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ABSTRACT ify DPLL [7], a well-known branch-and-bound algorithm into a hy-

. brid DPLL (HDPLL) algorithm, that integrates solvers for Boolean

This paper presents a novel hybrid finite-domain constraint solving, integer domains into a cohesive whole. We augment this with

engine for RTL circuits. We describe how DPLL search is modizhfjicthased learnintp drive search into a solution space efficiently.

fied for search in combined integer and Boolean domains by usi t of thi . ized as foll - In Sedfion 2 d
efficient finite-domain constraint propagation. This enables efficien'¢ €St of this paper is organized as follows: In Sedion 2, we de-
ribe the relevant prior work. In Sectiph 3, we describe some con-

combination of Boolean SAT and linear integer arithmetic solvin?dcerP . .

techniques. We automatically use control and data-path abstractiPts that are used to explain our approach. In Seffion 4, we de-

in RTL descriptions. We use conflict-based learning using the vafi¢'iPe @ novehybrid DPLL constraint-solvingHDPLL) algorithm,

ables on the boundary of control and data-path for additional pé@’h'Ch integrates Boolean §earch anq foquer-motzkln ellmlngtlon us-
FDCP. We also describe modeling issues and our efficient im-

forman nefits. Finally, we analyze the hybri nstraint solv . . .
ormance bene ts_ aty, we analy .et.e ybrid constraint so plementation of the FDCP. In Secﬂ@ 6, we describe how we use
experimentally using some example circuits. ) . .

. . _ ) . . conflict-based learning to bound hybrid search. In Se¢fjon 7, we de-
Categories and Subject Descriptors:F.4.1 Mathematical Logic: gcripe our experiments to show proof-of-concept of our approach.

Mechanical theorem proving; 1.1 Symbolic and Algebraic Manipugina)ly, we discuss the results of the experiments in Seiion 8.
lation; T.2.2 Verification: Functional and formal verification.

General Terms: Algorithms, Constraints, Circuits
Keywords: Design Verification, Decision Procedures, Boolean Sa2. PRIOR WORK

isfiability, In r Linear Programming, Bit- r arithmeti - .
isfiability, Integer Linear Programming, Bit-vector arithmetic There has been a significant amount of work on algorithms that use

a structural descriptiomgt-list) of a circuit to improve the perfor-
1. INTRODUCTION mance of satisfiability checking]|[1]. SAT based models of EDA prob-

i ) i lems are compact and can be adapted to various logic algebra [16].
Numerouselectronic design automatioiEDA) problems can be ef- A modern SAT solver can solve these problems efficiently. Various
ficiently represented by a combination of Boolean and integer cofythors have tried to integrate Boolean SAT and BDDs [5]. lyer pro-
straints — like formal verification and functional test generation fg5,seq constraint solving for generating simulation test-benthes [9].

RTL circuits. A combined decision procedure (CDP) that integra_te& mpts have been made to combine Boolean and integer arithmetic
decision procedures for Boolean and integer domains should be |dg Ving as two cooperating decision procedures. Baete., pro-

for solving sgch p.rc_JbIems. . o posed integrating aresburger arithmetisolver and SAT based on
Boolean SatlsflabllltySAT) solvers have improved significantly OVerequality propagation and expression rewriting. They also extended
the last few years [13, 17]. SAT solvers are now frequently applied {feijr solver to handle bit-vector arithmetd [2, 3]. These solvers are
EDA problems that are expressible as propositional SAT instancegsigned as generalized decision procedures; not optimized for cir-
However, they still face problems of scalability for large RTL de¢its. Hence, they are currently impractical for EDA problems.

signs. Decision procedures for integer domains such as the Om Aot al proposed an elegant approach — CAMA, to solve satis-
test [11], based offourier-motzkin eliminatiorfo](FME) are very iability of Boolean logic formulas on multi-valued variablés [12].

