
ABSTRACT
Abstraction plays a critical role in verifying complex sys-
tems. A number of languages have been proposed to model
hardware systems by, primarily, abstracting away their wide
datapaths while keeping the low-level details of their control
logic. This leads to a significant reduction in the size of the
state space and makes it possible to verify intricate control
interactions formally. These languages, however, require that
the abstraction be done manually, a tedious and error-prone
process. In this paper we describe Vapor, a tool that auto-
matically abstracts behavioral RTL Verilog to the CLU lan-
guage used by the UCLID system. Vapor performs a sound
abstraction with emphasis on minimizing false errors. Our
method is fast, systematic, and complements UCLID by
serving as a back-end for dealing with UCLID counterexam-
ples. Preliminary results show the feasibility of automatic
abstraction and its utility in formal verification.

Categories and Subject Descriptors
B.6.3 [Hardware]: Logic Design - Verification

General Terms
Verification

Keywords
Register Transfer Level (RTL), Verilog, Abstraction, Logic of
Counter Arithmetic with Lambda Expressions and Uninter-
preted Functions (CLU), UCLID.

1 INTRODUCTION
The state explosion problem is still a major hurdle in verify-
ing systems of today’s scale and complexity. Researchers
nowadays try to increase tools’ scalability by integrating
abstraction paradigms in various layers of verification sys-
tems. In addition to well established research studies for
abstraction (e.g. [6]), it has been successfully used in practi-
cal systems, such as the Microsoft SLAM project [1] and the
Synopsys RFN Tool [14], and research in this domain is still
actively on-going. In particular, datapath abstraction [7, 9]
was found to be a scalable approach for verifying hardware
units, where abstracting the data path is relatively straight-
forward. Consequently, the process of verifying a micropro-
cessor’s implementation against its specification has gained

practicality. The UCLID tool [9] allows such an approach,
whereby designers make assumptions on data path units,
abstract them to uninterpreted entities, and prove properties
on the rest of the circuit, mainly the control part.

Although UCLID is a completely automatic tool, design-
ers have to manually abstract the design and express it in
the UCLID language. We make the pragmatic assumption
that designers would be unwilling to manually abstract the
design for verification purposes, since this necessitates labori-
ous analysis of the RTL, as well as incremental updates to
the UCLID model once the RTL is updated, leading to a
cumbersome verification iteration. In addition, this might
introduce ‘modeling’ bugs that are due to human errors
when modeling for UCLID, while hiding ‘real’ bugs in the
original RTL.

We endeavor to perform such an abstraction automati-
cally from design descriptions that are more familiar to
designers such as a micro-architecture description in an HDL
like Verilog [12]. Vapor (which stands for Verilog Abstraction
for Processor Verification), performs a sound abstraction to
UCLID, while minimizing the effect of false negatives that
are inherent in any abstraction process.

The work of Hojati and Brayton [7] is the most relevant
to our context. In this work, RTL Verilog is translated to an
ICS (Integer Combinational Sequential Concurrency) model,
which describes hardware systems in a high level of abstrac-
tion using integers, interpreted and uninterpreted functions.
Unlike UCLID, the use of uninterpreted functions is limited
to arithmetic manipulation, excludes bit-vector manipula-
tion, and is not particularly tailored to datapath abstraction.

Our choice of UCLID as the abstraction target is due to
UCLID’s automatic and efficient decision procedure [4],
which grants it superiority over theorem provers, and other
decision procedures such as SVC [2]. The rest of this paper is
organized in five sections. Section 2 provides the necessary
UCLID and Verilog notions needed in the rest of the paper.
The abstraction procedure is detailed in Section 3. False neg-
atives and their processing is described in Section 4. The
implementation of Vapor and its empirical evaluation are
discussed in Section 5 and the paper concludes in Section 6.

