
Verifying A Gigabit Ethernet Switch Using SMV

Yuan Lu Mike Jorda
Enterprise Switching Division

Broadcom Corporation
{ylu,mjorda}@broadcom.com

Abstract
We use model checking techniques to verify a switching
block in a new Gigabit Ethernet switch – BCM5690. Due
to its dynamic nature, this block has been traditionally
difficult to verify. Formal techniques are far more efficient
than simulation for this particular design. Among 26
design errors discovered, 22 are found using formal
methods. We then improve our model checking capability
to analyze switch latency. We also use induction to avoid
state explosion in the model checker.

Categories & Descriptors: B.7.2

General Terms: Verification

1 Introduction

System-On-Chip (SOC) design is becoming considerably
more complicated. Traditional simulation based validation
methodologies often fail to discover corner-case design
errors. In this paper, we discuss how to use a symbolic
model checker, Cadence SMV [CBL98], to validate the
Ethernet switching logic block in a new Gigabit Ethernet
networking chip, the BCM5690. This block traditionally
has been difficult to verify due to its dynamic nature and
great concurrency. In fact, we have seen a number of bugs
missed by simulation approaches on earlier
implementations.

The main contribution of this paper is to show how to
apply appropriate formal techniques to industrial problems.
We show the ideas behind our verification decisions and
subsequent abstraction techniques. Our first and most
important decision is that the primary goal is to search the
design for errors instead of completely verifying it. We
will justify this decision and its consequences in later
sections. We will also discuss our definition of “high-
quality” bugs and analyze our results with respect to that
definition. In addition, we also extend the result obtained

from formal analysis to identify correct performance
margin. We believe that this performance analysis cannot
be achieved by either formal or simulation approaches
independently. Building on classic model checking, we
then introduce a novel induction to avoid state explosion as
the environment model becomes sophisticated. Among the
total of 26 design errors uncovered, 22 were found by
formal methods. As a result, the chip has been shipping for
two years with no bugs in this block. We believe that our
experience is applicable to many other scenarios.

Although formal verification has not yet been widely
adopted by industry, a number of successful applications
have been accomplished. A number of commonly used
design structures such as pipelines, bus arbiters and
Tomasulo’s algorithm have been verified using formal
techniques [BD94, M98, CCLW99]. Recently, engineers
have started to apply formal techniques on a wider range
of designs [A00, B01]. Specifically, Bentley [B01] shows
that the Intel team found over 100 “high-quality” logic
bugs in the Pentium IV. However, because networking
chips lack exact specifications, this design presents a
fundamentally different verification problem compared to
other regular design structures. As a result, our verification
effort is significantly different from previous work.

This paper is organized as follows. In Section 2, we
describe the functionality and micro-architecture of the
design. We discuss specific features and intuitive
observations that affect our verification decisions. Section
3 sketches our basic abstraction techniques while Section 4
outlines our experimental results by introducing two
metrics to analyze bug quality. We extend our model
checking capability in Section 5. Finally, Section 6 draws
conclusions based on our experience.

2 Design Under Verification

The BCM5690 is a single chip with 12 Gigabit Ethernet
ports, one 10-Gigabit high-speed interconnect and a CPU
interface. For each packet, Ethernet switching (Layer 2, or
L2), IP switching (Layer 3, or L3) and higher level
switching occurs in a special block called the Address
Resolution Logic (ARL) by mapping addresses to physical
ports in tables, both L2 and L3, stored in memory. The
table data can be statically or dynamically added, deleted,
or updated. This paper focuses on the L2 table.

For each packet, there are at most three possible actions
that the ARL performs: source address lookup, destination
address lookup, and dynamic learning. If the chip is

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post
on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

14.4

230

running at 125MHz (default setting), the L2 table logic
must finish these actions within 84 cycles for each Gigabit
port and within 8 cycles for the 10-Gigabit port [KKC98].
The L2 table is structured as a hash table (Figure 1). The
16K logical entries are mapped to 2K buckets, with 8
entries per bucket, using a hash function. There is no
ordering between the buckets. Similarly, within each
bucket, there is no ordering among the entries. Dynamic
modifications are decoupled read-modify-write operations
which require coherency. Aging (dynamic deletion) has
lower priority than lookups. Hence, the design must
account for starvation cases.