efficient for checking satisfiability of large sets of integer constraint: fAMA is quite useful for applications with purely Boolean opera-
However, they ignore the distinction between Boolean and inte fons on word variables, like multi-valued synthesis. CAMA repre-

domains in the problem for efficiency in the general case. EDA pro nts formulas irconjunctive normal form{CNE), with a set-based
lems on RTL circuits appear to be such that neither a SAT solver nr%gpresentation of the values for each literal &:AMA uses a DPLL
Zgllen,:i?ﬁ:r constraint solver can solve them individually in a reaso.'[‘,]t'yle procedure, with multi-valued implication and resolution on the
L . . ! clauses in the formula. However, their technique models arithmetic
RTL circuit descriptions typically have well defined sets of Booleagperations like addition or comparison as Boolean operations on word
and llnteger varllabI((ejs. Tr:j'sl prolpderty aIIO\;]vs automatic r?]artltlon_lr_]g riables, which poses scalability problems on general RTL circuits.
Boolean control and word-level data-path. We use such a partition . .
integrate specialized methods for Boolean domains and integer gr%?tg?)\ﬁir?wpi)zper(())%?kzﬁ)(:)rt'gzc%r?(g'lZ?ptljil:fgﬁirgr?g)(l)rﬁr%q']Leg:gﬁirtch\ll(é :l\f

mains V‘{'thOUt s_acrlflcmg th? eﬁ'c'e”‘?y of each solver. . tomatically partition the circuit at points where Boolean and integer

The main contribution of this paper is an attempt to generalize thgmains interface. The proposed solver based on this partition is a
key elements of efficient DPLL search to an efficient FD constraianch-and-bound algorithm that is easily extensible to other solvers.
solver for RTL circuits. In our approach, we systematically modyye yse 3-valued search in the control part to enable implicit enumer-
Permission to make digital or hard copies of all or part of this work for personaltion on decision variables. We build on established work to develop

or classroom use is granted without fee provided that copies are not made,9%dels and data-structures for efficient EDCP. We also use conflict-
distributed for profit or commercial advantage and that copies bear this noti )

tice . > .
and the full citation on the first page. To copy otherwise, republish, post cﬁf’"se_d learning to improve the search. Learned relations are Boolean
servers or redistribute to lists, requires prior specific permission and/or a fg€lations between control signals, which naturally abstract data-path
DAC — 2004 June 7-11, 2004, San Diego, California, USA. constraints. Our approach works well, since the integration maintains
Copyright 2004 ACM 1-58113-828-8/04/000655.00. performance of the Component enginesl
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3. BACKGROUND steps using resolution on individual clauses, until an empty clause is
derived. If the collection of conflict clauses implies a conflict with

A rangeof integers]l...u], is the set of integer§l,| +1,...,u}, or  yhe hronasition to be proved, they constitute a proof of unsatisfiabil-
0if | <u. A domain?, is a complete mapping from a fixed set Ofity. Hence. the instance is classified as UNSAT.

variables? to finite sets of integers. A variable is calledyeound . . . . . )
variable if there is only value in its domain. A Boolean varidjlaas 1€ Main points of interest in the Figur 1 are:

adomain of{0,1}, and a word variables, has a domain of0...N}, 1. The decision variables are a set of variables; 7/, where?/
whereN is a finite integer. comprises all the variables of the propositional form@la

Given a finite set of variableg’, over the set of Boolean values 2. bep () is the single most commonly used procedurdpti ().
B € {0,1}, aliteral, I /I is a variabley/—v € V. A clause ¢, is a Its efficiency lower-bounds the efficiency dpll - ().

disjunction of literals. Given a finite set of variablgse % over 3. The bounding of the search space is highly dependent on the
finite integer domains, an— term finite-domairconstraint is an in- size and nature of the conflict clauses [17]. The conflict clauses
equality of the form: are resc_)l\_/ents on the set of clauses that led to conflicts during
the decision procedure.
Yai-xi=ra,relxe{0...n} In the following section, we describe how we model RTL circuits as a
I

set of Boolean and arithmetic constraints. We then explain the details
A primitive constraint is a finite-domain constraint with at most threef the hybrid DPLL algorithm and its components.
terms. We denote the set of primary inputs of the RTL circuit by
Pl1, and the set of primary outputs IBO. Present state variables "4 HYBRID DPLL
pseudo-primary inputare denoted byPI and next state variables
or pseudo-primary outputsy PPO. We may now view satisfiability A Boolean gate in a circuit can be modeled as a conjunction of clauses.
on circuits with Boolean and arithmetic operations with Boolean ang general, circuits can be modeled as set of constraints — either en-

word-level variables as D constraint solvingproblem. tirely in CNF for bit-level circuits or pure arithmetic constraints for
RTL data-path, or a mixture of both. HDPLL represents the arith-
3.1 DPLL Search metic data-path as a setmfimitive constraintsand the Boolean con-

trol as a net-list of Boolean-clause based data-structures. This retains

The most effective SAT solvers use a DPLL style branch-and-bou ks efficiency of each solver in its domain.

