the minimum feature sizes
used to fabricate integrated circuits. The greatest threat to
the continuation of this evolution is the cost of design.
The recent trend towards systems-on-a-chip forces the rapid

adoption of “digital” semiconductor technologies for ana-
log/RF circuits and a shortening of the analog design cycle
to coincide with the digital design cycle [7]. Analog/RF cir-
cuits account for an increasing portion of the design cost in
mixed-signal chips, even though they typically occupy only
a small fraction of the total chip area. This motivates analog
design automation.
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An important component in automated analog design is
circuit synthesis, which consists of topology selection and
circuit sizing. The first attempts at the analog sizing prob-
lem tried to capture the analog design knowledge heuris-
tically, which proved to be too inflexible. Sizing methods
using general purpose optimization techniques, whereby a
cost metric, such as power or area, is minimized under a
set of performance constraints, have been the subject of ac-
tive research since the late 1980s [7] and offer the advantage
of being straightforward to evaluate, and hence suitable for
large and complex designs, but have the limitation of possi-
bly finding local minima.
However, by using convex optimization, a global mini-

mum can be computed with great efficiency [12]. Geometric
programming is one particular form of convex optimization,
which traditionally has been used for engineering design [5,
1], and more recently also for analog circuit sizing [9].
But this great computational efficiency comes at a price:

the objective and the constraints have to be convex functions
of the design variables. In section 3, we will give several
examples of constraints which occur in analog design and
which are essentially non-convex. Non-convex constraints
are hard to approximate accurately with convex constraints,
and this approximation leads to poorly optimized circuits.
Instead of approximating non-convex constraints with con-

vex constraints, we can trade some of the efficiency in com-
puting the solution for modeling accuracy in the constraints.
For example, reversed geometric programming [4], which is
introduced in section 2.3, allows non-convex reversed con-
straints in addition to the regular convex constraints.

2. REVERSED GEOMETRIC
PROGRAMMING

2.1 Geometric programming
Consider the following optimization problem [5]:

GP : minimize
x∈Rn

g0(x)

subject to gk(x) ≤ 1 for k = 1, . . . ,m

hl(x) = 1 for l = 1, . . . , n

x > 0

10.1
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(a) Non-convex constraint
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(b) Convex approximation

Figure 1: A non-convex constraint and a convex ap-
proximations.

where gk(x) is of the form
∑

i
ci

∏
j
x
ai,j

j

hl(x) is of the form c
∏

j
x
aj

j

The functions gk(x) are called posynomials and the func-
tions hl(x) monomials; both posynomials and monomials
can only have strictly positive coefficients ci, but real ex-
ponents ai,j . An optimization program of the form GP is
called a geometric program.
Notice that the equality constraints can only have a single

term, since they have to be monomials.
It is well-known that the optimization program GP can

be cast in a convex form by transforming the variables ac-
cording to yj = log xj [5]. Hence, efficient computational
techniques for general convex optimization problems, such
as interior-point algorithms, can be applied to the trans-
formed problem [12].

2.2 Convex constraints
Constraints which are not in a posynomial form can be

approximated, e.g. by the techniques in [5, p. 98-101]. If
the constraint is convex, it can be very well approximated
by a set of posynomial constraints. However, if the orig-
inal constraint is non-convex, the general behavior of the
constraint will be lost by approximating it with a convex
constraint. For example, consider the following non-convex
constraint:

y ≥ 1

1 + x

Figure 1 shows the constraint, together with a convex ap-
proximation: y ≥ 1

x
. The shaded areas correspond to the

sets of points satisfying the original non-convex constraint
(figure 1(a)) and the convex approximation (figure 1(b)).
The approximation is exact at one point (x = +∞), but
is more restrictive than the original constraint everywhere
else.
Replacing the non-convex constraint with a convex con-

straint inevitably leads to an over-design of the problem.
Therefore, incorporating the non-convex constraint directly
into the optimization program is necessary to make the cor-
rect trade-offs.
In section 3, we give several examples of constraints which

occur in analog design and which are essentially non-convex.

