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ABSTRACT
This paper presents a novel hybrid finite-domain constraint solving
engine for RTL circuits. We describe how DPLL search is modi-
fied for search in combined integer and Boolean domains by using
efficient finite-domain constraint propagation. This enables efficient
combination of Boolean SAT and linear integer arithmetic solving
techniques. We automatically use control and data-path abstraction
in RTL descriptions. We use conflict-based learning using the vari-
ables on the boundary of control and data-path for additional per-
formance benefits. Finally, we analyze the hybrid constraint solver
experimentally using some example circuits.

Categories and Subject Descriptors:F.4.1 Mathematical Logic:
Mechanical theorem proving; I.1 Symbolic and Algebraic Manipu-
lation; T.2.2 Verification: Functional and formal verification.
General Terms: Algorithms, Constraints, Circuits
Keywords: Design Verification, Decision Procedures, Boolean Sat-
isfiability, Integer Linear Programming, Bit-vector arithmetic

1. INTRODUCTION
Numerouselectronic design automation(EDA) problems can be ef-
ficiently represented by a combination of Boolean and integer con-
straints – like formal verification and functional test generation for
RTL circuits. A combined decision procedure (CDP) that integrates
decision procedures for Boolean and integer domains should be ideal
for solving such problems.
Boolean Satisfiability(SAT) solvers have improved significantly over
the last few years [13, 17]. SAT solvers are now frequently applied to
EDA problems that are expressible as propositional SAT instances.
However, they still face problems of scalability for large RTL de-
signs. Decision procedures for integer domains such as the Omega
test [11], based onFourier-motzkin elimination[6](FME) are very
efficient for checking satisfiability of large sets of integer constraints.
However, they ignore the distinction between Boolean and integer
domains in the problem for efficiency in the general case. EDA prob-
lems on RTL circuits appear to be such that neither a SAT solver nor
an integer constraint solver can solve them individually in a reason-
able time.
RTL circuit descriptions typically have well defined sets of Boolean
and integer variables. This property allows automatic partitioning of
Boolean control and word-level data-path. We use such a partition to
integrate specialized methods for Boolean domains and integer do-
mains without sacrificing the efficiency of each solver.
The main contribution of this paper is an attempt to generalize the
key elements of efficient DPLL search to an efficient FD constraint
solver for RTL circuits. In our approach, we systematically mod-
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ify DPLL [7], a well-known branch-and-bound algorithm into a hy-
brid DPLL (HDPLL) algorithm, that integrates solvers for Boolean
and integer domains into a cohesive whole. We augment this with
conflict-based learningto drive search into a solution space efficiently.
The rest of this paper is organized as follows: In Section 2, we de-
scribe the relevant prior work. In Section 3, we describe some con-
cepts that are used to explain our approach. In Section 4, we de-
scribe a novelhybrid DPLL constraint-solving(HDPLL) algorithm,
which integrates Boolean search and fourier-motzkin elimination us-
ing FDCP. We also describe modeling issues and our efficient im-
plementation of the FDCP. In Section 6, we describe how we use
conflict-based learning to bound hybrid search. In Section 7, we de-
scribe our experiments to show proof-of-concept of our approach.
Finally, we discuss the results of the experiments in Section 8.

