
Communication-Efficient Hardware Acceleration for Fast
Functional Simulation

Young-Il Kim Wooseung Yang Young-Su Kwon Chong-Min Kyung

Department of Electrical Engineering and Computer Science
Korea Advanced Institute of Science and Technology

Daejeon 305-701, Korea

ABSTRACT
This paper presents new technology that accelerates system
verification. Traditional methods for verifying functional
designs are based on logic simulation, which becomes more
time-consuming as design complexity increases. To acceler-
ate functional simulation, hardware acceleration is used to
offload calculation-intensive tasks from the software simula-
tor. Hardware accelerated simulation dramatically reduces
the simulation time. However, the communication overhead
between the software simulator and hardware accelerator is
becoming a new critical bottleneck. We reduce the commu-
nication overhead by exploiting burst data transfer and par-
allelism, which are obtained by splitting testbench and mov-
ing a part of testbench into hardware accelerator. Our ex-
periments demonstrated that the proposed method reduces
the communication overhead by a factor of about 40 com-
pared to conventional hardware accelerated simulation while
maintaining the cycle accuracy and compatibility with the
original testbench.

Categories and Subject Descriptors
B.7.2 [Integrated Circuits]: Design Aids—Simulation, Ver-
ification

General Terms
Verification, Performance

Keywords
Functional verification, simulation acceleration, communi-
cation overhead

1. INTRODUCTION
With system designs now well over one million gate, the

verification process has become a critical bottleneck in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

design process[1]. HDL simulation is most widely used meth-
ods for verifying functional designs. Although the perfor-
mance of simulation technology has been steadily improved,
it is still not sufficient to keep pace with the explosion of
design complexity.

There are several methods to accelerate the verification
speed. First, raising the abstraction level and ignoring de-
tailed level of design can increase the verification through-
put[3][8]. Second, one can accelerate the verification speed
using hardware[9]. Most of hardware emulators are based
on FPGAs, which are capable of processing calculation and
event-intensive tasks in parallel. Third, one can obtain speed-
up by moving testbench environment into real hardware. As
design complexity increases, designers are forced to create
huge testbenches to find problems before committing to sil-
icon. To cope with complex testbench, in-circuit emulation
or synthesizable testbench can be applied[10][12].

Hardware accelerated simulation achieves verification speed-
up by using second method. System maps some compo-
nents in the software simulation into the hardware platform
specifically designed to speed up certain simulation opera-
tions. Most commonly, the testbench remains running in
software, while the actual design being verified is running in
the hardware accelerator. However, the criteria of determin-
ing a partition between simulation and acceleration is a chal-
lenging issue. To exploit the third speed-up method, some
part of testbench is moved to hardware accelerator. In [7],
a simulation-time-consuming part of testbench is moved to
hardware accelerator and the rest of behavioral testbench is
running on software simulator. Furthermore, the entire be-
havioral testbench is moved to hardware accelerator[5][10].
However, these methods require that testbench follows the
specific testbench description style. In case where gener-
ally described testbench is applied to this method, this can
bring additional modeling efforts. In another method, emu-
lator includes multiple emulation modules which consist of
processor and FPGA, and each emulation module commu-
nicates with each other through global programmable in-
terconnect[6]. Although FPGA is used to process not only
event intensive part of design but also communication be-
tween emulation modules for low overhead communication,
this method does not reduce the overhead of communication
between processor and FPGA.

In this paper, we introduce a new approach to acceler-
ate functional simulation using hardware acceleration. In
conventional hardware accelerated simulation, our experi-
ments report that more than 70% of time is consumed for

19.1

293

HDL Simulator
Host Computer

P
L

I

D
e

vice
D

rive
r

S
ys

te
m

B
u

s DUT

B
u

s
In

te
rfa

c
e

T
ra

n
sa

cto
r

Hardware Accelerator
FPGA

Testbench DUT

DUT
Proxy

Testbench

Co-emulation
Interface

Input Port

Output Port

Figure 1: Acceleration system architecture

communication between software simulator and hardware
accelerator. Therefore, we adopt different criteria of par-
tition, which is optimized in communication-efficient point
of view. The proposed method reduces the communication
overhead without losing cycle accuracy and compatibility of
the original testbench.

2. ACCELERATION SYSTEM
ARCHITECTURE

High-performance verification system should incorporate
both processor and FPGA. Individual processor or FPGA
has a limitation in terms of performance and flexibility in
simulating various types of models.