Figure 1 Micro-architecture for L2 logic

The L2 table logic is traditionally difficult to verify due to
its dynamic nature. For example, learns can be cancelled
for many reasons. Without knowing the exact state of the
logic, it is almost impossible to predict when learns
happen. In Section 4, we will further discuss this
observation. Second, performance issues are difficult to
identify in simulation. Multiple operations associated with
a single packet can be decoupled over many cycles.
Erroneous behavior may thus result in an observable effect
thousands of cycles after the fact, or not at all, depending
on the test or application. Third, writing a checker for this
block is not appropriate. The checker can be easily written
similarly to the RTL. It is then difficult to guarantee its
correctness.

In this work, we decide to apply formal techniques. Since
it is difficult to come up with a complete specification, we
choose not to fully verify this block. Instead, we focus on

finding as many bugs as possible. Our decision has been
justified based on its effectiveness. The chip has been
shipping for two years with no bugs in this block.

3 Model Reduction

In order to discover design errors efficiently, we have
made two verification decisions. First, we write as many
properties as possible because there is no complete
specification available. Second, we apply abstraction to
reduce the design size. The L2 table logic includes around
3000 registers and a 16K-entry (1Mbit) lookup table. To
our knowledge, state-of-the-art model checkers cannot
verify such large-scale designs with complicated
properties. Therefore, we apply aggressive abstraction
even when some features are not completely verified. In
Section 5, we extend our effort to verify some uncovered
features.

Assume that a Kripke structure M [CGP99] models the L2
table logic. Also let M ↓ t be a short-hand notation for M
where a function t is disabled. For example, M ↓ aging
represents the reduced L2 table model where aging is
disabled. Then we find that the buckets in the L2 table are
fully symmetric on M ↓ aging. Instead of modeling all
2048 buckets, we only need to model two buckets. With
aging enabled, we still use the reduced L2 table because
the original table is too large. This may introduce both
false positive and false negative behaviors into the
abstracted model. With careful debugging, we have been
able to avoid unwanted behaviors. Similar symmetry exists
within buckets, i.e., any two entries within a bucket are
symmetric. Instead of modeling eight entries per bucket,
we only model two entries.

Besides reducing the table size, we also apply two
abstractions to further reduce the complexity. First, the
MAC addresses are represented by two bits instead of 48
bits. This technique is widely used in formal verification.
Second, the behaviors of the 12 Gigabit ports are
independent, though they are not symmetric. Let M ↓ porti
denote the L2 table model without sending requests from
port i, if we disprove a universal property on the reduced
model M ↓ porti, that property will be false in the original
model M. Hence, we only keep at most two Gigabit ports
instead of twelve. Note that the 10-Gigabit port and the
CPU interface are modeled accurately. By applying these
abstractions, we reduce the size of the L2 table model to
fewer than 200 registers (Table 1).

 OriginalModel AbstractModel
#registers 2878 < 200
#buckets 2048 2
#entries/bucket 8 2
#bits/mac addr 48 2
#Gig ports 12 2

Table 1 Abstraction effect on model size

In addition to abstractions, we also simplify the
environment model. A request from a Gigabit port to the

… an M x (N/M)
hash structure

port
aging

M

entry 1

entry N

2 1

1

N/M map
func

arbiter

compare logic

access
control
logic

dynamic
learn FIFO

timed
aging

bucket
select

N-entry
table
maps
to …

GE

GE

GE

GE

GE

GE

GE

GE

GE

GE

GE

GECPU

10G

231

L2 table arrives at least every 84 cycles. It is difficult for
SMV to complete a fix-point computation if we model that
exactly. We also observe that a single request from
multiple ports is more interesting than multiple requests
from a single port. Therefore, we only model one request
per port, significantly reducing the computation time. Most
bugs are found with this simplified environment. To
improve coverage, we show how to debug the scenario
with multiple requests in Section 5.2.