2. PRIOR WORK
There has been a significant amount of work on algorithms that use
a structural description (net-list) of a circuit to improve the perfor-
mance of satisfiability checking [1]. SAT based models of EDA prob-
lems are compact and can be adapted to various logic algebra [16].
A modern SAT solver can solve these problems efficiently. Various
authors have tried to integrate Boolean SAT and BDDs [5]. Iyer pro-
posed constraint solving for generating simulation test-benches [9].
Attempts have been made to combine Boolean and integer arithmetic
solving as two cooperating decision procedures. Barrettet al., pro-
posed integrating apresburger arithmeticsolver and SAT based on
equality propagation and expression rewriting. They also extended
their solver to handle bit-vector arithmetic [2, 3]. These solvers are
designed as generalized decision procedures; not optimized for cir-
cuits. Hence, they are currently impractical for EDA problems.
Liu et al., proposed an elegant approach – CAMA, to solve satis-
fiability of Boolean logic formulas on multi-valued variables [12].
CAMA is quite useful for applications with purely Boolean opera-
tions on word variables, like multi-valued synthesis. CAMA repre-
sents formulas inconjunctive normal form(CNF), with a set-based
representation of the values for each literal. CAMA uses a DPLL
style procedure, with multi-valued implication and resolution on the
clauses in the formula. However, their technique models arithmetic
operations like addition or comparison as Boolean operations on word
variables, which poses scalability problems on general RTL circuits.
We have approached the problem differently from earlier work. We
try to optimize our approach for applications on RTL circuits. We au-
tomatically partition the circuit at points where Boolean and integer
domains interface. The proposed solver based on this partition is a
branch-and-bound algorithm that is easily extensible to other solvers.
We use 3-valued search in the control part to enable implicit enumer-
ation on decision variables. We build on established work to develop
models and data-structures for efficient FDCP. We also use conflict-
based learning to improve the search. Learned relations are Boolean
relations between control signals, which naturally abstract data-path
constraints. Our approach works well, since the integration maintains
performance of the component engines.
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3. BACKGROUND
A rangeof integers[l . . .u], is the set of integers{l , l + 1, . . . ,u}, or
/0 if l < u. A domainD, is a complete mapping from a fixed set of
variablesV to finite sets of integers. A variable is called aground
variable if there is only value in its domain. A Boolean variablebi has
a domain of{0,1}, and a word variablewi , has a domain of{0. . .N},
whereN is a finite integer.
Given a finite set of variablesV , over the set of Boolean values
B ∈ {0,1}, a literal, l/l is a variable,v/¬v ∈ V . A clause ci , is a
disjunction of literals. Given a finite set of variablesxi ∈ W over
finite integer domains, ann− term finite-domainconstraint is an in-
equality of the form:

∑
i

ai ·xi ≥ r, ai , r ∈ I ,xi ∈ {0. . .n}

A primitiveconstraint is a finite-domain constraint with at most three
terms. We denote the set of primary inputs of the RTL circuit by
PI, and the set of primary outputs byPO. Present state variables or
pseudo-primary inputsare denoted byPPI and next state variables
or pseudo-primary outputsby PPO. We may now view satisfiability
on circuits with Boolean and arithmetic operations with Boolean and
word-level variables as aFD constraint solvingproblem.

3.1 DPLL Search
The most effective SAT solvers use a DPLL style branch-and-bound
algorithm [7], shown in Figure 1 to systematically search the possible
solution space.

procedure dpll()
while (Decide() 6= Done) do

while (bcp() == conflict ) do
blevel = analyzeconflicts() ;
if (blevel == 0 ) then

return UNSATISFIABLE;
else

backtrack(blevel) ;
end if

end while
end while
return SATISFIABLE ;

Figure 1: Boolean DPLL with Conflict-based learning.

Initially, the assignment corresponding to the proposition is implied
on the formula. This corresponds toblevel = 0 in Figure 1.
If the procedurebcp (), cannot find a conflict, then the procedure
Decide () makes additionaldecisionson variables using procedure
Decide (). The procedurebcp (), is then called to generate a set of
implied assignments (implications) using BCP. These implications
musthold for the proposition to betrue under the current partial
assignment. An assignment may be inconsistent under two condi-
tions. The first condition occurs when a variable is implied to have
two different values at the same time – aconflict. This is easy to
check when a new value is set on a variable. The second condition
occurs when all the literals in a clause evaluate tofalse. This can be
checked efficiently by checking only those clauses that have a new
implication on its variables during BCP. This process continues until
the search space is empty (UNSAT) or no more decision variables
remain (SAT).
If a conflict is detected, the procedureanalyzeconflicts () per-
formsconflict-based learningto identify the value assignments that
led to the conflict. This is done by selectively applying resolution to
the clauses that implied values during the current partial assignment.
The procedure returns the correct decision to backtrack to. This is de-
noted by the variableblevel in Figure 1. A proof for satisfiability
or unsatisfiability of a set of Boolean clauses is a series of inference

steps using resolution on individual clauses, until an empty clause is
derived. If the collection of conflict clauses implies a conflict with
the proposition to be proved, they constitute a proof of unsatisfiabil-
ity. Hence, the instance is classified as UNSAT.
The main points of interest in the Figure 1 are:

1. The decision variables are a set of variables,V ⊆ V , whereV
comprises all the variables of the propositional formulaC.

2. bcp () is the single most commonly used procedure indpll ().
Its efficiency lower-bounds the efficiency ofdpll ().