First, in view of performance, the maximum clock fre-
quency of FPGA lags behind that of the processor imple-
mented in contemporary ASIC. Therefore, processor with
higher clock frequency executes behavioral model faster than
FPGA. On the other hand, FPGA is more appropriate for
executing simultaneous events and computation-intensive pro-
cesses in parallel. Second, testbench is commonly created us-
ing HDL(Hardware Description Language) such as Verilog
or VHDL, sometimes including C programming language,
which is linked to an HDL simulator through programming
language interface(PLI). This technique is used when the
testbench needs to simulate more complex and higher ab-
stract functions. FPGA is not capable of simulating the
model created in C language and behavioral HDL that is not
synthesizable. Therefore, processor and FPGA have mutu-
ally complementary nature for high-performance verification
system.

Figure 1 shows the system architecture of conventional
hardware acceleration. Testbench is performed on HDL
simulator in host computer and DUT(Device Under Test)
is mapped on FPGA in the hardware accelerator. As an
interface between HDL simulator and FPGA, co-emulation
interface is defined as aggregate of DUT proxy, PLI, device
driver, system bus, system bus interface and transactor, all
connected in a serial fashion. Designer-supplied testbench
is interfaced with DUT proxy. When testbench applies pat-
terns to the DUT proxy via input port, it makes input port
value into a message and sends to accelerator through all the
components of co-emulation interface. Likewise, the DUT
proxy reads the output port value of DUT through the same
path to feed them to the testbench.

Testbench DUT

input port

clk

output port

2

Co-emulation
Interface

clk

inport

outport

1 2 3 1 2 3 1 2 34 4 4

1 cycle 1 cycle 1 cycle

input port

clk

output port

1

3

4

Figure 2: Conventional acceleration system per-
forms synchronization between software simulator
and hardware accelerator through co-emulation in-
terface at every clock cycle

3. REDUCING COMMUNICATION
OVERHEAD

As shown in previous section, crossing co-emulation in-
terface is a burdensome task due to its inherited long path.
However, this is inevitable to synchronize the software sim-
ulator with the hardware accelerator. In this section, we
describe a detailed synchronization mechanism and propose
a new process for reducing the communication overhead.

3.1 Conventional Synchronization Scheme
As shown in Figure 2, one clock cycle operation can be

implemented in four steps. These four steps are as follows.
When the testbench clock event occurs, step 1 is started,
the co-emulation interface delivers input port value to DUT.
Then, system advances one clock cycle of DUT in step 2. In
this step, evaluations of DUT circuits are performed. After
the result value is stabilized at the output port of DUT, in
step 3, the co-emulation interface delivers the output port
value to testbench. Finally, testbench checks the output re-
sults of DUT and calculates the input port value for the next
clock cycle during step 4. Let us focus on that step 1 and
3 cross the co-emulation interface, thus two co-emulation
interface crossing occur at every clock cycle.

The CPU time for a single clock cycle is composed of three
distinct components:

ttotal = tsimulator + tsync + taccelerator (1)

where tsimulator denotes CPU time for processing testbench,
which is required for step 4. tsync denotes the synchroniza-
tion time for step 1 and 3. taccelerator denotes the emulation
time for evaluating DUT circuit in step 2.
The synchronization time, tsync is comprised of three com-
ponents, i.e., synchronization time for input port, output
port and clock port denoted as tinport, toutport and tclk, re-
spectively, which are described as follows:

tinport = tsetup + �BWinport

BWbus
�tpayload

toutport = tsetup + �BWoutport

BWbus
�tpayload

tclk = tsetup + tpayload

(2)

where BWinport, BWoutport, BWbus denotes the bit-width of
input port, output port and system bus respectively. tsetup

is the time to set up a transaction in co-emulation interface
and comprised of three terms, tPLI setup, tdriver setup and
tbus setup:

tsetup = tPLI setup + tdriver setup + tbus setup (3)

294

Testbench DUT

input port

output port

TBsource DUT

input port

output port

DUT

input port

output port

TBsink

TBloop

TBsource

TBsink

TBloop

F
o

rw
a

rd
 p

a
th

B
a

c
k

w
a

rd
 p

a
th

B
a

c
k

w
a

rd
 p

a
th

Source
vertex

Sink
vertex

Intermediate
vertex

N
e

w
 b

o
u

d
a

ry

Software Simulator Hardware Accelerator

(a) Configuration of conventional
synchronization scheme

(b) Testbench partition (c) Placement of each part of testbench

Software Simulator
Hardware

Accelerator

Figure 3: Procedure of the split and placement of testbench

tpayload is the time required to send one additional word
data through the co-emulation interface and is defined as
follows:

tpayload = max(tPLI payload, tdriver payload, tbus payload)
(4)