238{i|;?1n;£;]é:_hown in Figurgl1 to systematically search the IOOSSIbT%e circuit is automatically partitioned into control and data-path
along thecontrol-data-path interfaceThis partition includes all bit-
procedure dpll() level lines, which are inputs from the control to the data-path and out-
while (Decide()  # Done) do puts from the_ data-path to the control. RTL operator outputs, which
while (bcp() == conflict ) do are used as inputs to the Boolean control logic, are catieaface
blevel = analyzeconflicts() ; primary outputs(IPO) (e.g. outputs of comparators). Outputs f_rom
if (blevel == 0 ) then the Boolean control to a data-path operator are catieatface pri-
return UNSATISFIABLE: mary inputg(IPI) (e.g.control lines to mux selects). The set of IPOs
else and IPIs are callethterface points We describe the details of how
backtrack(blevel) ; we model RTL operators in the next section.
oo 4.1 Data-Path Modeling
end while All linear arithmetic data-path operations such as addition, subtrac-
return SATISFIABLE ; tion, comparison, and multiplexer/case statements can be easily rep-
resented using primitive constraints. In the following, we describe
Figure 1: Boolean DPLL with Conflict-based learning. how we normalize RTL data-path operators into a single type, which

initiallv. th . di h ition is impli ids the design of our efficient constraint propagation engine. All
nitially, the assignment corresponding to the proposition is Implieg,q_jevel variablesy;, are assumed to have a known bit-width and

on the formula. This corresponds bdevel = 0 in Figure[]. K ; Theref th ; £
If the procedurebcp (), cannot find a conflict, then the procedurea nown maximum rangd.. Therefore, the maximum range of an

; ’ . . . arithmetic primitive with bit-widthn, isL = 2" — 1.
Decide () makes additionatiecisionson variables using procedure P

Decide (). The procedurécp (), is then called to generate a set of RTL Operator Model Definition

implied assignmentsirfiplicationg using BCP. These implications [y, >w, GEQ |[(Wi—w2+L-b>0)A(W2—wy+L-b>1)

musthold for the proposition to bérue under the current partial [ —w, LEQ |(W2 Wi LDb>0)A (W W+ L-b>1)

assignment. An assignment may be inconsistent under two con J\i,\-ll - W, T (W —witLb N DAW—w+L-b S 0)

tions. The first condition occurs when a variable is implied to havqu > T Wi—w, +Lb>1)AWo—wi+L-b>0)
)

two different values at the same time —canflict This is easy to ~

check when a new value is set on a variable. The second conditipfi: =~ "2 EQ by =W > W, bz |= Wy < Wy, and(by +bz)A
occurs when all the literals in a clause evaluatéatee This can be
checked efficiently by checking only those clauses that have a ne
implication on its variables during BCP. This process continues unt
the search space is empty (UNSAT) or no more decision variable¥e =W +Wz | ADD
remain (SAT). ] ) ) ] )
If a conflict is detected, the procedwaralyzeconflicts () per- Table 1: Modeling of RTL Arithmetic Operations with GEQs

forms conflict-based learningo identify the value assignments thatWe assume that the evaluation of a comparison operatgyis a

led to the conflict. This is done by selectively applying resolution tBoolean variablé, whereb =1, only if b}=w; cmp w holds. The

the clauses that implied values during the current partial assignmebdsic GEQ £) operator is modeled with a pair of constraints, as
The procedure returns the correct decision to backtrack to. This is étown in Tablg [L. All other comparison operatiofs;, <,>,=},
noted by the variablelevel in Figure[]. A proof for satisfiability can be modeled using the basic GEQ operator. For the equality com-
or unsatisfiability of a set of Boolean clauses is a series of inferenparator, the result is a Boolean variablgredicated on two auxiliary

