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Abstract 
We use model checking techniques to verify a switching 
block in a new Gigabit Ethernet switch – BCM5690. Due 
to its dynamic nature, this block has been traditionally 
difficult to verify. Formal techniques are far more efficient 
than simulation for this particular design. Among 26 
design errors discovered, 22 are found using formal 
methods. We then improve our model checking capability 
to analyze switch latency. We also use induction to avoid 
state explosion in the model checker. 
 
Categories & Descriptors: B.7.2 
 
General Terms: Verification 

1 Introduction 
 
System-On-Chip (SOC) design is becoming considerably 
more complicated. Traditional simulation based validation 
methodologies often fail to discover corner-case design 
errors. In this paper, we discuss how to use a symbolic 
model checker, Cadence SMV [CBL98], to validate the 
Ethernet switching logic block in a new Gigabit Ethernet 
networking chip, the BCM5690. This block traditionally 
has been difficult to verify due to its dynamic nature and 
great concurrency. In fact, we have seen a number of bugs 
missed by simulation approaches on earlier 
implementations. 
 
The main contribution of this paper is to show how to 
apply appropriate formal techniques to industrial problems. 
We show the ideas behind our verification decisions and 
subsequent abstraction techniques. Our first and most 
important decision is that the primary goal is to search the 
design for errors instead of completely verifying it. We 
will justify this decision and its consequences in later 
sections. We will also discuss our definition of “high-
quality” bugs and analyze our results with respect to that 
definition. In addition, we also extend the result obtained 
 
 
 
 
 
 
 
 
 

from formal analysis to identify correct performance 
margin.  We believe that this performance analysis cannot 
be achieved by either formal or simulation approaches 
independently. Building on classic model checking, we 
then introduce a novel induction to avoid state explosion as 
the environment model becomes sophisticated. Among the 
total of 26 design errors uncovered, 22 were found by 
formal methods. As a result, the chip has been shipping for 
two years with no bugs in this block. We believe that our 
experience is applicable to many other scenarios.   
 
Although formal verification has not yet been widely 
adopted by industry, a number of successful applications 
have been accomplished. A number of commonly used 
design structures such as pipelines, bus arbiters and 
Tomasulo’s algorithm have been verified using formal 
techniques [BD94, M98, CCLW99]. Recently, engineers 
have started to apply formal techniques on a wider range 
of designs [A00, B01]. Specifically, Bentley [B01] shows 
that the Intel team found over 100 “high-quality” logic 
bugs in the Pentium IV. However, because networking 
chips lack exact specifications, this design presents a 
fundamentally different verification problem compared to 
other regular design structures. As a result, our verification 
effort is significantly different from previous work. 
 
This paper is organized as follows. In Section 2, we 
describe the functionality and micro-architecture of the 
design. We discuss specific features and intuitive 
observations that affect our verification decisions. Section 
3 sketches our basic abstraction techniques while Section 4 
outlines our experimental results by introducing two 
metrics to analyze bug quality. We extend our model 
checking capability in Section 5. Finally, Section 6 draws 
conclusions based on our experience. 

2 Design Under Verification 
 
The BCM5690 is a single chip with 12 Gigabit Ethernet 
ports, one 10-Gigabit high-speed interconnect and a CPU 
interface. For each packet, Ethernet switching (Layer 2, or 
L2), IP switching (Layer 3, or L3) and higher level 
switching occurs in a special block called the Address 
Resolution Logic (ARL) by mapping addresses to physical 
ports in tables, both L2 and L3, stored in memory.  The 
table data can be statically or dynamically added, deleted, 
or updated.  This paper focuses on the L2 table. 
 
For each packet, there are at most three possible actions 
that the ARL performs: source address lookup, destination 
address lookup, and dynamic learning. If the chip is 
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running at 125MHz (default setting), the L2 table logic 
must finish these actions within 84 cycles for each Gigabit 
port and within 8 cycles for the 10-Gigabit port [KKC98]. 
The L2 table is structured as a hash table (Figure 1).  The 
16K logical entries are mapped to 2K buckets, with 8 
entries per bucket, using a hash function.  There is no 
ordering between the buckets.  Similarly, within each 
bucket, there is no ordering among the entries. Dynamic 
modifications are decoupled read-modify-write operations 
which require coherency. Aging (dynamic deletion) has 
lower priority than lookups. Hence, the design must 
account for starvation cases. 
 
 

 

Figure 1 Micro-architecture for L2 logic 

The L2 table logic is traditionally difficult to verify due to 
its dynamic nature. For example, learns can be cancelled 
for many reasons. Without knowing the exact state of the 
logic, it is almost impossible to predict when learns 
happen. In Section 4, we will further discuss this 
observation. Second, performance issues are difficult to 
identify in simulation.  Multiple operations associated with 
a single packet can be decoupled over many cycles.  
Erroneous behavior may thus result in an observable effect 
thousands of cycles after the fact, or not at all, depending 
on the test or application.  Third, writing a checker for this 
block is not appropriate. The checker can be easily written 
similarly to the RTL.  It is then difficult to guarantee its 
correctness. 
 