2 PRELIMINARIES
2.1 UCLID Basics
The logic of equality with uninterpreted functions (LEUF)
[5] enables the construction of abstract hardware models that
are suitable for formal verification. The CLU logic [3]
extends LEUF with counter arithmetic and Lambda expres-
sions and forms the basis of the UCLID verification system

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
To copy otherwise, or republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
DAC 2004, June 7-11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

Automatic Abstraction and Verification of Verilog Models
Zaher S. Andraus and Karem A. Sakallah

Department of Electrical Engineering and Computer Science
University of Michigan

Ann Arbor, MI 48109-2122

{zandrawi,karem}@eecs.umich.edu

14.2

218

[9]. UCLID accepts a CLU model along with a safety prop-
erty and generates a corresponding propositional formula
that is unsatisfiable if and only if the property holds. Sys-
tems such as UCLID have been shown to provide acceptable
expressiveness to model and verify safety properties of mod-
ern out-of-order advanced microprocessors [9, 10].

CLU supports two basic data types, TRUTH and TERM.
It also supports two function types: FUNC which maps a list
of TERMs to a TERM, and PRED which maps a list of
TERMs to TRUTH. These types are combined using opera-
tors from the following set:
• Boolean connectives for TRUTH constants and

variables.
• Equality (=) and ordering (<, >) relations which

operate on TERMs and return TRUTH.
• Interpreted functions succ and pred which take a

TERM and return, respectively, its successor and
predecessor. These functions allow modeling counters
and represent a limited form of integer arithmetic.

• The ITE (if-then-else) operator which selects between
two TERMs based on a Boolean condition.

• Uninterpreted PRED symbols or Lambda expressions
that take TERM arguments and return a TRUTH
value.

• Uninterpreted FUNC symbols or Lambda expressions
that take TERM arguments and return a TERM.

Modeling hardware systems using TERMs, uninterpreted
functions and predicates (UFs and UPs) is the basic mecha-
nism for abstracting unimportant details during verification.
Correctness is assured in the sense that if the abstract model
satisfies a given property, then so does the original concrete
model. Violation of the property by the abstract model, how-
ever, may not imply its violation by the concrete model but
rather that the abstract model is too coarse. The occurrence
of such false negatives is inherent in the abstraction process
and cannot be completely eliminated. The abstraction pro-
cess, thus, becomes a trade-off between hiding as much detail
as possible from the concrete model (for scalable verification)
while insuring that the incidence of false negatives is suffi-
ciently small (for meaningful verification.)

A basic mechanism for reducing the occurrence of false
negatives in logics that use uninterpreted functions is to
insure functional consistency. Symbolically, an n-argument
UF or UP g must satisfy

Such constraints are automatically accounted for by UCLID
during the process of converting the CLU formula to proposi-
tional form. Readers are referred to [11] for a more detailed
discussion of UCLID and its usage scenarios.

2.2 Verilog Basics
Unlike CLU, the Verilog language [12] lacks formal seman-
tics. Verilog evolved as a simulation and, later, synthesis lan-
guage. Thus, its use in formal verification is, at best,
problematic and our abstraction methodology must be prag-
matic in the sense of “doing what’s intended” without mak-
ing any formal claims. Furthermore, we believe that the
benefits of driving formal verification tools directly from a

Verilog description outweigh Verilog’s shortcomings as a for-
mal language.

We assume that the hardware description being
abstracted is written in the so-called synthesizable subset of
Verilog. For abstraction purposes, it is sufficient to view a
design description in Verilog in terms of its data types and
operators. The basic data type in Verilog is the bit. Verilog
also offers two composite data types, bit vectors and memo-
ries, that can be viewed, respectively, as one- and two-dimen-
sional arrays of bits. Bit vectors and memories can also be
referred to as “words” and “word arrays.” Bit vectors allow
read and write access to the entire vector (viewed as an
atomic object) as well as to individual bits or contiguous bit
fields. Furthermore, access to parts of a bit vector can be
explicit (by specifying a range of bits) or implicit (using the
concatenation operator.) In contrast, memories cannot be
accessed atomically; only single words can be read from or
written to a memory. Finally, bits and bit vectors can be
declared as either wires or registers to model, respectively,
combinational or sequential behavior; memories can only be
declared as registers. Verilog fragments showing example dec-
larations of bits and bit vectors, as well as implicit and
explicit access to bit fields, are shown in Figure 1(a, b, c).