3. The bounding of the search space is highly dependent on the
size and nature of the conflict clauses [17]. The conflict clauses
are resolvents on the set of clauses that led to conflicts during
the decision procedure.

In the following section, we describe how we model RTL circuits as a
set of Boolean and arithmetic constraints. We then explain the details
of the hybrid DPLL algorithm and its components.

4. HYBRID DPLL
A Boolean gate in a circuit can be modeled as a conjunction of clauses.
In general, circuits can be modeled as set of constraints – either en-
tirely in CNF for bit-level circuits or pure arithmetic constraints for
RTL data-path, or a mixture of both. HDPLL represents the arith-
metic data-path as a set ofprimitive constraintsand the Boolean con-
trol as a net-list of Boolean-clause based data-structures. This retains
the efficiency of each solver in its domain.
The circuit is automatically partitioned into control and data-path
along thecontrol-data-path interface. This partition includes all bit-
level lines, which are inputs from the control to the data-path and out-
puts from the data-path to the control. RTL operator outputs, which
are used as inputs to the Boolean control logic, are calledinterface
primary outputs(IPO) (e.g. outputs of comparators). Outputs from
the Boolean control to a data-path operator are calledinterface pri-
mary inputs(IPI) (e.g.control lines to mux selects). The set of IPOs
and IPIs are calledinterface points. We describe the details of how
we model RTL operators in the next section.

4.1 Data-Path Modeling
All linear arithmetic data-path operations such as addition, subtrac-
tion, comparison, and multiplexer/case statements can be easily rep-
resented using primitive constraints. In the following, we describe
how we normalize RTL data-path operators into a single type, which
aids the design of our efficient constraint propagation engine. All
word-level variables,wi , are assumed to have a known bit-width and
a known maximum range,L. Therefore, the maximum range of an
arithmetic primitive with bit-widthn, is L = 2n−1.

RTL Operator Model Definition
w1 ≥ w2 GEQ (w1−w2 +L ·b≥ 0)∧ (w2−w1 +L ·b≥ 1)
w1 ≤ w2 LEQ (w2−w1 +L ·b≥ 0)∧ (w1−w2 +L ·b≥ 1)
w1 < w2 LT (w2−w1 +L ·b≥ 1)∧ (w1−w2 +L ·b≥ 0)
w1 > w2 GT (w1−w2 +L ·b≥ 1)∧ (w2−w1 +L ·b≥ 0)
w1 ≡ w2 EQ b1 |= w1 ≥ w2, b2 |= w1 ≤ w2, and(b1 +b2)∧

(b1 +b)∧ (b2 +b)∧ (b1 +b2 +b) is True
if (b) wo = w2 MUX or (w1−wo +L ·b≥ 0)∧ (wo−w1 +L ·b≥ 0)∧
elsewo = w1 ITE (w2−wo +L ·b≥ 0)∧ (wo−w2 +L ·b≥ 0)
wo = w1 +w2 ADD (w1 +w2−wo ≥ 0)∧ (wo−w1−w2 ≥ 0)

Table 1: Modeling of RTL Arithmetic Operations with GEQs

We assume that the evaluation of a comparison operatorcmp is a
Boolean variableb, whereb = 1, only if b |= w1 cmp w2 holds. The
basic GEQ (≥) operator is modeled with a pair of constraints, as
shown in Table 1. All other comparison operations,{≤,<,>,≡},
can be modeled using the basic GEQ operator. For the equality com-
parator, the result is a Boolean variableb, predicated on two auxiliary
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boolean variablesb1 andb2, such that they satisfy the relation shown
in Table 1. The relation is similar tob = b1∧b2, except that the case
of {b1,b2} = {0,0} is forbidden. Hence,b = 0, implies that either
b1 = 1 orb2 = 1.
Multiplexers, addition and subtraction are represented using basic 2-
input constructs, shown in Table 1. Multi-input operations are con-
verted to a flattened representation of these basic constructs. RTL
state machines typically usecase statements. These are modeled
as multiplexers with 1-hot encoded select signals. Non-linear con-
straints such as bit-vector operations, shifts, and mod-2 arithmetic,
can be handled by adding Boolean variables with constant coeffi-
cients. The interested reader is referred to [3, 4] for details and back-
ground. Our implementation currently supports all major non-linear
operations except multiplication and division.