In this work, we decide to apply formal techniques. Since 
it is difficult to come up with a complete specification, we 
choose not to fully verify this block. Instead, we focus on 

finding as many bugs as possible. Our decision has been 
justified based on its effectiveness. The chip has been 
shipping for two years with no bugs in this block. 

3 Model Reduction 
 
In order to discover design errors efficiently, we have 
made two verification decisions. First, we write as many 
properties as possible because there is no complete 
specification available. Second, we apply abstraction to 
reduce the design size. The L2 table logic includes around 
3000 registers and a 16K-entry (1Mbit) lookup table. To 
our knowledge, state-of-the-art model checkers cannot 
verify such large-scale designs with complicated 
properties. Therefore, we apply aggressive abstraction 
even when some features are not completely verified. In 
Section 5, we extend our effort to verify some uncovered 
features. 
 
Assume that a Kripke structure M [CGP99] models the L2 
table logic. Also let M ↓ t be a short-hand notation for M 
where a function t is disabled. For example, M ↓ aging 
represents the reduced L2 table model where aging is 
disabled. Then we find that the buckets in the L2 table are 
fully symmetric on M ↓ aging. Instead of modeling all 
2048 buckets, we only need to model two buckets. With 
aging enabled, we still use the reduced L2 table because 
the original table is too large. This may introduce both 
false positive and false negative behaviors into the 
abstracted model. With careful debugging, we have been 
able to avoid unwanted behaviors. Similar symmetry exists 
within buckets, i.e., any two entries within a bucket are 
symmetric. Instead of modeling eight entries per bucket, 
we only model two entries. 
 
Besides reducing the table size, we also apply two 
abstractions to further reduce the complexity. First, the 
MAC addresses are represented by two bits instead of 48 
bits. This technique is widely used in formal verification. 
Second, the behaviors of the 12 Gigabit ports are 
independent, though they are not symmetric. Let M ↓ porti 
denote the L2 table model without sending requests from 
port i, if we disprove a universal property on the reduced 
model M ↓ porti, that property will be false in the original 
model M. Hence, we only keep at most two Gigabit ports 
instead of twelve. Note that the 10-Gigabit port and the 
CPU interface are modeled accurately. By applying these 
abstractions, we reduce the size of the L2 table model to 
fewer than 200 registers (Table 1). 
 
 OriginalModel AbstractModel 
#registers 2878 < 200 
#buckets 2048 2 
#entries/bucket 8 2 
#bits/mac addr 48 2 
#Gig ports 12 2 

Table 1 Abstraction effect on model size 

In addition to abstractions, we also simplify the 
environment model. A request from a Gigabit port to the 
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L2 table arrives at least every 84 cycles. It is difficult for 
SMV to complete a fix-point computation if we model that 
exactly. We also observe that a single request from 
multiple ports is more interesting than multiple requests 
from a single port. Therefore, we only model one request 
per port, significantly reducing the computation time. Most 
bugs are found with this simplified environment. To 
improve coverage, we show how to debug the scenario 
with multiple requests in Section 5.2. 
 
These abstractions are accomplished by recoding the RTL 
using ePerl [OSSP98]. The rewritten code is configurable. 
For example, if we want to verify the logic with one 
Gigabit port, one 10-Gigabit port, and aging, ePerl will 
generate the model and its related properties automatically. 

4 Design debugging 
 
We have written over 200 properties in ePerl. For different 
configurations, the number of properties varies from 150 to 
300. The runtime for a property ranges from 15 seconds to 
2 hours. We have verified 35 configurations. It took four 
man months to complete the formal verification process. 
Parallel with this work, a traditional simulator is developed 
at the ARL level. The simulator has found 4 bugs in the L2 
table logic while SMV has found 22 bugs. One reasonable 
explanation of the difference is that the simulator not only 
needs to stimulate the error behavior in the L2 table logic, 
it has to make them visible at the ARL interface. However, 
a simple comparison of these two numbers is meaningless 
because the simulator would find more bugs if our formal 
verification were not performed. In order to understand the 
quality of these bugs, we introduce two metrics, error 
stimulus and error visibility. 
 
The first metric is the error stimulus function, or ES.  This 
is simply the probability of the input stimuli required to 
discover the bug starting with the initial states. For 
example, assume that a valid MAC address A is stored in a 
particular bucket of the L2 table. ES for a lookup of MAC 
address B with h(B)=h(A) is 1/2048. In computing ES, we 
only consider the best possible known case to stimulate the 
corresponding bug. This provides a conservative 
approximation of ES. 
 