3 VERILOG-TO-UCLID ABSTRACTION
As a first-order approximation, the abstraction of a Verilog
description to UCLID can be thought of as a syntactic map-
ping between related variable types in the two languages. For
instance, single- and multi-bit signals in Verilog can be
mapped, respectively, to TRUTH and TERM variables in
UCLID. These mappings, in turn, induce corresponding
mappings between Verilog operators and UCLID logical con-
nectives, UFs, and UPs. Such an approach basically assumes
that multi-bit signals and the function units that operate on
them should be automatically abstracted. This, however,
may not be the case, and may lead to the unintended
abstraction of critical control signals that are grouped in Ver-
ilog as multi-bit vectors, making the abstract UCLID model
too coarse to be usable in verification. In addition, multi-bit
signals typically consist of bit fields that are individually
accessed for reading and/or writing. Correct abstraction in
such cases must account for the relation among the bit fields
and between each bit field and its parent vector. Finally,
abstraction of certain Verilog operators may lead to the gen-
eration of spurious errors since functional abstraction guar-
antees consistency under equality but is oblivious to
properties such as associativity and commutativity; for
example abstracting integer addition with the UF
will insure functional consistency but will not treat

 as identical to as required by commuta-
tivity of addition.

The above observations suggest that an abstraction algo-
rithm must not only examine the declared signal types in
Verilog but also the way such signals are “used” in the body
of the Verilog description. In addition, the abstraction pro-
cess must be complemented with a mechanism that detects
false errors when they arise. In the rest of this section, we
describe how our tool, Vapor, abstracts various Verilog con-
structs to corresponding ones in UCLID. The treatment of
false errors is described in Section 4.

x1 y1=() … xn yn=()∧ ∧ g x1 … xn, ,() g y1 … yn, ,()=→
add x y,()

add x y,() add y x,()

219

Figure 1. Abstraction Example

reg [16:0] word; // 17-bit register
wire [7:0] w_low; // 8-bit bus
wire [7:0] w_high;// 8-bit bus
wire [16:0] out; // 17-bit bus
wire parity; // single-bit wire
wire clk; // clock
reg mode; // single flip-flop

always @(posedge clk)
if (mode == 1’b1)

word[10:3] <= 8’b11001110;
else

word<={parity,{w_high,~w_low}};
assign out = word;

word_10_3 = concat_3_5(word_P_10_8,word_P_7_3)
word_P_10_8 = extract_7_3(word_10_3)
word_P_7_3 = extract_4_5(word_10_3)

always @(posedge clk)
if (mode == 1’b1)

word[10:3] <= 8’b11001110;
else begin

word[16] <= parity;
word[15:8] <= w_high;
word[7:0] <= ~w_low;

end;
assign out = word;

16 15 11 10 8 7 3 2 0

(a) Signal declarations in Verilog

(b) Verilog fragment showing explicit as well as
implicit access to bit fields of ‘word’

(c) Equivalent Verilog fragment where all implicit
accesses to bit fields of ‘word’ are made explicit

(e) Uninterpreted functions that act as axioms relating bit field
word[10:3] to its corresponding blocks in the partition

(d) Partition induced by the bit fields of ‘word’