(b1 +Db) A (b 4-b) A (by + bz + b) is True
,\i,(,(b)wc,:wz MUX or (W17W0+L'920)/\(W07W1+L-920)/\
ielsewo =wy | ITE (W2 —Wo+L-b>0)A(Wo—wW2+L-b>0)

(Wy + W2 — W > 0) A (Wo — Wy — W2 > 0)
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boolean variableb; andby, such that they satisfy the relation shown5. EFFICIENT FDCP

g}'ﬁblﬁ}}. lh{%rgl}aréog:iizlgfr Ra:n(t:)él;\ 220 ernﬁgﬁ(te;ht?‘t;p :itcha:asre FDCP is a subject that has been extensively studied in the theory and
by = 117orb2 _ 1f ' ' implementation ofconstraint logic programming It is beyond the

Multiol dditi d sub . d using basi scope of this paper to detail the subtleties involved in general FDCP.
ultiplexers, addition and subtraction are represented Using basici.geyer, we shall explain the basic ideas behind our implementation

inputdconstr?lcts, shé)wn in Talle 1 M;JItri]-inpuéoperations are Coy Jikening it to a generalized version of BCP. The algorithm for
verted to a flattened representation of these basic constructs. CP and consistency checking is shown in Figire 3.

state machines typically usmse statements. These are modele
as multiplexers with 1-hot encoded select signals. Non-linear conf
straints such as bit-vector operations, shifts, and mod-2 arithmetig,
can be handled by adding Boolean variables with constant coeffi- ; N == ;

cients. The interested reader is referred {0 [3, 4] for details and back i I’(;Ctili?n (?gnﬂictconf;“d ) then
ground. Our implementation currently supports all major non-linea end if

operations except multiplication and division. end for

for all (g € impqueue anda; € {IPO UIPI }) do
if (fme () ==conflict ) then
4.2 Hybrid DPLL Algorithm return conflict

end if
DPLL-based ATPG algorithms like FAN or PODEM [1] use asubset|  ond for

of Boolean variables in a circuit to check for satisfiability. Thus, the
problem of finding a satisfying assignment in an RTL net-list with
Boolean and arithmetic operators, is analogous to checking satisfia-
bility of an objective in a Boolean circuit with the decision variables constraint is satisfied under some assignment of values to the vari-
restricted to the s&t = {PI U {IPI UIPO }. If the assignments on aplesy;, if the inequality (equality) holds. Ainite domain constraint
V|V clP = {|P| ] |PO} are Simultaneously satisfiable in the datapropaga[ion(FDCP) procedure maps a set of constrai@tsand an

procedure FdcpFme()
for all (& € impqueue ) do

Figure 3: Combined FDCP and FME consistency checking

path, then the overall problem is satisfiable. initial domain, to a new domair’. Formally:
procedure hdpli() CA N\ xeDX)—CA N xeD(x)
loop xevars(C) xevars(C)

while (Decide()  # Done) do
while (FdcpFme() ==conflict )do
blevel = hybrid _analyzeconflicts() ;
if (blevel == 0 )then
return UNSATISFIABLE;

The procedur&dcpFme() in Figure 3 determines that the constraint
setC and domainD are unsatisfiable when it returns a null domain
D'. The set of assignmenisipqueue in Figure[} can be literals
appearing purely in Boolean clauses, or in integer constraints, or do-
main changes on word-level variables. If all eventsnipqueue

elsbicktrack(blevel) . are processed without suppressing any implication, then all value
: ’ changes in the control, which can affect the data-path and vice-versa
end if A g . .
end while are implied. This is further discussed in Secfign 7. The procedure
: FdcpFme(), consists of two proceduresfdcp () that does FDCP,
end while . - - )
end loop andfme () that does a final hybrid consistency check using FME. We