2.3 Reversed geometric programming
Consider the following optimization problem [4]:

RGP : minimize
x∈Rn

g0(x)

subject to gk(x) ≤ 1 for k = 1, . . . ,m

gk(x) ≥ 1 for k = m+ 1, . . . ,m+ r

hl(x) = 1 for l = 1, . . . , n

x > 0

where again each of the functions gk(x) are posynomi-
als and the function hl(x) are monomials. The constraints
k = m + 1, . . . ,m + r with the inequality sign reversed are
called reversed constraints and are non-convex. The func-
tions gk(x) are convex functions of the variables x, but the
set of points which satisfies gk(x) ≥ 1 is not a convex set.
Any well-posed algebraic program (i.e. a program involv-

ing real-valued functions that are generated solely by addi-
tion, subtraction, multiplication, division and the extraction
of roots) can be transformed into an equivalent reversed ge-
ometric program [4].
Since the optimization program RGP is not convex any-

more, the efficient computational techniques used for regular
geometric programming cannot be used directly in this case.
However, it is still possible to compute a globally optimal
solution and to do better than using a general purpose op-
timization technique.

2.4 Algorithms for reversed geometric
programming

We divide the constraints in convex and reversed convex
constraints. Appropriate techniques can be used for each
category.
We use a branch-and-bound algorithm for the reversed

constraints, similar to the one presented in [8]. This ap-
proach guarantees convergence to the global optimum, but
is slow [10]. At every step, each reversed convex constraint is
approximated by a set of convex constraints which cover the
original solution space completely. A sequence of geometric
programs is solved to find the global optimum.
As pointed out in section 2.2, it is not possible to approxi-

mate a non-convex constraint accurately with a convex con-
straint. However, it is possible to approximate a non-convex
constraint with a set of convex constraints. Figure 2 shows a
set of 2 convex approximations to the non-convex constraint
in figure 1(a), indicated by the shaded regions. The union
of the sets of points satisfying these constraints contains all
the points satisfying the original non-convex constraints. In
addition, the set contains points which do not satisfy the
original constraint.
Each of the constraints in figure 2 can be improved by

replacing it with multiple convex constraints that provide a
tighter approximation to the original constraint. The new
approximations will include less points which do not satisfy
the original constraint. Iteratively refining the constraints
will give approximations arbitrarily close to the original con-
straint. In order to get the global optimum, a geometric
program needs to be solved for each one of the convex ap-
proximations. The minimum of all these GP’s will be the
global optimum.
The branch-and-bound algorithm selectively refines the

sets of convex approximations by expanding those reversed
constraints that are violated most. In the case of the con-
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Figure 2: A set of convex approximations.

straint from figure 1, the algorithm will start by replacing
it with the two convex constraints from figure 2 and solving
the 2 geometric programs. The constraint which yields the
lowest minimum will be selected for further refinement. The
other constraint is not discarded, as it might be refined later
on.
For the synthesized examples in section 5, the branch-and-

bound algorithm executed about 330 geometric programs,
each of them taking 1 to 2 seconds. It is possible to reduce
the computational effort, by exploiting the fact that, after
a couple of steps, the branch-and-bound optimizer solves a
series of only slightly perturbed problems, so that the pre-
vious solution can be used as a good starting point for the
next refinement. Unfortunately, our GP solver currently
does not allow us to specify a starting point.
An interior point optimizer is used for the underlying ge-

ometric program.