1 CONST
2 INITS : TERM;
3 concat_5_3 : FUNC[2];
4 extract_7_3 : FUNC[1];(* [7:5] *)
5 extract_4_5 : FUNC[1];(* [4:0] *)
6 bitw_not_8 : FUNC[1];
7 . . .
8 VAR
9 mode_0_0 : TRUTH; (* mode *)
10 word_16_0 : TERM; (* word[16:0] *)
11 word_16_16 : TRUTH; (* word[16] *)
12 word_10_3 : TERM; (* word[10:3] *)
13 word_7_0 : TERM; (* word[7:0] *)
14 w_low_7_0 : TERM; (* w_low[7:0] *)
15 word_P_2_0 : TERM; (* word_P[2:0] *)
16 word_P_7_3_n : TERM; (* word_P_n[7:3] *)
17 word_P_10_8_n : TERM; (* word_P_n[10:8] *)
18 const53 : TERM; (* 8’b11001110 *)
19 . . .
20 DEFINE
21 word_P_7_3_n := case
22 mode_0_0: extract_4_5(const53);
23 default: ...
24 esac;
25 . . .
26 ASSIGN
27 init[word_7_0] := INITS; (* init val *)
28 next[word_10_3] := case
29 mode_0_0 : const53;
30 default: . . .;
31 esac;
32 next[word_7_0] := case
33 mode_0_0: concat_5_3(word_P_7_3_n ,
34 word_P_2_0);
35 default: bitw_not_8(w_low_7_0);
36 esac;
37 . . .

(f) UCLID fragment corresponding to the update of
bit field word[7:0]

16

15 11 10 8 7 3 2 0

0

16

15 8 7 0 10 3

16 0 16 15 8 7 0 10 3

16
word_10_3

extract_7_3
extract_4_5

concat_3_5

word_10_3

(g) Uninterpreted extraction and concatenation functions needed to insure consistency between ‘word’ and its bit fields.
The highlighted arrows show the relation between ‘word_10_3’ and its corresponding blocks in the partition of ‘word’.

TERMs
corresponding
to Verilog
bit fields

TERMs
corresponding
to induced
partition

220

3.1 Abstraction of Verilog Variables
Table 1 depicts the basic template for abstracting Verilog
variables to corresponding UCLID variables. Based on their
“bit structure” Verilog variables are classified into three
main types.
• Single-bit variables which are 2-valued and naturally

modeled as UCLID TRUTH variables.
• Multi-bit words which are viewed as unsigned

integers and translated into corresponding UCLID
TERM variables.

• Word arrays which typically denote memories or
register files and are conveniently represented by
UCLID UF variables.

Except for the abstraction of bit vectors, these mappings are
straightforward. Bit vectors require additional machinery to
insure that their abstraction is consistent. Specifically, given
a Verilog bit vector X, we must not only create a UCLID
TERM to represent X but also create additional TERMs to
represent each of its individually-accessed bit fields. Further-
more, we must introduce a set of uninterpreted functions
that relate these TERMs to each other. Otherwise, UCLID
treats these TERMs as completely independent, potentially
leading to the generation of numerous false errors.

Without loss of generality, assume that X is a vector of n
bits such that is the most significant bit. It is con-
venient to view X as the interval . Assume further
that the set of individually-accessed bit fields of X is denoted
by . Thus, is a set of possibly overlapping subinter-
vals of . Finally, let denote the coarsest
partition of induced by . For example, if X is

, and ,
then .

 Consistency can now be established by introducing
TERMs for each of the bit fields in and and a
corresponding set of complementary uninterpreted extraction
and concatenation functions that relate these TERMs. These
functions are designed to insure that whenever a bit field in

 is changed, appropriate updates are made to all the
other bit fields that overlap it. While such functions can be
given arbitrary names (subject to giving different functions
distinct names), for documentation purposes and to facilitate
debugging, they are given names that indicate their intended
purpose. Thus, extraction functions are named
extract_m_w(X) to indicate the extraction of w bits from bit
vector X starting at bit position m1. Similarly, concatenation
functions are named concat_w1_. . ._wk(X1, . . . , Xk) to
indicate the concatenation of k bit vectors X1, . . . , Xk
whose bit widths are w1, . . . , wk . A similar naming conven-

tion is adopted for TERM and TRUTH variables; e.g., the
Verilog bit vector X[a:b] is declared as the TERM X_a_b.