4.2 Hybrid DPLL Algorithm
DPLL-based ATPG algorithms like FAN or PODEM [1] use a subset
of Boolean variables in a circuit to check for satisfiability. Thus, the
problem of finding a satisfying assignment in an RTL net-list with
Boolean and arithmetic operators, is analogous to checking satisfia-
bility of an objective in a Boolean circuit with the decision variables
restricted to the setV ≡ {PI ∪ {IPI ∪ IPO }. If the assignments on
v|v ∈ IP = {IPI ∪ IPO} are simultaneously satisfiable in the data-
path, then the overall problem is satisfiable.

procedurehdpll()
loop

while (Decide() 6= Done) do
while (FdcpFme() == conflict ) do

blevel = hybrid analyzeconflicts() ;
if (blevel == 0 ) then

return UNSATISFIABLE;
else

backtrack(blevel) ;
end if

end while
end while

end loop

Figure 2: Modified DPLL for Hybrid Search.

The main elements of the hybrid DPLL algorithm are shown in Fig-
ure 2. As we can see, it is similar to thedpll () procedure in Figure 1.
The procedureDecide () makes decisions similar to theDecide ()
in Figure 1. Decisions are made only on Boolean variables. Com-
pleteness is ensured by the criterion discussed above.
The Boolean solver finds values, which need to be set onIP in or-
der to satisfy the objective. We use 3-valued search combined with
a reduction algorithm[10], in the Boolean solver. This reduces the
number of assignments on the interface points, which are needed to
satisfy the objective. We view the don’t-cares and Boolean assign-
ments on the interface points as anobjective cube, which encodes
multiple satisfying assignments in a single solution. The objective
cube increases search efficiency by implicit enumeration onIP.
Similar to DPLL, the procedure implies every decision using the pro-
cedureFdcpFme(), which uses a combination of FDCP and FME to
check for new implications and all inconsistency conditions. If a con-
flict is found, then the procedurehybrid analyzeconflicts ()
is called to perform conflict-based learning. This procedure is a mod-
ified version of the conflict analysis routine in Figure 1 to include
FDCP. If FME returns a conflict, we use an iterative procedure to se-
lect a subset of assignments on the interface points that are sufficient
to cause the conflict. This is used as a learned clause to bound the
search. This is further described in Section 6. In the next section, we
describe the details of the procedureFdcpFme() in greater detail

5. EFFICIENT FDCP
FDCP is a subject that has been extensively studied in the theory and
implementation ofconstraint logic programming. It is beyond the
scope of this paper to detail the subtleties involved in general FDCP.
However, we shall explain the basic ideas behind our implementation
by likening it to a generalized version of BCP. The algorithm for
FDCP and consistency checking is shown in Figure 3.

procedureFdcpFme()
for all (ai ∈ impqueue ) do

if (fdcp (ai) == conflict ) then
return conflict ;

end if
end for
for all (ai ∈ impqueue and ai ∈ {IPO ∪ IPI }) do

if (fme () == conflict ) then
return conflict ;

end if
end for

Figure 3: Combined FDCP and FME consistency checking

A constraint is satisfied under some assignment of values to the vari-
ablesxi , if the inequality (equality) holds. Afinite domain constraint
propagation(FDCP) procedure maps a set of constraints,C, and an
initial domainD, to a new domainD ′. Formally:

C∧
^

x∈vars(C)

x∈ D(x)↔C∧
^

x∈vars(C)

x∈ D ′(x)