3. EXAMPLES OF NON-CONVEX
CONSTRAINTS IN EQUATION-BASED
ANALOG DESIGN

3.1 MOSFET model
A MOSFET has 3 independent variables. A typical choice

of variables is W , L and a bias variable. IDS is preferred
over VGS −VT as the bias variable, since, for a long channel
MOSFET, all small-signal parameters, from weak inversion
to strong inversion, can be expressed as a function of IDS [3],
Expressing the same small-signal parameters analytically as
a function of VGS − VT is not possible, since there is no
analytical solution for the surface potential as a function of
the terminal voltages [15, p. 134].
Since both IDS and 1/IDS and both gm and 1/gm are

used in the design equations for the optimization of opera-
tional transconductance amplifiers [9], IDS and gm have to
be monomials (i.e. single term posynomials). The relation-
ship between IDS and gm cannot be specified as an inequality
constraint, since it cannot be guaranteed that the constraint
will be active for transistors which will be biased with a low
gm/ID ratio and for transistors with will be biased with a
high gm/ID ratio. The gm -IDS ratio has be specified as an
equality constraint. This constraint is probably the most
important device characteristic for analog design [14].
Geometric programming only allows monomial equality

constraints, which automatically leads to a MOSFET model
valid in one region of operation: either the weak inversion,
strong inversion or velocity saturated region. A more com-
plex gm -IDS model can only be specified using a combination
of regular and reversed convex constraints.

For example, the long-channel small-signal model in [6]
and [3] can be expressed as:

gm =
2I0
φth

(√
1 + IDS/I0 − 1

)
where I0 is a normalization current and φth is the thermal

voltage. This expressing can be reformulated as:(
gm

φth
2I0

)2
+2

(
gm

φth
2I0

)
=

IDS

I0
(1)

The first term in equation (1) is dominant in strong in-
version, the second term in weak inversion. Both terms are
necessary to find the correct trade-off between speed and
power in OTA’s. This constraint can be split into a con-
vex and a reversed convex constraint, and thus fits into the
RGP formulation:(

gm
φth
2I0

)2
+2

(
gm

φth
2I0

) ≤ IDS

I0
(2a)

(
gm

φth
2I0

)2
+2

(
gm

φth
2I0

) ≥ IDS

I0
(2b)

Meeting both the convex posynomial constraint (2a) and
the reversed posynomial constraint (2b) is equivalent to meet-
ing (1).
Non-zero numerical tolerances in the algorithms guarantee

that only one constraint will be active. The set of equations:(
gm

φth
2I0

)2
+2

(
gm

φth
2I0

) ≤ IDS

I0

(
1 + εc

)
(3a)

(
gm

φth
2I0

)2
+2

(
gm

φth
2I0

) ≥ IDS

I0

(
1− εr

)
(3b)

defines a band of numerically acceptable solutions (εc and
εr are the tolerances).

3.2 Settling
In switched-capacitor circuits, the OTA is typically put in

a capacitive feedback configuration and is required to settle
in about half a clock cycle. The settling typically consists
of a slewing phase and a linear settling phase.
The slewing part of the settling time is given by [11],[2]:

Tslewing =

{
0 if ∆V ≤ Isat

βgm

τGBW

(
βgm∆V
Isat

− 1
)

otherwise
(4)

where τGBW is the time constant corresponding to the
gain-bandwidth product, β is the feedback factor, Isat is
the maximum current the OTA can deliver, and ∆V is the
maximum voltage step at the output of the OTA.
The linear part of the settling time is often approximated

by τGBW log 1
ε
, where ε is a required upper bound on the

settling error. However, this is only accurate for first order
systems [2] [16].
For higher order systems, the settling error might show

ringing, so that it makes more sense to look at the enve-
lope of the settling error than at the settling error itself.
This envelope decreases exponentially with time, and can be
modeled with an exponential time constant. Figure 3 shows
the time constant of the envelope of the settling error ver-
sus the position of the non-dominant pole, which is clearly
non-convex. A first order approximation τGBW log 1

ε
would

make an error of a factor of 2 for τGBW /τnd = 4. Notice
how for τGBW /τnd = 2, which corresponds to a phase mar-
gin of approximately 65 degrees [13], the simple first order
approximation is exact.
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Figure 3: Time constant of the envelope of the set-
tling error versus the position of the non-dominant
pole.