These notions are illustrated in Figure 1 which depicts (in
part c) a Verilog fragment and (in parts e and f) the corre-
sponding UCLID abstraction. Consider, in particular, how
the bit vector word[7:0] gets updated. From the Verilog frag-
ment, it is clear that portions of word[7:0] are assigned to in
both branches of the if statement. Specifically, when mode is
equal to 1, the five most significant bits of word[7:0] (i.e.
word[7:3]) may change because of the assignment to
word[10:3]. And when mode is equal to 0, word[7:0] is
assigned the value of ~w_low. These updates are facilitated
by introducing the following UCLID TERMs and associated
uninterpreted functions:
• mode_0_0, word_10_3, and word_7_0 to denote

the Verilog variable mode, and the individually-
accessed bit fields word[10:3] and word[7:0]

• word_P_2_0 and word_P_7_3 to denote the bit
fields of word in the induced partition;
word_P_7_3_n is a temporary TERM that denotes
the next value of word_P_7_3

• the UF extract_4_5() which relates word_7_3 to
word_10_3; word_7_3 is derived from word_10_3
by extracting 5 bits starting from the fourth most
significant bit position

• the UF concat_5_3() which reconstructs word_7_0
from word_P_7_3_n and word_P_2_0

• the UF bitw_not_8() which represents bitwise
negation applied on w_low_7_0.

The update of word[7:0] is now achieved as follows:
1. word[7:0] is initialized to some arbitrary symbolic constant

(line 27)
2. when mode is equal to 1, word[10:3] is assigned an uninter-

preted constant value (lines 28 and 29)
3. the next value of word[7:0] is set to bitw_not_8(w_low)

if mode is equal to 0 (line 35) or, if mode is equal to 1, to
the concatenation of the new value of its 5 most significant
bits and the old value of its 3 least significant bits (lines
33 and 34).

The general scheme described above can be simplified in cer-
tain situations and such simplifications can lead to signifi-
cantly more efficient translations from Verilog to UCLID.
For example, if the individually-accessed bit fields of a Ver-
ilog bit vector are mutually disjoint, it is not necessary to
introduce additional TERMs for the partition blocks.
Extraction may also be simplified when applied on constants.
These optimizations reduce the size of the propositional for-
mula generated by UCLID since UCLID encodes TERMs
using a bit string whose length is a function of the total num-
ber of TERMs and UFs applications being processed. Fur-
thermore, we found that such an optimization eliminates
many unnecessary false errors by avoiding the need for using
extraction UFs.

In the process of obtaining the coarsest refinement over a
set of bit vectors, some of the blocks in the resulting parti-
tion may end up being single bits. These single-bit fields can
be modeled as TERMs and used in extraction and concate-
nation as described above. This, however, might allow them
to get more than 2 different symbolic values. In such cases,
we use UPs, instead of UFs, as extraction functions. When

1 Without loss of generality, bit vectors are assumed to be
numbered such that bit 0 is in the least significant position.

Table 1. Basic Abstraction of Verilog Variables

Variable Type Verilog UCLID

Single-bit wire parity; parity : TRUTH;

1-D bit vector reg [31:0] PC; PC : TERM;

2-D bit vector reg [63:0] RF [31:0]; RF : FUNC[1];

X n 1–[]
n 1 : 0–[]

XF XF

n 1 : 0–[] π XF()
n 1 : 0–[] XF

15 : 0[] XF 15 : 0[] 15 : 8[] 7 : 0[] 10 : 3[], , ,{ }=
π XF() 15 : 11[] 10 : 8[] 7 : 3[] 2 : 0[], , ,{ }=

XF π XF()

XF

221

the block (TRUTH variable) needs to be concatenated, it has
to be “type cast” to TERM, using an appropriate ITE
expression.