For example, in order to make one PCI transaction, arbitra-
tion process is required to use the bus. Once bus is acquired,
a number of words can be transmitted in burst data trans-
fer. In this case, tbus setup is associated with bus arbitration
time and tbus payload is the time to transmit one additional
word through the bus.
Finally, the time required for synchronization is given as

tsync = tinport + tclk + toutport

= 3tsetup + (1 + �BWinport

BWbus
� + �BWoutport

BWbus
�)tpayload

(5)

Note that tsetup is obtained by summing the setup time of
all the components in the co-emulation interface. On the
other hand, tpayload is obtained by finding the maximum
transmit time among all three components. It is because
components of co-emulation interface are connected in a se-
rial fashion, thus setup time integrates those of all the com-
ponents. On the other hand, data transmission is performed
in a pipelined manner, thus total payload time becomes that
of component with the lowest bandwidth. Therefore, setup
time is more critical for total synchronization time, tsync.

3.2 Proposed Synchronization Scheme
From the lesson of previous section, we learned that re-

ducing tsetup is essential to minimize the total simulation
time. Unfortunately, the amount of data for one clock cy-
cle synchronization is fixed without compression technique,
which is out of the scope of this paper. To reduce the first
term of Equation (5), we perform synchronization only once
for several clock cycles.

Figure 3 shows the procedure of split and placement of
testbench. The testbench structure is modeled as a directed
graph, which consists of vertices and edges. The vertex de-
notes the RTL construct and edge denotes the relation be-
tween the RTL constructs. The source vertex produces the
patterns and sink vertex consumes the patterns. For exam-
ple, unsynthesizable RTL block or PLI function can be a
source or a sink vertex. Path is here defined to be com-
posed of one or more connected edges. There are two kinds

4-1

4-2

Testbench DUT

input port

output port

Co-emulation
Interface Clock of TBsource

1

3

4-1 4-1 4-1 1 4-1 4-1 4-1 1 4-1 4-1 4-1

2 2 2 3 2 2 2 3

Clock of accelerator
2

TBsource

TBsink

TBloop

4-2 4-2 4-2

Clock of TBsink

N=3

Figure 4: Proposed acceleration system performs
synchronization through co-emulation interface once
for a number of clock cycles

of path, which are forward path, backward path. Forward
path is started from the source vertex and ended in sink
vertex. Backward path is started from the output port of
DUT and ended in the input port. As shown in Figure 3(b),
the original testbench is split into three parts:

• TBsource : a part of testbench that includes the source
vertices

• TBsink : a part of testbench that includes the sink
vertices

• TBloop : a part of testbench that includes the vertices
involved in backward path

The split procedure is performed first by finding TBloop.
Rest of the testbench is then split into TBsource and TBsink.
Then, TBloop is mapped to the accelerator and directly at-
tached to DUT. Therefore, changes occur in the boundary
between the software simulator and hardware emulator. To
cope with this, new ports are generated instead of existing
ports connected to backward path. Finally, TBsource has
only outgoing ports and TBsink has only incoming ports.
Accordingly, TBsource and TBsink can run independently.
TBsource can run over a number of clock cycles without
waiting for data from the accelerator while TBsink is exe-
cuted when the output port data becomes available from the
accelerator.

Figure 4 shows each clock cycle operations of the proposed
acceleration system. This system is based on the same archi-
tecture depicted in Figure 1. Unlike the operation of conven-
tional system, crossing co-emulation interface does not occur
at every clock cycle. TBsource is executed for a number of

295

clock cycles but sends data through co-emulation interface
only once. Let us use the notation ‘N’, which denotes the
synchronization interval in terms of the number of clock cy-
cles. When the TBsource sends synchronization data that
corresponds to N clock cycles, then the accelerator performs
DUT and TBloop very fast by advancing N clock ticks. Fi-
nally, TBsink receives the result of DUT and performs its
own operation of TBsink such as result checking. Because
all these procedures are performed in a pipelined manner
using DMA, the software simulator and accelerator can be
executed in parallel, which is not possible in the conven-
tional method. Therefore, the CPU time for a single clock
cycle becomes

ttotal = max(tsimulator, tsync, taccelerator) (6)

The time consumed by synchronizing input, output and
clock port can be described as follows:

tinport =
1

N
tsetup + �BW

′
inport

BWbus
�tpayload

toutport =
1

N
tsetup + �BW

′
outport

BWbus
�tpayload

tclk =
1

N
tsetup + tpayload

(7)

Since our approach just performs synchronization at the in-
terval of N clock cycles, the first term is reduced by a factor
of N but there is no effect on second term compared to the
equation of the conventional method. Note that these values
are normalized to one clock cycle.