The procedureFdcpFme() in Figure 3 determines that the constraint
setC and domainD are unsatisfiable when it returns a null domain
D ′. The set of assignmentsimpqueue in Figure 3 can be literals
appearing purely in Boolean clauses, or in integer constraints, or do-
main changes on word-level variables. If all events inimpqueue
are processed without suppressing any implication, then all value
changes in the control, which can affect the data-path and vice-versa
are implied. This is further discussed in Section 7. The procedure
FdcpFme(), consists of two procedures –fdcp () that does FDCP,
andfme () that does a final hybrid consistency check using FME. We
shall explain why we need to use FME in the following.
A constraintκ ∈C is domain consistent if, for each variablev ∈ c,
no value in the domain of the variablev, is known to violate the
constraint. By extension, the entire setC is consistent, if no such vio-
lation is known to exist for every value assignment in the domains
of every variable inκ ∈ C. However, this implies that the entire
constraint set may have to be considered for every domain change
during FDCP, which is computationally very expensive. Therefore,
we consider bounds consistency per constraint for FDCP. The pro-
cedurefdcp () in Figure 3 ensures that the bounds of all variables
in a constraint respect the constraint by making bounds changes on
variables. In general, neither BCP nor FDCP can deduce all possible
implications caused by a set of assignments. In Boolean DPLL any
inconsistency in the propositional formula from assignments can be
detected by checking if any clause evaluates tofalse. However, FD
consistency checking poses additional challenges.
This is further illustrated in the Figure 4. The variables{w1,w2,w3}
in the example, have bit-width 3, and variables{w4,w5} have bit-
width 4. Given the Boolean objectiveb3 = 1, FDCP using bounds
propagation, will imply that{b1,b2,w3}= {1,1,3} and{w4,w5}=
[5, . . . ,10], [5, . . . ,10]}. However,w5 = w2+5 andw4 = w2+3 when
b1 = 1, which implies thatw5 = w4 + 2. This in turns implies that
b2 = 0, which conflicts with the value assignmentb2 = 1. This con-
flict can be detected only by finding the relation betweenw4 andw5.
From the discussion above, it is clear that we cannot check for global
consistency of integer constraints by individually checking each con-
straint. We also cannot implement a complete consistency check-
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Figure 4: Limitations of Constraint Propagation

ing routine based on constraint propagation alone, due to efficiency
reasons. Therefore, we need a final consistency check of the entire
set of arithmetic data-path constraints when FDCP cannot detect a
conflict and the Boolean control is consistent. One of the most effi-
cient methods of checking consistency on FD constraints is fourier-
motzkin elimination [6], which uses resolution on constraints to eval-
uate the size of the solution set for the problem. We use theOmega-
library’s [11] implementation of FME to check consistency of the
FD constraint set if FDCP cannot detect a conflict. This is done by
the procedurefme () in Figure 3, which iteratively checks the satis-
fiability of each assignment on the data-path using FME. In general,
this can be very expensive since FME has a worst-case exponential
complexity. However, this does not appear in the average case.
Clearly, we have a trade-off between the calls to the FME solver and
the expense of constraint propagation. In practice, we find that FDCP
manages to detect most of the conflicts in the hybrid decision proce-
dure, as we shall see in the experimental results in Section 7.

5.1 Implementation of FDCP
We describe the implementation details of our constraint propagation
procedure in this section. A clause can be viewed as a constraint,

∑
i

vi ≥ 1,D(vi) ∈ B

An implicationis determined when all variables except 1 in the clause
are implied to values, which do not add to the minimum value of
the LHS of the constraint. An inconsistency is detected when the
maximum value of the LHS is strictly less than the RHS.
The costliest part of any implication procedure is deciding which
variable in a constraint should be implied. BCP can be highly op-
timized since the Boolean domain has only two values. Theunit
clause rule, states that an unassigned literal is implied to a valueif-
and-only-if all other literals in the clause evaluate to 0. As a corol-
lary, the clause cannot imply if two or more literals are unassigned.
BCP implementations using data-structures likewatched literals[14]
exploit this corollary to evaluate a clause only when an implication
is necessary for consistency.
The LHS of a constraint corresponding to a clause is always equal
to the number of the literals in the clause with assigned values. BCP
watchesthe current value of the LHS, byimplicitly counting the num-
ber of literals, which have been set. This corresponds to the basic
idea in domain propagation in generalized FDCP. The key idea in
our approach is to recognize that watching the sum of the LHS is
exactly the same as usingwatched literalsin BCP. FD constraints
have the added problem of finding the new domain on an implied
variable. While BCP has a 2-valued domain, finite-domains have a
large, albeit finite set of values, which a variable can take. These are
governed by implication rules [8]. The performance of the constraint
propagation is directly proportional to the number of times that the
rule-base is applied. Therefore, we still have the problem of finding
whento apply these rules.
In order to mitigate this problem, we use a generalized version of
watchingfor FD constraints, which is based on the idea that a term

wsumc = ∑i vg
wsumlb = ∑i minD(vi

+)−∑ j maxD(v j
−)

wsumub = ∑i maxD(vi
+)−∑ j minD(v j

−)

Table 2: Definition of Watched Sums for each constraintκ

is implied as soon as its boundmustbe changed for satisfying the
constraint. Thecurrent watched-sum(wsumc), watched lower-bound
(wsumlb), andwatched upper-bound(wsumub) of a constraint are for-
mally defined in the Table 2.
The quantity∑vg in Table 2, represents the sum of all the variables
in a constraintκ, that have been bound to a single value.vi