3.2 Abstraction of Verilog Constants
Constants in Verilog are treated as unsigned integers. Typi-
cally, small constants are used in arithmetic expressions such
as “PC <= PC + 32’d4”. Large constants, on the other
hand, are frequently employed for bit masking as in
“var <= var ^ 8’b01101010”. Vapor distinguishes between
small and large Verilog constants based on a user-specified
threshold. It then abstracts large constants to CONST
TERMs in UCLID. Such an abstraction disregards the
numerical value of these constants and treats them as a col-
lection of independent unordered integers. Small constants
are not abstracted. Rather, they are modeled as UCLID vari-
ables using the interpreted functions succ and pred. For
example, 32’d4 is declared in UCLID’s VAR and DEFINE
sections as “const4:TERM”, and “const4:=succ^4(const0)”,
respectively, where const0 is declared as a CONST TERM
representing the integer 0. Treating small constants in this
fashion guarantees that their ordering is preserved.

3.3 Abstraction of Verilog Operators
In our translation, the variable types in UCLID induce oper-
ator abstractions: TRUTH variables are manipulated via
Boolean connectives; TERM variables via UFs. Equality for
TERMs is implemented using ‘=’ in UCLID, while for
TRUTH variables equality is modeled using an XNOR rela-
tion. Arithmetic (and bitwise) operators correspond to UFs2

except when small constants are involved, where we use the
succ and pred interpreted functions. Comparisons (less than
and greater than) are modeled as UPs. A facility to black
box certain modules and treat them as atomic is also pro-
vided, and mainly used to model memories and FIFOs, etc.

It is worth mentioning that the use of UCLID’s succ/pred
to represent constant separation imposes the semantics of
unbounded addition/subtraction in Verilog, and disallows
arithmetic overflow. This can be easily guaranteed by rewrit-
ing the Verilog code if necessary.

4 FALSE NEGATIVES
As mentioned earlier, one potential source of false negatives
is UCLID’s obliviousness to associativity and commutativity
of integer arithmetic. Less obvious, perhaps, is that false neg-
atives can be caused by the concatenation and subfield
extraction UFs introduced above. These UFs are also oblivi-
ous to the fact that the bit vectors they operate on encode
integers and can only guarantee functional consistency. Sup-
pose that X and Y are two bit vectors such that .
Clearly, integer arithmetic guarantees that Y[2:0] = X[2:0].
This fact, however, cannot be discerned by the concatenation
or extraction UFs, and might lead to false errors.

A possible way of tackling these problems is using
UCLID’s quantification [9]. Unfortunately, UCLID does not
have a complete translation to quantified formulas, since this
fragment of the logic is undecidable. In addition, the over-

head of handling a large number of quantified properties a
priori is costly and not needed in most cases.

Instead, we handle counterexamples on demand as they
occur during the verification process. Thus far, designers had
to manually analyze UCLID’s counterexamples. This is
impractical since these examples are presented in terms of
the abstract model, and consist of interpretations to the
terms and applications of UFs and UPs. These interpreta-
tions are consistent, as guaranteed by the correctness of
UCLID’s decision procedure, but are not necessarily mean-
ingful in terms of the original design, and the exact values
cannot be validated by means of simulation. Instead, a satis-
fiability check is necessary to validate that the interpreta-
tions are consistent with the original Verilog semantics.

Vapor retrieves the semantics of Verilog operators, as well
as values of constants, and combines them with the current
interpretations of UFs and UPs. To illustrate using the above
example, UCLID produces the counterexample

. Vapor trans-
lates this to and passes it
on to a theorem prover which finds that the negation of this
formula is provable, concluding that the formula is not satis-
fiable. This helps the designer identify UCLID’s counterex-
ample as spurious instead of treating it as a real bug.