Table 1: High level constraints

Vpp = 1V

fs varies from 10MHz to 100MHz

v2
n,i ≤ 1

12

(
Vpp

2n

)2

ε ≤ 1
5

1
2n

n = 12

A0 ≥ 500 (54 dB)

The total settling time is the sum of the slewing time and
the linear settling time. This settling time will be a non-
convex function of the time-constants. To size an OTA for
minimum settling time, it is necessary to model this non-
convex behavior.

4. MODELS

4.1 Operational Transconductance Amplifier
As an example, we designed a folded-cascode transcon-

ductance amplifier with different speed requirements. The
schematic of the amplifier is shown in figure 4. The opera-
tional transconductance amplifier is embedded in a capac-
itive feedback network, as shown in figure 5. The actual
circuit configuration that was used is a fully differential ver-
sion of figure 5.
The high level constraints on the operational transcon-

ductance amplifier (OTA) are given in table 1, where Vpp
is the peak-to-peak voltage swing, v2

n,i is the input-referred
thermal noise, ε is the settling accuracy, and A0 is the low-
frequency gain.
A0 is quite relaxed compared to the other specifications;

the topology has much more influence on A0 than the sizing
does. Requiring a high gain from a folded-cascode amplifier
will make the design problem impossible to satisfy.
The model equations used for the OTA and the capacitive

feedback are well know equations [13].

vi+ vi-

vo- vo+

M0

M3

M2

M4

M5

M1

Figure 4: Folded cascode amplifier

-

+
vout

vin

CF

CF

OTA

Figure 5: OTA in capacitive feedback configuration
(single-ended version)

4.2 Device Models
The MOSFET model used in this synthesis approach is

based on a charge-sheet model, which can provide expres-
sions for the small signal parameters as a function of the the
current in all regions of operation (weak inversion - moder-
ate inversion - strong inversion). The model is similar to the
one presented in [3], but includes short channel and noise
parameters.
Some of the ideal equations from the MOSFET model,

together with their posynomial form, are given in table 2.
q is the normalized charge density at the source and i is
the inversion level; the normalization constants I0, gm0 and
Cgs0 are given in table 3. The actual model equations used
in the optimization have some additional fitting parameters
and short-channel corrections. Table 4 shows some of the
modifications for short channel effects. qsat models velocity
saturation; LE is the effective channel length, and γ1 and γ2

are fitting parameters.
The inversion level i = IDS/I0 is a dimensionless met-

ric for the region of operation of MOSFET transistor (weak
inversion - moderate inverion - strong inversion). Weak in-
version corresponds to i � 1, while strong inversion corre-
sponds to i � 1. In strong inversion, the equation in table 2
for q can be approximated by q2 ≈ i (since i � 1 implies

q � 1), so that gm ≈ gm0

√
IDS/I0. In weak inversion, q ≈ i

and gm ≈ gm0IDS/I0.
The model parameters used in this paper were derived

from fitting to SPICE models for STMicroelectronics’ 0.18µm
process. Figures 6 and 7 shows the simulation (SPICE)
model and design (RGP) model for respectively L = 0.18µm
and L = 0.7µm. The SPICE models use the Philips MOS
Model 9.
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Table 2: Ideal long-channel device model

original form posynomial form

q =
√
1 + IDS

I0
− 1 q2 + 2q ≤ IDS/I0

i = IDS/I0 q2 + 2q ≥ IDS/I0

gm = gm0 q gm = gm0 q

Cgs = Cgs0
q(q+3)