+ indi-
cates the non-ground variables with positive signs andv j

− indicates
the non-ground variables with negative signs.wsumc +wsumlb rep-
resents the current minimum possible value of the LHS of the con-
straint. If it is greater than the RHS, then the constraint is satisfied.
wsumc + wsumub represents the current maximum possible value of
the LHS. Since it is calculated over the variables, which can have
bound changes, this quantity can be used to check for inconsistency
of the constraint and for the necessity for implications to maintain
consistency of the constraint. The following rules can be deduced for
each constraint based onwsumc, wsumlb, andwsumub :

1. κ is satisfied ifwsumc +wsumlb ≥ r.
2. κ is conflicting ifwsumc +wsumub < r
3. Bound change(s) need to be made on at least one variable inκ,

if wsumc < r andwsumub−wsumlb−wsumc≥ r. κ is currently
in a inconsistent state. It can be made consistent through bound
changes on the domains of the free variables.

The form of the primitive clauses that we use are particularly suited
for variable substitution, since variable substitution in constraints of
3 or less variables are guaranteed to be tighter [8]. Hence, we use
variable substitution for equality propagation. This enables FDCP to
find more implications, especially in circuits with large mux struc-
tures. Detection of equality of two variables during constraint propa-
gation is done by detecting conditions of the form,(ai .wi −a j .w j ≥
0)∧ (a j .w j − ai .wi ≥ 0). If the constant coefficientsai ,a j are the
same, then the two variableswi ,w j are equivalent.

6. LEARNING AND CONFLICT ANALYSIS
In this section, we present a learning scheme for hybrid DPLL, that
drives the search into the solution space by constraining the Boolean
space alone. Conflict-based learning was proposed by Stallmanet al.,
[15] as a method to learn partial assignments, which are guaranteed to
cause a conflict. This was further extended by Marques-Silvaet al.,
for a CNF-based SAT solver, GRASP [13] by tracing the implication
graph. The learned information is stored as a clause called alearned
clause that prevents the assignments, which caused the conflict.
We do not trace the implication graph as in the above techniques due
to complexities introduced by word-variable implications and equal-
ity propagation during FDCP. Instead, we learn conflict clauses on
the interface points. We shall explain the problems associated with
implication-graph-based methods of conflict analysis in HDPLL, us-
ing the example shown in Figure 5(a). We shall then describe our
current method of conflict-based learning.

io1 |= (w1 ≡ w10) where, (b1 |= w1 ≥ w10),(b2 |= w10≥ w1)
io2 |= (w2 ≡ w10) where, (b3 |= w2 ≥ w10),(b4 |= w10≥ w2)
io3 |= (w10≡ w7) where, (b5 |= w10≥ w7),(b6 |= w7 ≥ w10)

Table 3: Modeling of Comparators in Figure 5(a).
The interface points in the circuit in Figure 5(a), areib1, ib2, which
are theinput interface points (IPIs) andio1, io2, io3, which are the
outputinterface points (IPOs). Extra Boolean variablesb1, . . . ,b6 are
introduced, as described in Section 4, since the comparators are mod-
eled as inequalities as shown in the Table 3. The circuit has the prop-
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erty that, with the value assignment{w1, . . . ,w7}= {5,6,5,6,7,8,7},
the IPOs areone-hotencoded.
Figure 5(b) shows the implication graph for the propositionb8 = 1.
We find b8 = 1 implies thatio1 = 1, io2 = 0, and io3 = 1. Fur-
ther, io1 = 1 implies thatb1 = 1,b2 = 1, andio3 = 1 implies that
b5 = 1,b6 = 1. The implications onb1 andb2 bind the domain of
w10 to the value 5. However, this in turn implies thatb6 = 0, which
conflicts with the earlier implication ofb6 = 1. We see that a value as-
signment in the Boolean logic, caused a chain of implications through
the data-path, which implied a value in the Boolean logic. Ideally, we
would trace through the implication graph from the conflict site, and
find that the cause of the conflict, isb8 = 1. This contradicts the
proposition and hence, it is UNSAT.
We can see from the implication graph, thatw10 had two value changes,
one of which caused the second value change. In addition, if a value
is set on the mux select line,i1 beforei2, then equality propagation
would take place.w10 would be replaced byw8 or w9. Therefore,
we need to distinguish between multiple value changes (orincarna-
tions) of a word-variable, and the immediate cause of the change.
This complicates conflict-analysis in the implication graph. There-
fore, we avoid the problem, by taking a different cut in the implica-
tion graph. This is described in the next section.