shall explain why we need to use FME in the following.
- ) o . A constraintk € C is domain consistent if, for each variables c,
Figure 2: Modified DPLL for Hybrid Search. no value in the domain of the variable is known to violate the
The main elements of the hybrid DPLL algorithm are shown in Figeonstraint. By extension, the entire €&t consistent, if no such vio-
urg[2. As we can see, itis similar to tdpll () procedure in Figurfg]1. lation is known to exist for every value assignment in the domains
The procedur®ecide () makes decisions similar to tiecide () of every variable ink € C. However, this implies that the entire
in Figure[]. Decisions are made only on Boolean variables. Comenstraint set may have to be considered for every domain change
pleteness is ensured by the criterion discussed above. during FDCP, which is computationally very expensive. Therefore,
The Boolean solver finds values, which need to be sdPoim or- We consider bounds consistency per constraint for FDCP. The pro-
der to satisfy the objective. We use 3-valued search combined wfdurefdcp () in Figure [3 ensures that the bounds of all variables
areduction algorithm{10], in the Boolean solver. This reduces then @ constraint respect the constraint by making bounds changes on
number of assignments on the interface points, which are needed/@iables. In general, neither BCP nor FDCP can deduce all possible
satisfy the objective. We view the don't-cares and Boolean assigiplications caused by a set of assignments. In Boolean DPLL any
ments on the interface points as abjective cubewhich encodes inconsistency in the propositional formula from assignments can be
multiple satisfying assignments in a single solution. The objectivéetected by checking if any clause evaluatefatse However, FD
cube increases search efficiency by implicit enumeratiotPon consistency checking poses additional challenges.

Similar to DPLL, the procedure implies every decision using the prd-his is further illustrated in the Figufg 4. The variableg, w2, w3}
cedureFdcpFme(), which uses a combination of FDCP and FME tdh the example, have bit-width 3, and variabligss, ws} have bit-
check for new implications and all inconsistency conditions. If a corwidth 4. Given the Boolean objecties = 1, FDCP using bounds
flict is found, then the procedute/brid _analyzeconflicts () propagation, will imply thagby, by, w3} = {1,1,3} and{ws,ws} =

is called to perform conflict-based learning. This procedure is amot® ---,10,[5, ..., 10]}. Howeverws = w, + 5 andws = wz +3 when

ified version of the conflict analysis routine in Figdile 1 to includ®1 = 1, which implies thats = wy +- 2. This in turns implies that
FDCP. If FME returns a conflict, we use an iterative procedure to sB2 = 0, which conflicts with the value assignmént= 1. This con-

lect a subset of assignments on the interface points that are sufficidigt can be detected only by finding the relation betwagrandws.

to cause the conflict. This is used as a learned clause to bound mem the discussion above, it is clear that we cannot check for global
search. This is further described in Secfidn 6. In the next section, wensistency of integer constraints by individually checking each con-
describe the details of the procedi@cpFme() in greater detail straint. We also cannot implement a complete consistency check-
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WSum = Vg
©) wsuny = 3 min@<vi+) =Y jmaxpy,-)
"= [5,16]\\\ by WSUMip = 3i MaXp(y+) — 3 j MiNpy, )
+|_ “, @ Table 2: Definition of Watched Sums for each constraink
- GEQ
071 b_/_1_ ,'I b= is implied as soon as its boundustbe changed for satisfying the
® Add W= l510] constraint. Theurrent watched-surfwsung), watched lower-bound
/ Control-Data (wsumy,), andwatched upper-boun@vsumy,) of a constraint are for-
» 10 pin # Interface Points Cut mally defined in the Tab[§] 2.
‘ S . _ The quantityy vg in Table[2, represents the sum of all the variables
Figure 4: Limitations of Constraint Propagation in a constraink, that have been bound to a single valugt indi-

cates the non-ground variables with positive signs\gndindicates
ing routine based on constraint propagation alone, due to efficiengie non-ground variables with negative signsung +wsun, rep-
reasons. Therefore, we need a final consistency check of the eniggents the current minimum possible value of the LHS of the con-
set of arithmetic data-path constraints when FDCP cannot detectgaint. If it is greater than the RHS, then the constraint is satisfied.
conflict and the Boolean control is consistent. One of the most efﬂqsun& -+ wsumy, represents the current maximum possible value of
cient methods of checking consistency on FD constraints is fourigfre LHS. Since it is calculated over the variables, which can have
motzkin elimination|[6], which uses resolution on constraints to evabound changes, this quantity can be used to check for inconsistency
uate the size of the solution set for the problem. We usé©tiega- of the constraint and for the necessity for implications to maintain
library’s [11] implementation of FME to check consistency of theconsistency of the constraint. The following rules can be deduced for
FD constraint set if FDCP cannot detect a conflict. This is done ach constraint based @rsum, wsum,, andwsumy, :
the proceduréme () in Figure[3, which iteratively checks the satis- 1. K is satisfied ifwsum +wsun, > r.
fiability of each assignment on the data-path using FME. In general, . oo -
this can be very expensive since FME has a worst-case exponentia?' K is conflicting ifwsumg +wsumy < r _ _
complexity. However, this does not appear in the average case. 3. 5(\)/\lljsnudn§iapg§é?/asnuenid tov?s?urrrr]sdevv(;rlljrarg E?S:(?Qia’ﬁgﬁ'ﬁie n