(q+2)2
Cgs = Cgs0

q3(q+3)

i2

VDSsat = φth
(
q + 2

)
VDSsat = φth

i
q

γ = 1
2
+ 1

6
q

q+2
γ = 1

2
+ 1

6
q
i

Table 3: Normalization constants for the device
model

I0 = W
L
nvµ
2

Coxφ
2
th

gm0 = 1
nv

2I0
φth

Cgs0 = 2
3
WLCox

Table 4: Some short-channel modifications to the
device model

long-channel equations short-channel equations

gm = 1
nv

2I0
φth

q gm = 1
nv

2I0
φth

q
1+q/qsat

γ = 1
2
+ 1

6
q

q+2
γ = γ1

2
+ 1+γ2/L

6
q

q+2
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Figure 6: gm/ID for the simulation model (—) and
the design model(- -) for L = 0.18 µm

The device model used for optimization and the device
model used for simulation match to within 10 %, which is
an acceptible level of error in that the optimization solution
found is sufficiently close to simulation.

5. SYNTHESIS AND SIMULATION RESULTS
We sized a folded cascode amplifier for the requirements

give in table 1 for sampling speeds ranging from 10MHz to
100MHz. Table 5 shows the size of the optimization problem
for the folded cascode amplifier. Table 6 shows the solution
for fs = 25MHz.
Table 7 compares the target specifications with the per-

formance of the simulated circuit for fs = 25MHz. Since

10
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5
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/W
eff
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g m
/I D

S
 (

1/
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)

Figure 7: gm/ID for the simulation model (—) and
the design model(- -) for L = 0.70 µm

Table 5: Optimization problem size for the folded-
cascode amplifier

# variables 52

# terms 210

# convex constraints 55

# reversed constraints 17

# equality constraints 11

Table 6: Optimization solution for fs = 25MHz

CF 4.4 pF IBIAS 115µA

W0 6.3µm L0 6.89µm

W1 430µm L1 0.21µm

W2 28.5µm L2 0.25µm

W3 114µm L3 1.73µm

W4 4.1µm L4 0.31µm

W5 6.9µm L5 6.89µm

Table 7: Simulated performance for fs = 25MHz
target simulation

A0 ≥ 500 898
GBW ≥ 70MHz 79.1MHz
v2
n,o ≤ 1.99 10−8 V2 1.6 10−8 V2

tsettle ≤ 20 ns 21 ns

the transistor model is only accurate to about 10 %, it is
reasonable to expect the constraints to be met with a 10 %
accuracy. All the constraints are met, except for the settling
constraint, which is violated by only 5 %.
We simulated several designs to check the accuracy of the

design equations over a range of specifications and we com-
pared the results with simulations of designs from regular
geometric programming (GP), as shown in table 8. The set-
tling constraints are violated by a small amount, which we
attribute to the small difference between the device model
used in the simulation and the device model used in the
optimization.
To compare with GP, all reversed constraints were ap-

proximated with convex constraints; for example, the gm -
IDS model from table 2 was approximated by the quadratic
model q =

√
i. Since this approximation predicts a higher
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Table 8: Simulated performance and relative power
consumption versus sampling speed

target RGP GP GP$

fs tsettle tsettle tsettle tsettle PGP�
PRGP

(MHz) (ns) (ns) (ns) (ns)
10 50 53.0 66.6 54.7 3.5
16 31.5 33.5 41.5 34.3 3.5
25 20 21.0 25.1 21.7 3.4
40 12.5 12.9 16.2 13.6 3.4
63 8 8.27 10.1 8.6 3.1
100 5 5.2 6.25 5.4 2.8

gm for the same IDS compared to the full model, it under-
estimates the settling time, as can be seen from table 8. This
modeling error is bias-dependent: it is small in the strong-
inversion regime, but quite large in the weak-inversion re-
gion.
To make GP more accurate, we added extra constraints

to keep the transistors in the strong inversion region, and the
results are shown in the columns labeled GP$. The extra
constraints improve the design accuracy, but at the price
of highly increased power consumption. For these exam-
ples, GP$ gives reasonably accurate solutions, violating the
settling constraint by only 10 %, which is within the error
between the simulation device model and the optimization
device model. However, the power consumption is about
3 times higher compared to the solution from RGP. The
difference is larger for slower, lower-power designs.
This example clearly shows that convex approximations to

critical non-convex model equations can give either inaccu-
rate solutions or inefficient solutions to the design problem.