6.1 Hybrid Conflict Analysis
If some objective in the Boolean control can be satisfied by an assign-
ment of{io1, io2, io3} = {1,0,1}, a naive way of checking whether
this is satisfiable in the data-path is to use an FME solver to check sat-
isfiability of the data-path with this constraint. If this is unsatisfiable,
then we have to back-track and repeat the process, by learning a con-
flict clause that avoids the assignments on the interface – ablocking
clause[10].
We can use all Boolean values on the interface points as alearned
clausein SAT, to drive the solver into the solution space. However,
this leads to enumeration on the the interface points. So they are
calledlooselearned clauses. It would be more efficient to findtight
conflict clauses that restrict the search space in the arithmetic domain
more than loose clauses. To this end, our current method findsunique
implication points(UIPs) [13] if possible. However, while tracing
paths backward from a conflict in the implication graph, we stop at
assignments on variables in the setIP. Intuitively, the learned clause
is a cut in the implication graph. We can find a “good” cut by using
the methods in [13]. However, we can still use other cuts, while
maintaining correctness.
In our method, the cut lies on the interface points. In this example,
we would find the clause(io1 + io3), which is part of the restriction
that the interface points are 1-hot encoded. In general, we find resol-
vents that are larger than those corresponding to UIPs. The method

is applicable only when the conflict is found through FDCP. How-
ever, if FDCP does not find a conflict, then FME is used for a final
consistency check. If FME returns a conflict, then we should find
as tight a clause as possible, on the interface points. This is done
by the iterative loop on FME in the Figure 3. Since the assignments
are processed iteratively, we find a subset of the assignments on the
interface points as a learned clause.
The most significant drawback of these techniques, is that perfor-
mance is now predicated on the nature of the conflict clauses found.
In general, the current conflict analysis in HDPLL may not find the
best clause. Considerable experimentation will have be to done be-
fore we can definitively conclude what the best strategy would be for
classes of RTL circuits.

7. EXPERIMENTAL EVALUATION
In this section, we discuss some experiments on the hybrid DPLL
solver. Our benchmarks are safety properties on RTL circuits drawn
from the ITC’02 benchmarks (b01, b02, b04 and b11). The various
test-cases are logic cones unrolled over time by 10, 15 and 20 time-
frames each. The average word-size was 3-8 bits.
The experiments, shown in the Table 4, are performed on a Pentium-
IV 2.0 GHz with 1GB of RD-RAM. Column 1 shows the test case
name. Columns 2 and 3 shows the number of Boolean and Word
level operators in each test-case. Column 4 shows the number of in-
terface points, which is the size of the control-data partition. Column
5 shows the ratio of arithmetic to Boolean operators in each test-case.
The remainder are the results of the experiments described below.
Experiment 1 (HDPLL 1): First, we ran HDPLL with no constraint
propagation, in order to evaluate the cost of a very naive algorithm.
As we can see from Columns 6-8 in Table 4, the cumulative cost
of FME is prohibitive. The number of calls to the FME solver is
so high, since we do not efficiently bound the search space on the
interface points.
Experiment 2 (HDPLL 2): We then ran HDPLL with a limited
version of constraint propagation, in order to evaluate how useful
constraint propagation is in getting tighter clauses on the interface
points. We expect to find conflicts in the data-path due to value as-
signments on the interface points and also use the implication graph
to get tighter clauses on the interface points. As we can see from
Columns 9-11 in Table 4, the number of calls to FME go down dra-
matically, with a corresponding performance improvement. How-
ever, the Boolean solver still cannot bound the search space very well
since it generates a lot of assignments on the interface points, which
are not satisfiable. This is because the values, which are implied on
interface points due to value assignments on other interface points are
not implied in the Boolean logic. Hence the Boolean solver makes a
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Ckt # Bool # Word Interface Arith/Bool HDPLL1 HDPLL2 HDPLL3 SVC
Ops Ops Points Ratio Without FDCP With limited FDCP With unrestricted FDCP Time