b — b — E 0

Clary v hav  tade f etueen e calls o he FVE shet 04y ot . can e madecoristen: v bou
manages to detect most of the conflicts in the hybrid decision proce- changes on the domains of the free variables.

dure, as we shall see in the experimental results in Segtion 7. The form of the primitive clauses that we use are particularly suited
for variable substitution, since variable substitution in constraints of
5.1 Implementation of FDCP 3 or less variables are guaranteed to be tighter [8]. Hence, we use

) ) ] ) ) variable substitution for equality propagation. This enables FDCP to
We describe the implementation details of our constraint propagatiiid more implications, especially in circuits with large mux struc-
procedure in this section. A clause can be viewed as a constraint, tures. Detection of equality of two variables during constraint propa-
zVi >1,D(v) B gation is done by detecting conditions of the f_o!(ran,vw —aj.wj >
| 0) A (aj.wj —ai.w; > 0). If the constant coefficients;, a; are the

. . ) ) same, then the two variables, wj are equivalent.
Animplicationis determined when all variables except 1 in the clause

are implied to values, which do not add to the minimum value of

the LHS of the constraint. An inconsistency is detected when e LEARNING AND CONFLICT ANALYSIS

maX|mum. value of the LHS 1S S.t”C.“y less than the_ RHS'. ) _ In this section, we present a learning scheme for hybrid DPLL, that
The costliest part of any implication procedure is deciding whicHrives the search into the solution space by constraining the Boolean
variable in a constraint should be implied. BCP can be highly ogpace alone. Conflict-based learning was proposed by Stadifan
timized since the Boolean domain has only two values. Thi¢ [15] as a method to learn partial assignments, which are guaranteed to
clause rule states that an unassigned literal is implied to a viflue cause a conflict. This was further extended by Marques-8ilv.,
and-only-if all other literals in the clause evaluate to 0. As a corolor a CNF-based SAT solver,/@sp [13] by tracing the implication

lary, the clause cannot imply if two or more literals are unassignegraph. The learned information is stored as a clause callearaed

BCP implementations using data-structures Vilaiched literald14]  clause that prevents the assignments, which caused the conflict.

exploit this corollary to evaluate a clause only when an implicatiofye 4o not trace the implication graph as in the above techniques due
is necessary for conS|§tency. ) ) to complexities introduced by word-variable implications and equal-
The LHS of a constraint corresponding to a clause is always equgl propagation during FDCP. Instead, we learn conflict clauses on
to the number of the literals in the clause with assigned values. B@¥ interface points. We shall explain the problems associated with
watcheghe current value of the LHS, bnplicitly counting the num-  implication-graph-based methods of conflict analysis in HDPLL, us-
ber of literals, which have been set. This corresponds to the bagig the example shown in Figufe 5(a). We shall then describe our
idea in domain propagation in generalized FDCP. The key idea #iyrrent method of conflict-based learning.

our approach is to recognize that watching the sum of the LHS is

exactly the same as usivgatched literalsin BCP. FD constraints  [io; = (wg =wig) where, (by Ewi > wip), (b2 = wio > wy)
have the added problem of finding the new domain on an implieglio, = (wo = wig) where, (bs |=ws > wig), (bg = wig > wo)
variable. While BCP has a 2-valued domain, finite-domains have gos |= (wig =wy) where, (bs |=wig > wy), (bg = w7 > wig)
large, albeit finite set of values, which a variable can take. These are
governed by implication rule5|8]. The performance of the constraint Table 3: Modeling of Comparators in Figure[5(a].

propagation is directly proportional to the number of times that thehe interface points in the circuit in Figure §(a), dog,iba, which
rule-base is applied. Therefore, we still have the problem of findingre theinput interface points (IPIs) anibs,i0,,i03, which are the
whento apply these rules. outputinterface points (IPOs). Extra Boolean variattgs . ., bg are

In order to mitigate this problem, we use a generalized version pftroduced, as described in Sectign 4, since the comparators are mod-
watchingfor FD constraints, which is based on the idea that a tereled as inequalities as shown in the Taljle 3. The circuit has the prop-
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(a) Learning at the Control-Data Interface. (b) Implications forbg = 1.