Finally, the time required for synchronization can be writ-
ten as

tsync = tinport + tclk + toutport + tbuffer

=
3

N
tsetup + (1 + �BW

′
inport

BWbus
� + �BW

′
outport

BWbus
�)tpayload

+ tbuffer

(8)

where BW
′
inport and BW

′
outport denote the bit-width of ports

(connected to accelerator) of TBsource and TBsink, respec-
tively.
tbuffer denotes the buffering time, which is newly intro-
duced because the proposed method does not perform the
synchronization at every cycle, the co-emulation interface
should store the synchronization data for N clock cycles.
Depending on the buffering method, tbuffer can be reduced
to a negligible value compared to tsetup. Detailed buffering
methods are discussed in the following section.

4. IMPLEMENTATION

4.1 Testbench Partition
To apply our method to a given testbench, testbench

should be split according to the following steps.

4.1.1 Classifying Path
The first is to classify paths by direction into forward

and backward path. A given testbench is represented as a
directed graph G = (V, E). We find the backward path first
using depth-first search. From the output ports of DUT,
edges are explored out of the most recently discovered ver-
tex v that still has unexplored edges leaving it. When all of

TBsource

DUT, TBloop

TBsink

N=3, Tclock=1nsec

0 1 2 3 4 5 6 7 8 9

0 1 2 3

0 1 2 3 4 5 6

Simulation Time

Clock Singal

Simulation Time

Clock Singal

Simulation Time

Clock Singal

10 11 12

4 5 6

7 8 9

Synchronization data transfer (TBsource TBloop/DUT)

Synchronization data transfer (TBloop/DUT TBsink)

Real-world timeSimulation Time Offset
= 2*N*Tclock = 6(nsec)

(nsec)

Figure 5: Simulation Time of TBsource, DUT/TBloop

and TBsink in view of real-world time

edges leaving v have been explored, the algorithm backtracks
to explore edges leaving the vertex from which v was discov-
ered. If the search arrives at the input port of DUT, then
the path is marked as ‘backward’. Similar to the backward
path search, forward path search is started from a source
vertex and the path is marked as ‘forward’ if the search ar-
rives at the sink vertex. Some edges may be involved in both
forward and backward path.

4.1.2 Finding TBloop

TBloop should include all the backward paths. Edges
involved in both directions can be resolved using replica-
tion. In case of strongly connected components, replication
may not work. In this case, the associated forward path
is treated as backward path. This may increase the total
bit-width of boundary between the simulator and acceler-
ator. However, it does not cause the critical performance
degradation by the aid of burst transfer and DMA.

4.1.3 Splitting the remaining testbench into TBsource

and TBsink

After detaching TBloop from the original testbench, the
remaining testbench should be split into TBsource and TBsink.
As shown in Figure 3(c), forward path goes across the
boundary between TBsource and TBsink, therefore, new ad-
ditional ports appear in TBsource and TBsink. Data transfer
from TBsource to TBsink is performed within host computer.
Although this is not critical for performance, we tried to
minimize the interconnection between TBsource and TBsink.
To do this, graph partitioning is used to find a partition of
the vertices of a graph minimizing the number of edges be-
tween the groups of vertices in distinct components[11].

4.2 Testbench Execution
In the simulation phase, two testbench TBsource and TBsink

are freely running on HDL simulator. These can be per-
formed by a single process or two different processes.

Using two different processes, one simulator performs TBsource

while the other simulator performs TBsink. After starting
simulations at the same time, each simulator interacts with
the accelerator. This method is very straightforward, how-
ever, the execution of two simulator kernels slow down the
host computer.