These abstractions are accomplished by recoding the RTL
using ePerl [OSSP98]. The rewritten code is configurable.
For example, if we want to verify the logic with one
Gigabit port, one 10-Gigabit port, and aging, ePerl will
generate the model and its related properties automatically.

4 Design debugging

We have written over 200 properties in ePerl. For different
configurations, the number of properties varies from 150 to
300. The runtime for a property ranges from 15 seconds to
2 hours. We have verified 35 configurations. It took four
man months to complete the formal verification process.
Parallel with this work, a traditional simulator is developed
at the ARL level. The simulator has found 4 bugs in the L2
table logic while SMV has found 22 bugs. One reasonable
explanation of the difference is that the simulator not only
needs to stimulate the error behavior in the L2 table logic,
it has to make them visible at the ARL interface. However,
a simple comparison of these two numbers is meaningless
because the simulator would find more bugs if our formal
verification were not performed. In order to understand the
quality of these bugs, we introduce two metrics, error
stimulus and error visibility.

The first metric is the error stimulus function, or ES. This
is simply the probability of the input stimuli required to
discover the bug starting with the initial states. For
example, assume that a valid MAC address A is stored in a
particular bucket of the L2 table. ES for a lookup of MAC
address B with h(B)=h(A) is 1/2048. In computing ES, we
only consider the best possible known case to stimulate the
corresponding bug. This provides a conservative
approximation of ES.

The error visibility, or EV, of a bug is a function of time
and input stimuli. EVtime is the number of cycles required
for erroneous behavior to propagate to the test bench.
EVstim measures the probability of the input stimuli
required to propagate the bug from cause to externally
visible symptom. Then EV = EVstim/EVtime provides a
means of comparing the relative visibility of bugs. Note
that EVstim is calculated similarly as ES, based on a
conservative approximation. As an example, let us assume
that the minimum number of cycles to propagate a bug to
the ARL interface is 84 cycles. Also assume that the
required stimuli include a sequence of events:

• Two consecutive 10Gigabit port lookup requests
on bucket i,

• A specific Gigabit port lookup request also on
bucket i,

then
 EVstim = (1/13)2 * 1/2048 * 1/13 * 1/2048=2.5e-7
and
 EV = EVstim/EVtime = 3.0e-9.
Note that EV is evaluated conservatively because EVtime is
approximated using the shortest trace and EVstim is the
upper-bound probability for stimuli required to propagate
the bug.

Figure 2 ES/EV for every bug found by SMV

The error stimulus ES and error visibility EV are reported
in Figures 2. The X axis corresponds to the cumulative
number of bugs. The Y axis corresponds to ES and EV
separately. Note that the Y axis is in logarithm scale (-6
means that 10-6). The lower the value, the less likely that
the bug is found by the simulator. For example, it is much
more difficult to stimulate bug No.16 than bug No.15. We
believe that the simulator can easily catch bug No.15. In
contrast, without formal approaches, it is extremely
difficult for random simulation to catch bug No.16. We do
not compute the EVs for bug No.4 and No.5 because we
do not know how to propagate them to the ARL interface
directly. However, they degrade the system performance.
Accumulated inefficiencies eventually lead to a visible
error. The required number of simulation cycles can be
prohibitively large.

5 Improving Model Checking

5.1 Rigorous performance analysis
Due to aggressive abstraction, certain important
performance issues are not addressed. For example, all
Gigabit port lookup requests and learns must be served
within 84 cycles. The initial analysis shows that the design

ES
EV 0

-1

-2

-3

-4

-5

-6

-7

#bugs

0

-2

-4

-6

-8

-10

-12

-14

-16

5 10 15 20

ES EV

232

has 47% and 21% margin for lookups and learns
respectively.
Given our abstracted model, we are not able to verify these
performance requirements. However, in an abstracted
configuration, SMV finds that a learn is served far later
than expected when the logic transitions from the aging
mode to the normal switching mode (Figure 3). If a lookup
request comes just before that transition, it is possible that
its learn happens much later. By manual construction of a
similar scenario for all ports, we find that the performance
requirement for learns is only marginally satisfied. The
margin for learns reduces to 3% from 21%. This raises
potential problems due to the assumptions made in the
design. It is extremely difficult for simulation to detect this
trace because it requires that over twenty different
behaviors occur in a specific order and time. Starting with
an SMV trace, we construct valuable analysis that cannot
be accomplished by either simulation or formal
verification independently.