Figure 5: Example circuit and implication graph

erty that, with the value assignmevy, ..., w7} = {5,6,5,6,7,8,7}, is applicable only when the conflict is found through FDCP. How-
the IPOs ar®ne-hotencoded. ever, if FDCP does not find a conflict, then FME is used for a final
Figure[5(B) shows the implication graph for the propositign= 1. consistency check. If FME returns a conflict, then we should find
We find bg = 1 implies thatio; = 1,i0, = 0, andioz = 1. Fur- as tight a clause as possible, on the interface points. This is done
ther, io; = 1 implies thatb; = 1,b, = 1, andioz = 1 implies that by the iterative .Ioop on FME in the Figuré 3. Since the assignments
bs = 1,bg = 1. The implications orb; andb, bind the domain of are process_ed iteratively, we find a subset of the assignments on the
wig to the value 5. However, this in turn implies that= 0, which  interface points as a learned clause.

conflicts with the earlier implication dfs = 1. We see that a value as- The most significant drawback of these techniques, is that perfor-
signment in the Boolean logic, caused a chain of implications througiance is now predicated on the nature of the conflict clauses found.
the data-path, which implied a value in the Boolean logic. Ideally, wi& general, the current conflict analysis in HDPLL may not find the
would trace through the implication graph from the conflict site, andest clause. Considerable experimentation will have be to done be-
find that the cause of the conflict, i = 1. This contradicts the fore we can definitively conclude what the best strategy would be for
proposition and hence, it is UNSAT. classes of RTL circuits.

We can see from the implication graph, thap had two value changes,

one of which caused the second value change. In addition, if a value

is set on the mux select ling, beforei,, then equality propagation 7. EXPERIMENTAL EVALUATION

would take placew;q would be replaced bwg or wg. Therefore, . . . . .

we need to distinguish between multiple value change@@arma- In this section, we discuss some experiments on the hybr_ld DPLL
tions) of a word-variable, and the immediate cause of the changylver. Our b’enchmarks are safety properties on RTL circuits dr_awn
This complicates conflict-analysis in the implication graph. Therdfom the ITC’'02 benchmarks (b01, b02, b04 and b11). The various
fore, we avoid the problem, by taking a different cut in the implical€St-cases are logic cones unrolled over time by 10, 15 and 20 time-

tion graph. This is described in the next section. frames each. The average word-size was 3-8 bits.
The experiments, shown in the Taple 4, are performed on a Pentium-
6.1 Hybrid Conflict Analysis IV 2.0 GHz with 1GB of RD-RAM. Column 1 shows the test case

name. Columns 2 and 3 shows the number of Boolean and Word
If some objective in the Boolean control can be satisfied by an assidavel operators in each test-case. Column 4 shows the number of in-
ment of{io1,i02,i03} = {1,0,1}, a naive way of checking whether terface points, which is the size of the control-data partition. Column
this is satisfiable in the data-path is to use an FME solver to check satshows the ratio of arithmetic to Boolean operators in each test-case.
isfiability of the data-path with this constraint. If this is unsatisfiableThe remainder are the results of the experiments described below.

then we have to back-track and repeat the process, by learning a ceperiment 1 (HDPLL 1): First, we ran HDPLL with no constraint
flict clause that avoids the assignments on the interfacblecking  propagation, in order to evaluate the cost of a very naive algorithm.
clause{10]. As we can see from Columns 6-8 in Tafle 4, the cumulative cost
We can use all Boolean values on the interface pointslaaraed of FME is prohibitive. The number of calls to the FME solver is
clausein SAT, to drive the solver into the solution space. Howeveso high, since we do not efficiently bound the search space on the
this leads to enumeration on the the interface points. So they an¢erface points.