Btrks FME Time Btrks FME Time Btrks FME Time
test1 257 186 121 0.72 29131 7780 31.62 665 1 0.71 173 1 0.05 0.83
test2 417 301 196 0.72 123672 22122 244.94 1309 1 3.23 546 1 0.19 3.8
test3 577 416 271 0.72 – – -to- 2024 1 11.54 1216 1 0.49 -to-
test4 241 340 226 1.41 7786 710 28.02 1776 1 5.44 224 1 0.09 11.66
test5 391 550 366 1.40 31197 6285 1176.17 3844 1 26.27 680 1 0.34 38.81
test6 541 760 506 1.40 – – -to- 17963 1 720.89 1506 1 0.95 -to-
test7 178 252 215 1.41 729 198 0.4 136 1 0.40 26 2 0.2 16.29
test8 283 412 355 1.45 607 214 0.6 154 2 0.70 87 4 0.62 34.17
test9 388 572 495 1.47 1404 465 1.3 218 2 2.10 123 4 1.21 54.86
test10 561 471 325 0.83 – – -to- 2134 1 6.55 713 1 0.49 -to-
test11 876 841 505 0.96 – – -to- 2879 1 20.37 1124 1 1.04 -to-
test12 1191 991 685 0.83 – – -to- 5181 1 102.57 1590 1 1.62 -to-
FME : Number calls to Omega library Btrks: Number backtracks-to- : Aborted after 3600 cpu secs (Time is in CPU seconds)

Table 4: Performance Comparison of Hybrid DPLL with SVC

significant number of assignments, which led to data-path conflicts.
Experiment 3 (HDPLL 3): Next, we allowed implications on the
interface points forward into the Boolean control logic. Columns
12-14 in Table 4 shows that this adds a significant performance im-
provement over the other two approaches (HDPLL1 and (HDPLL2).
This clearly demonstrates the power of constraint propagation com-
bined with conflict-based learning. The results show that the hybrid
constraint solver can handle non-trivial RTL test-cases.
Experiment 4: Finally, we compared HDPLL with SVC [2], which
is an implementation of a cooperating decision procedure, based on
congruence closure. The results for SVC on the same benchmarks are
shown in Column 15 in Table 4. SVC shows a rapid decline in per-
formance when the size of the problem increases. The hybrid DPLL
procedure can complete on all the test cases, where SVC times-out
after 3600 CPU seconds. This clearly demonstrates that HDPLL is
both efficient and scalable as compared to state-of-the art. SVC could
complete only on those test-cases, which had more arithmetic than
Boolean operators (entries> 1 in Column 4). This bears out the in-
tuition that SVC would not scale with increasing complexity in the
control. However, varying relative sizes of the control and data-path
has little effect on the performance of HDPLL. Hence HDPLL ap-
pears to be more robust than SVC.
These experiments clearly demonstrate the power of constraint prop-
agation in HDPLL. Based on the current test-cases, the hybrid search
algorithm is considerably more scalable and faster than SVC [2].

8. CONCLUSIONS
We present an efficient modified DPLL constraint solver for RTL cir-
cuits. We show that FDCP can mitigate the problems involved in
solving combined Boolean and arithmetic constraints. We describe
a strategy of driving the hybrid search into the solution space effi-
ciently by conflict-based learning on the control-data interface. We
show that the integration of constraint propagation in arithmetic and
Boolean domains provides considerable performance improvement
on our benchmarks. However, the approach requires extensive testing
on a variety of benchmarks, before we make any broad conclusions.
The EDA applications of such a solver are considerable. We shall
improve some fundamental aspects of the hybrid solver and applying
it to EDA problems in future. The current investigation into HDPLL
raises some issues, which we shall address in our future work.
Proof Production : The experiments demonstrates that performance
depends on effective conflict-based learning across control and data-
path. The conflict analysis implemented does not support unified
analysis for UIP learning on a hybrid implication graph. It also does
not use information from the FME procedure for better learning. We
shall rectify this in our future work.
Decision Ordering : Currently, we do not make full use of structure
of the data-path to guide the decision strategy. We shall investigate
methods for improving this in the future.

Static Constraint Extraction : It is intuitive that control imposes
most of the constraints on RTL data-path. Hence, effective static
learning across control and data-path using our techniques can en-
able efficient constraint extraction for test and verification.
Bit-vector Logic : HDPLL currently uses bit-slicing to implement
logic operations on bit-vectors. We shall improve this in future.
Sequential Search : HDPLL is currently a combinational solver.
We shall extend HDPLL to sequential SAT [10] on RTL circuits.
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