 Figure 3 the performance analysis for learns

5.2 Verifying multiple requests scenario
In Section 3, we make an assumption that only one request
comes from each port in our abstracted model. The
interaction between consecutive requests from the same
port is neither modeled nor verified. Ideally, if a request is
served, the related state registers return to the reset values.
In reality, this is not true because the residual state of the
previous request may not be cleared. This may introduce
unexpected behavior for subsequent requests. We solve
this problem by modeling consecutive requests using a set
Q of initial states larger than the original set I of initial
states, i.e., I ⊂ Q, and Q - I models the set of residual
states. Note that the L2 table is already modeled non-
deterministically. Only the initial values for the registers
outside the L2 table need to be considered.

Let M ↓ req be the L2 table model with only one request
for each port and p be a universal property on M ↓ req. The
key to extend our result is to find the reachable set of states
Q. It is a difficult task. Our idea is that, instead of

searching for the exact Q, we predict its projection on
subsets of registers. Assume that V is the set of registers on
M ↓ req. We partition V into m equivalence classes Vi, i.e.,
V = Um

i iV and ViI Vj=Φ. Let Qi denote the projection of

Q on Vi. Then we try to predict Qi using the model
checker. If we fail to predict Qi, or Qi is too large, then we
use the projection of I on Vi, denoted as Ii. Eventually, we
use Q’ = Qi1 × … × Qij × Ik1 × …× Ikp as the set of
initial states for model checking. Apparently, we are not
able to fully verify our intended property on M with this
approximation. However, this extension does increase our
verification confidence. With the approximation Q’, we
uncover a new bug in which the residual state from a
corrupted packet’s learn request interferes with a
subsequent packet.

6 Conclusion

In this paper, we use formal techniques to verify a
complicated Ethernet switching table. We start by applying
aggressive abstraction to debug the basic logic. Its
effectiveness is demonstrated by a number of “high-
quality” RTL bugs. Then, based on classic model
checking, we extend our effort formally and informally to
analyze performance. In contrast to ad hoc performance
simulation, such rigorous analysis is beyond the capability
of either simulation or formal techniques alone. We also
extend classic model checking using a novel induction to
avoid state explosion as the environment model becomes
sophisticated. Our experience can be applied to many table
driven designs without much difficulty.

References
[A00] M. Aagaard ed. Formal Verification of Iterative
Algorithm in Microprocessors. In Design Automation
Conference, pages 201-206, 2000.
[B01] B. Bentley. Validating the Intel Pentium 4
microprocessor. In Design Automation Conference, pages
244-248, 2001.
[BD94] J. Burch and D. Dill. Automatic verification of
pipelined microprocessor control. In Computer Aided
Verification, pages 68-80, June 1994.
[CBL98] Cadence Berkeley Lab. Cadence SMV.
http://www-cad.eecs.berkeley.edu/~kenmcmil/smv, 1998.
[CCLW99] P. Chauhan, E. M. Clarke, Y. Lu, and D.
Wang. Verifying IP-core based system-on-chip designs. In
IEEE ASIC Conference, 1999.
[CGP99] E. M. Clarke, O. Grumberg and D. Peled. Model
Checking. MIT Press, 1999.
[KKC98] J. Kadambi, M. Kalkunte, I. Crayford. Gigabit
Ethernet: Migrating to High Bandwidth LANs. Prentice
Hall, 1998.
[M98] K. L. McMillan. Verification of an implementation
of Tomasulo’s algorithm by compositional model checking.
In Computer Aided Verification (CAV98), 1998.
[OSSP98] Open Source Software Project. Embedded Perl
Language. In http://www.ossp.org/pkg/tool/eperl, 1998.

aging mode switching mode

margin=21% margin=3%!

aging last bucket
of L2 table

time

lookup request

learn served

233

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