To overcome this problem, we use a single process for
executing both TBsource and TBsink. For example, if the
original testbench is operated using a clock, TBsource and
TBsink use different clocks, which are logically the same

296

PLIDUT Proxy
Device
Driver

HDL Simulator

Testbench

(a) Buffering at DUT Proxy

N

N

PLIDUT Proxy
Device
Driver

HDL Simulator

Testbench

(b) Buffering at PLI

N

N

System
Bus

System
Bus

Hardware
Accelerator

Hardware
Accelerator

Figure 6: Buffer location in co-emulation interface

clock. This is because TBsource and TBsink are not syn-
chronized at every clock cycle, thus, a simulation time of
TBsource and TBsink are not mismatched in view of real-
world time. The time of TBsink follows that of TBsource

with constant time offset. The time difference between TBsource

and TBsink is 2∗N ∗(clock period). Figure 5 shows example
of the simulation time progress. Let us assume that the clock
period(Tclock) is 1nsec and we use 3 for N. In start of the sim-
ulation, TBsource runs while TBsink is suspended for 0-6nsec
of its simulation time. At 3nsec, input port data is trans-
ferred to TBloop and DUT. DUT and TBsink are executed
and transfer the result to TBsink. In 6nsec of TBsource time,
TBsink starts simulation of 0-3nsec while TBsource contin-
ues simulation of 6nsec-9nsec simultaneously. After the co-
emulation is done, post-processing is required to match the
simulation times between TBsource and TBsink for later de-
bugging on the waveform viewer.

4.3 Buffering Scheme
Our approach performs synchronization at intervals of N

clock cycles. Therefore, co-emulation interface should in-
clude two buffers, which store the input and output syn-

chronization data to the amount of N ∗ BW
′
inport and N ∗

BW
′
outport bits, respectively. In the middle of synchroniza-

tion intervals, input port buffer is filled and output port
buffer is exhausted for N clock cycles. At the time of syn-
chronization, input port buffer is flushed to the accelerator
and output port buffer is filled up.

4.3.1 Buffer Location
Figure 6 shows two different possible buffer location. The

first scheme locates the buffer within DUT proxy. Because
the buffer is located near the testbench, testbench can access
the buffer with very low overhead. However, the buffer is
implemented in HDL and this may somewhat slow down the
simulation speed as N increases. The second scheme locates
the buffer in PLI. Due to the distance from the testbench,
this scheme has larger access time(tbuffer) than the first
scheme. However, simulation speed is not affected by N
since buffer is implemented in C programming language.

4.3.2 Buffer Implementation
We implemented buffer in five different methods. In method

1, 2, 3 and 4, buffers are located in DUT proxy. Method 5
locates buffers in PLI.

• Buffering method 1: Buffer is defined as 1-dimensional
vector. The following example shows buffer declara-
tion in Verilog:

reg [N*BW_inport-1:0] in_buffer;

reg [N*BW_outport-1:0] out_buffer;

At every clock, input and output buffer are partially

accessed for BW
′
inport and BW

′
outport bits, respectively.

The following example shows input buffer access in
Verilog. There are N statements, each of which ac-
cesses statically fixed range of buffer. In this example,
there is one input port of which name is data in and

its bit-width(BW
′
inport) is 32-bit:

always @(posedge clk) begin

case(ptr)

0: in_buffer[31:0] = data_in;

1: in_buffer[63:32] = data_in;

...

endcase

end

Variable ptr determines which statement to be exe-
cuted, which in turn select the range of buffer to access.
The variable ptr is increased at every clock. When ptr
arrives to value of N, synchronization is performed and
ptr is reset to zero.

• Buffering method 2: This method is almost same to
the method 1. The method 2 uses event control in-
stead of case statement[2].

initial forever begin

@(posedge clk) in_buffer[31:0] = data_in;

@(posedge clk) in_buffer[63:32] = data_in;

...

end

• Buffering method 3: This method is also almost same
to the method 1. In this case, the range of buffer is
dynamically selected.

always @(posedge clk) begin

{in_buffer[ptr],...,in_buffer[ptr+31]} = data_in;

end

• Buffering method 4: Buffer is defined as 2-dimensional
vector. The following example shows buffer declara-
tion and access in Verilog:

reg [BW_inport-1:0] in_buffer[0:N-1];

reg [BW_outport-1:0] out_buffer[0:N-1];

always @(posedge clk) begin

in_buffer[ptr] = data_in;

end

This method is very straightforward, however, PLI ac-
cessing overhead to 2-dimensional vector is bigger then
1-dimensional vector.

• Buffering method 5: Buffer is located in PLI that is
described in C language. DUT proxy just transfers
input port value and receives output port value from
PLI at every clock cycle.