5 EXPERIMENTAL RESULTS
Vapor was implemented in C++ for Linux, and integrated
with UCLID and Verilog Icarus Compiler [17]. The Verilog
subset supported by Vapor is constrained by:
1. Synthesizable behavioral Verilog that is compliant with

IEEE Verilog 1364-1995 Standard [13].
2. Sequential logic is synchronized using a single clock edge.
3. Bit- and part-selection use only constant indices, unless it

is a 2-D memory array.
In this version of Vapor, we work with ACL2 theorem prover
[8]. In case the counter-example includes an UF that did not
originate from a Verilog operator (e.g. a user defined UF), we
use ACL2 stub functions to model it, which allows reasoning
with the presence of unknown semantics.

Our first set of examples is taken from the VIS bench-
marks [19]. Using Vapor, we abstracted to UCLID and veri-
fied a set of control-dominated circuits:.

In the ITC99-b12 UCLID generated a false negative due
to the absence of integer semantics in the concatenation UFs.
Specifically, it determined that {1’b1,1’b1,1’b1,1’b1} 4’dF.
ACL2 showed this to be false, and the UCLID model was
updated (a counter was re-implemented) to eliminate the
false error, and eventually lead to a true counterexample.

In [10] Mneimneh et al. present a hybrid verification
method for microprocessors, whereby a checker processor
verifies correctness of a core processor. The checker processor

2 The UF/UP naming convention is similar to the one used for the
concatenation UFs.

Y X 8+=

Table 2: Results for VIS benchmarks

Circuit
Name

Verilog
Lines Property/Result

ITC99-b01 91 controller property passed
ITC99-b12 494 controller property failed as

specified in the benchmark
ITC99-b13 274 Absence of reset, passed

extract_2_3 X() extract_2_3 succ^8 X()()≠
X 2:0[] Y 2:0[]≠{ } Y X 8+={ }∧

" ≠

222

has to be bug-free, and thus has to be formally verified. In
order to perform that, a set of properties has to be verified,
which exercise the possible scenarios of the checker. For
example, starting from a ‘valid’ state (regular mode, all pre-
vious core errors were recovered), the checker will remain in
the same mode if the result given by the core is identical to
the specifications. To perform this task, we used Vapor to
abstract the Verilog description of the checker. We wrote a
Verilog specification module that was automatically
abstracted as well. The 75 Verilog signals included 438 bit-
and part-selections, were modeled by corresponding TERMs,
and induced 227 partition TERMs. Applying optimizations,
as explained earlier, reduced the model to 12 concatenation/
extraction UFs, yielding a CNF model of 3828 and 10630
variables and clauses respectively, which is a 10X reduction
relatively to the unoptimized model. The following errors
were found in the Verilog code:
1. A coding error caused the Ra and Rb register indices from

the IR to swap. Vapor successfully revealed the error.
2. The HLT (halting) op-code was coded differently in the

specification and implementation, and our system issued a
counterexample in this case as well, showing the error.

3. The implementation module had a discrepancy relatively
to the specification module: The code checks for the
CMPULT (compare-unsigned less-than) opcode, and
assigns the commit register with 64’d1 if Ra<Rb; The
specification code, in contrast, follows the mnemonics of
the CMPULT instruction as specified by the Alpha Spec
[15], and assigns the result register with the value {63’d0,
Ra<Rb}. Due to the loss of semantics of the concatenation
UF in UCLID, a false counterexample was generated,
albeit successfully identified by ACL2 to be spurious.

The bug-free version of the checker eventually passed the
test. The abstraction and verification process took 83 sec-
onds on a Pentium-III 1GHz machine equipped with 3 GB of
RAM, and running Linux Redhat 9. We used UCLID v. 1.0
[18] with ACL2 v. 2.7 [16].

Unlike in [10], where opcodes are manually verified one by
one, our system verifies all 14 implemented opcodes simulta-
neously. Moreover, the checker includes two 256 32-bit word
memory arrays which are modeled symbolically by 2 UFs.
The advantage of Vapor compared to bit-level tools becomes
more important with the presence of big memory arrays.