6. CONCLUSION
Operational transconductance amplifiers can be designed

with accurate models using reversed geometric program-
ming, an extension of geometric programming. Reversed
geometric programming allows both convex and non-convex
constraints. Adding a limited set of non-convex constraints
allows accurate modeling of critical design equations and
yields more efficient solutions.

7. ACKNOWLEDGMENTS
The authors would like to thank DARPA, the C2S2 MARCO

Focus Center, STMicroelectronics, and all the BWRC in-
dustrial sponsors for their support. The authors also would
like to thank D. Sobel and A. Vladimirescu for their helpful
comments.

8. REFERENCES
[1] C. S. Beightler and D. T. Phillips. Applied Geometric

Programming. Wiley, New York, 1976.

[2] C. T. Chuang. Analysis of the settling behavior of an
operational amplifier. IEEE Journal of Solid-State
Circuits, SC-17(1):74–80, 1982.

[3] A. I. A. Cunha, M. C. Schneider, and
C. Galup-Montoro. An MOS transistor model for
analog circuit design. IEEE Journal of Solid-State
Circuits, 33(10):1510–19, 1998. English.

[4] R. J. Duffin and E. L. Peterson. Geometric
programming with signomials. Journal of
Optimization Theory & Applications, 11(1):3–35, 1973.

[5] R. J. Duffin, E. L. Peterson, and C. Zener. Geometric
Programming: theory and applications. Wiley, New
York, 1967.

[6] C. C. Enz, F. Krummenacher, and E. A. Vittoz. An
analytical MOS transistor model valid in all regions of
operation and dedicated to low-voltage and
low-current applications. Analog Integrated Circuits
and Signal Processing, 8(1):83–114, 1995.

[7] G. Gielen and R. Rutenbar. Computer-aided design of
analog and mixed-signal integrated circuits.
Proceedings of the IEEE, 88(12):1825–1854, 2000.

[8] W. Gochet and Y. Smeers. A branch-and-bound
method for reversed geometric programming.
Operations Research, 27(5):982–96, 1979.

[9] M. Hershenson, S. Boyd, and T. Lee. Optimal design
of a CMOS op-amp via geometric programming. IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 20(1):1–21, 2001.

[10] R. Horst and H. Tuy. Global optimization:
deterministic approaches. Springer-Verlag, Berlin,
third edition, 1990.

[11] B. Y. T. Kamath, R. G. Meyer, and P. R. Gray.
Relationship between frequency response and settling
time of operational amplifiers. IEEE Journal of
Solid-State Circuits, SC-9(6):347–52, 1974.

[12] K. O. Kortanek, X. J. Xu, and Y. Y. Ye. An infeasible
interior-point algorithm for solving primal and dual
geometric programs. Mathematical Programming,
76(1):155–181, 1997.

[13] K. R. Laker and W. M. Sansen. Design of Analog
Integrated Circuits and Systems. McGraw-Hill, New
York, 1994.

[14] F. Silveira, D. Flandre, and P. G. A. Jespers. A
gm/ID based methodology for the design of CMOS
analog circuits and its application to the synthesis of a
silicon-on-insulator micropower OTA. IEEE Journal
of Solid-State Circuits, 31(9):1314–19, 1996.

[15] Y. Tsividis. Operation and Modeling of the MOS
Transistor. WCB/McGraw-Hill, Boston, 2nd edition,
1999.

[16] H. C. Yang and D. J. Allstot. Considerations for fast
settling operational amplifiers. IEEE Transactions on
Circuits & Systems, 37(3):326–34, 1990.

138


	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index