The error visibility, or EV, of a bug is a function of time 
and input stimuli.  EVtime is the number of cycles required 
for erroneous behavior to propagate to the test bench.  
EVstim measures the probability of the input stimuli 
required to propagate the bug from cause to externally 
visible symptom.  Then EV = EVstim/EVtime provides a 
means of comparing the relative visibility of bugs. Note 
that EVstim is calculated similarly as ES, based on a 
conservative approximation. As an example, let us assume 
that the minimum number of cycles to propagate a bug to 
the ARL interface is 84 cycles. Also assume that the 
required stimuli include a sequence of events: 
 

• Two consecutive 10Gigabit port lookup requests 
on bucket i, 

• A specific Gigabit port lookup request also on 
bucket i,  

then  
    EVstim = (1/13)2 * 1/2048 * 1/13 * 1/2048=2.5e-7 
and 
    EV = EVstim/EVtime = 3.0e-9.  
Note that EV is evaluated conservatively because EVtime is 
approximated using the shortest trace and EVstim is the 
upper-bound probability for stimuli required to propagate 
the bug. 
 

Figure 2 ES/EV for every bug found by SMV 
 
The error stimulus ES and error visibility EV are reported 
in Figures 2. The X axis corresponds to the cumulative 
number of bugs. The Y axis corresponds to ES and EV 
separately. Note that the Y axis is in logarithm scale (-6 
means that 10-6). The lower the value, the less likely that 
the bug is found by the simulator. For example, it is much 
more difficult to stimulate bug No.16 than bug No.15. We 
believe that the simulator can easily catch bug No.15. In 
contrast, without formal approaches, it is extremely 
difficult for random simulation to catch bug No.16. We do 
not compute the EVs for bug No.4 and No.5 because we 
do not know how to propagate them to the ARL interface 
directly. However, they degrade the system performance. 
Accumulated inefficiencies eventually lead to a visible 
error. The required number of simulation cycles can be 
prohibitively large. 
 

5 Improving Model Checking 

5.1 Rigorous performance analysis 
Due to aggressive abstraction, certain important 
performance issues are not addressed. For example, all 
Gigabit port lookup requests and learns must be served 
within 84 cycles. The initial analysis shows that the design 
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has 47% and 21% margin for lookups and learns 
respectively. 
Given our abstracted model, we are not able to verify these 
performance requirements. However, in an abstracted 
configuration, SMV finds that a learn is served far later 
than expected when the logic transitions from the aging 
mode to the normal switching mode (Figure 3). If a lookup 
request comes just before that transition, it is possible that 
its learn happens much later. By manual construction of a 
similar scenario for all ports, we find that the performance 
requirement for learns is only marginally satisfied. The 
margin for learns reduces to 3% from 21%. This raises 
potential problems due to the assumptions made in the 
design. It is extremely difficult for simulation to detect this 
trace because it requires that over twenty different 
behaviors occur in a specific order and time. Starting with 
an SMV trace, we construct valuable analysis that cannot 
be accomplished by either simulation or formal 
verification independently. 
 

 Figure 3 the performance analysis for learns 

5.2 Verifying multiple requests scenario 
In Section 3, we make an assumption that only one request 
comes from each port in our abstracted model. The 
interaction between consecutive requests from the same 
port is neither modeled nor verified. Ideally, if a request is 
served, the related state registers return to the reset values. 
In reality, this is not true because the residual state of the 
previous request may not be cleared. This may introduce 
unexpected behavior for subsequent requests. We solve 
this problem by modeling consecutive requests using a set 
Q of initial states larger than the original set I of initial 
states, i.e., I ⊂  Q, and Q - I models the set of residual 
states. Note that the L2 table is already modeled non-
deterministically. Only the initial values for the registers 
outside the L2 table need to be considered.  
 
Let M ↓ req be the L2 table model with only one request 
for each port and p be a universal property on M ↓ req. The 
key to extend our result is to find the reachable set of states 
Q. It is a difficult task. Our idea is that, instead of 

searching for the exact Q, we predict its projection on 
subsets of registers. Assume that V is the set of registers on 
M ↓ req. We partition V into m equivalence classes Vi, i.e., 
V = Um

i iV  and ViI Vj=Φ. Let Qi denote the projection of 

Q on Vi. Then we try to predict Qi using the model 
checker. If we fail to predict Qi, or Qi  is too large, then we 
use the projection of I on Vi, denoted as Ii. Eventually, we 
use Q’ = Qi1 × … × Qij ×  Ik1 × …×  Ikp as the set of 
initial states for model checking. Apparently, we are not 
able to fully verify our intended property on M with this 
approximation. However, this extension does increase our 
verification confidence. With the approximation Q’, we 
uncover a new bug in which the residual state from a 
corrupted packet’s learn request interferes with a 
subsequent packet. 

6 Conclusion 
 
In this paper, we use formal techniques to verify a 
complicated Ethernet switching table. We start by applying 
aggressive abstraction to debug the basic logic. Its 
effectiveness is demonstrated by a number of “high-
quality” RTL bugs. Then, based on classic model 
checking, we extend our effort formally and informally to 
analyze performance. In contrast to ad hoc performance 
simulation, such rigorous analysis is beyond the capability 
of either simulation or formal techniques alone. We also 
extend classic model checking using a novel induction to 
avoid state explosion as the environment model becomes 
sophisticated. Our experience can be applied to many table 
driven designs without much difficulty. 
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