6 CONCLUSIONS
The motivation behind Vapor emerges from the need for
automatic abstraction from the RTL, in an era of increasing
complexity of hardware systems. While verification of datap-
ath elements was extensively studied in the past, control and
mixed (data/control) property verification has not been sys-
tematically approached. In this paper, we presented a sys-
tematic approach for safe abstraction from Verilog, and easy
counterexample analysis. We are enhancing Vapor to allow
utilization of UCLID capabilities in propositional encoding,
as well as automatic refinement from the RTL.

7 ACKNOWLEDGEMENTS
This work was funded in part by the DARPA/MARCO
Gigascale Systems Research Center, and in part by the

National Science Foundation under ITR grant No. 0205288.
The authors would like to thank Randy Bryant and his
group in Carnegie Mellon, for their assistance in using and
understanding UCLID.

REFERENCES
[1] Thomas Ball and Sriram K. Rajamani, “The Slam

Project: Debugging System Software via Static Analy-
sis”. POPL 2002, January 2002, pages 1-3.

[2] C. Barrett, D. Dill, and J. Levitt, “Validity checking for
combinations of theories with equality“. In FMCAD ‘96,
LNCS 1166 pages 187-201.

[3] Randal E. Bryant, Shuvendu K. Lahiri, Sanjit A. Seshia,
“Modeling and Verifying Systems using a Logic of
Counter Arithmetic with Lambda Expressions and
Uninterpreted Functions”. In Proc. CAV, July 2002.

[4] R. E. Bryant, S. German, and M. N. Velev, “Exploiting
positive equality in a logic of equality with uninter-
preted functions”. ACM Transactions on Computational
Logic, 2(1):93-134, January 2001.

[5] J. R. Burch and D. L. Dill, “Automatic Verification of
Pipelined Microprocessor Control“. CAV ‘94, D. L. Dill,
ed., LNCS 818, Springer-Verlag, June 1994, pp. 68-80.

[6] Edmund M. Clarke, Orna Grumberg and David E.
Long, “Model Checking and Abstraction”. ACM-
TOPLAS, Vol. 16, No. 5, 1512 -, September 1994.

[7] R. Hojati and R. K. Brayton, “Automatic Datapath
Abstraction of Hardware Systems“. Proc. Conf. Com-
puter-Aided Verification, Liege, Belgium, June 1995.

[8] Matt Kaufmann and J Moore, “An Industrial Strength
Theorem Prover for a Logic Based on Common Lisp”.
IEEE Transactions on Software Engineering 23(4), April
1997, pp. 203-213

[9] Shevendue K. Lahiri, Sanjit A. Seshia, Randal E. Bry-
ant, “Modeling and Verification of Out-of-Order Micro-
processors in UCLID”. FMCAD 2002

[10] Maher Mneimneh, Fadi Aloul, Chris Weaver, Saugata
Chatterjee, Karem Sakallah andTodd Austin, “Scalable
Hybrid Verification of Complex Microprocessors“. Proc.
38th DAC, pages 41-46, July 2001.

[11] Sanjit A. Seshia, Shuvendue K. Lahiri, Randal E. Bry-
ant. “A User’s Guide to UCLID version 0.1”.

[12] Donald E. Thomas and Philip R. Moorby, “The Verilog
Hardware Description Language“. Kluwer Academic
Publishers, Nowell, Massachusetts, 1991.

[13] “IEEE Std 1364-1995, IEEE Standard Hardware
Description Language Based on the Verilog® Hardware
Description Language“ IEEE, Incs.

[14] Dong Wang, Pei-Hsin Ho, Jiang Long, James Kukula,
Yunshan Zhu, Tony Ma, Robert Damiano, “Formal
property verification by abstraction refinement with for-
mal, simulation and hybrid engines”, In Proceedings of
the DAC, pages 25-40, 2001.

[15] Digital Equipment corporation, “The Alpha Architec-
ture Handbook“. 1992.

[16] www.cs.utexas.edu/users/moore/acl2/
[17] www.icarus.com/eda/verilog/
[18] www-2.cs.cmu.edu/~uclid
[19] vlsi.colorado.edu/~vis

223

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