calledlooselearned clauses. It would be more efficient to flight  Experiment 2 (HDPLL 2): We then ran HDPLL with a limited
conflict clauses that restrict the search space in the arithmetic domgéision of constraint propagation, in order to evaluate how useful
more than loose clauses. To this end, our current methodditidse  constraint propagation is in getting tighter clauses on the interface
implication points(UIPs) [13] if possible. However, while tracing points. We expect to find conflicts in the data-path due to value as-
paths backward from a conflict in the implication graph, we stop &ignments on the interface points and also use the implication graph
assignments on variables in the Het Intuitively, the learned clause to ge’[ tighter clauses on the interface pointsl As we can see from
is a cut in the implication graph. We can find a “good” cut by usingolumns 9-11 in Tablg]4, the number of calls to FME go down dra-
the methods in[[13]. However, we can still use other cuts, whilgatically, with a corresponding performance improvement. How-
maintaining correctness. ever, the Boolean solver still cannot bound the search space very well
In our method, the cut lies on the interface points. In this examplsince it generates a lot of assignments on the interface points, which
we would find the clauséo; +io3), which is part of the restriction are not satisfiable. This is because the values, which are implied on
that the interface points are 1-hot encoded. In general, we find resioiterface points due to value assignments on other interface points are
vents that are larger than those corresponding to UIPs. The methmaat implied in the Boolean logic. Hence the Boolean solver makes a
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Ckt [# Bool| # Word| Interface| Arith/Bool HDPLLT HDPLL? HDPLL3 svC
Ops | Ops | Points Ratio Without FDCP With limited FDCP || With unrestricted FDCH Time
Birks [ FME | Time Birks [FME| Time [[Btrks[FME] Time
testl | 257 186 121 0.72 29131| 7780 31.62 665 1 071 173 1 0.05 0.83
test2 | 417 301 196 0.72 12367222122 244.94 | 1309 | 1 323 || 546 | 1 0.19 3.8
test3 | 577 | 416 271 0.72 - - -to- 2024| 1 | 1154 1216] 1 0.49 -to-
test4 | 241 340 226 141 7786 | 710 | 28.02 || 1776| 1 544 || 224 | 1 0.09 11.66
tests | 391 550 366 1.40 31197| 6285 | 1176.17|| 3844 | 1 | 26.27| 680 | 1 0.34 38.81
test6 | 541 760 506 1.40 - - -to- 17963 1 |720.89| 1506 1 0.95 -to-
test7 | 178 252 215 141 729 | 198 0.4 136 1 0.40 || 26 2 0.2 16.29
test8 | 283 | 412 355 145 607 | 214 0.6 154 | 2 0.70 || 87 4 0.62 34.17
test9 | 388 572 495 1.47 1404 | 465 1.3 218 | 2 210 || 123 | 4 1.21 54.86
testl0 561 | 471 325 0.83 - - -to- 2134| 1 6.55 || 713 | 1 0.49 -to-
testll 876 841 505 0.96 - - -to- 2879 1 | 20.37| 1124 1 1.04 -to-
testl2| 1191 | 991 685 0.83 - - -to- 5181 | 1 |102.57|1590| 1 1.62 -to-
FME : Number calls to Omega library Btrks: Number backtrack§-to- : Aborted after 3600 cpu secs (Time is in CPU seconds)

Table 4: Performance Comparison of Hybrid DPLL with SVC

significant number of assignments, which led to data-path conflictSStatic Constraint Extraction : It is intuitive that control imposes
Experiment 3 (HDPLL 3): Next, we allowed implications on the most of the constraints on RTL data-path. Hence, effective static

interface points forward into the Boolean control logic. Column&arning across control and data-path using our techniques can en-
12-14 in Tabl§ % shows that this adds a significant performance irble efficient constraint extraction for test and verification.

provement over the other two approaches (HDPhhd (HDPLLZ).  Bit-vector Logic : HDPLL currently uses bit-slicing to implement
This clearly demonstrates the power of constraint propagation colgic operations on bit-vectors. We shall improve this in future.

bined with conflict-based learning. The results show that the hybrequential Search : HDPLL is currently a combinational solver.
constraint solver can handle non-trivial RTL test-cases. We shall extend HDPLL to sequential SAT [10] on RTL circuits.

Experiment 4: Finally, we compared HDPLL with SVC [2], which

is an implementation of a cooperating decision procedure, based@n REFERENCES

congruence closure. The results for SVC on the same benchmarks are
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