297

100K

200K

300K

400K

500K

600K

700K

CPS(Cycle per second)

204810245122560 N

Figure 7: Simulation speed for various values of
N(Synchronization interval in terms of number of
clock cycles)

646K 522K 203K 482K 312K 48K

Buffering
Method1

Buffering
Method2

Buffering
Method3

Buffering
Method4

Buffering
Method5

0

100K

200K

300K

400K

500K

600K

700K
13.3x

CPS(Cycle per second)

1x

Conventional
Method

10.7x

4.17x

9.93x

6.42x

1/41.2 1/23.2 1/5.1 1/19.6 1/9.2 1/1

Buffering
Method1

Buffering
Method2

Buffering
Method3

Buffering
Method4

Buffering
Method5

Relative Communication Overhead

Conventional
Method

(b) Simulation speed(a) Relative communication overhead

0
0.1

0.2

0.3
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Figure 8: Proposed method reduces communication
overhead by a factor of 41.2 and accelerates simu-
lation at 646Kcps, which is 13.3 times faster than
conventional method

5. EXPERIMENTAL RESULTS
This section presents the results of the co-emulation ex-

periments. In software side, Cadence NC-Sim simulator is
executed on Intel Pentium 2.8GHz processor. Hardware ac-
celerator is implemented as a PCI card featuring 8-million
gate Xilinx Virtex-II FPGA. Simulation accelerators based
on FPGAs can operate at the speed 100-1000 times faster
than software simulation depending on the complexity of
DUT. However, we are trying to compare our approach with
conventional hardware acceleration scheme rather than soft-
ware simulation. To compare with the conventional method,
experiments are focused on communication between the soft-
ware simulator and hardware accelerator.

Figure 7 shows the simulation speed in cycles per second
for various values of N. As shown in Equation (8), simula-
tion speed increases in proportional to N before 256, how-
ever, speed is saturated after 512. This is because the first
term of Equation (8) mainly influence the speed before 256,
eventually, the effect of tbuffer becomes dominant as N in-
creases. From the Figure 7, we experimentally found that
256 is best for N. We will use this value of N for the following
experiments.

Figure 8 shows the communication overhead reduction
and speed-up over conventional hardware acceleration. Com-
mercial simulation accelerator can increase the speed of sim-
ulation by up to 100Kcps[4]. However, this figure means the
maximum speed, in our experiment, we can get 48Kcps for
conventional methods. On the other hand, when we use
the buffering method 1, proposed accelerator reduces the
communication overhead by a factor of 41.2, and performs
simulation at 646K cycles per second, which is 13.3 times
faster than the conventional method.

6. CONCLUSIONS
In this paper, we present new scheme that accelerates

the functional simulation. For efficient acceleration of gen-
eral simulation model including both behavioral and event-
intensive implementation model, the acceleration system in-
corporates both processor and FPGA. We mainly focused
on the efficiency of communication between HDL simulator
and hardware accelerator. To reduce the communication
overhead, we exploit burst data transfer and parallelism by
eliminating a input port data dependence on output port
data within testbench. It is suggested to identify a part of
the testbench involved in generating next input stimulus us-
ing output results from DUT, and move it into hardware
accelerator to be merged with the hardware-mapped DUT.
This enables software simulator and hardware accelerator to
be executed in parallel with low communication overhead.
Experimental results show that the proposed method can
achieve higher speed-up than the conventional hardware ac-
celeration method. Since the proposed approach just splits
the testbench, we can apply general RTL description as well
as C programming language through PLI. In addition, the
cycle accuracy and compatibility with the original testbench
are maintained.

7. REFERENCES
[1] International technology roadmap for semiconductors.

ITRS, 2001.

[2] Standard Verilog hardware description language.
IEEE Computer Society, September 2001.

[3] Standard co-emulation modeling interface reference
manual version 1.0. Accellera, May 2003.

[4] Platform verification white paper. Axis Corp., 2002
http://www.axiscorp.com/pdf/platform verification.pdf.

[5] Synthesizable verification solutions. Duolog
Technologies., 2002
http://www.duolog.com/verificationproducts.html.

[6] J. Bauer, M. Bershteyn, I. Kaplan, and P. Vyedin. A
reconfigurable logic machine for fast event-driven
simulation. Design Automation Conference, June
1998.

[7] M. Bauer, W. Ecker, R. Henftling, and A. Zinn. A
method for accelerating test environments.
EUROMICRO Conference, September 1999.

[8] L. Cai and D. Gajski. Transaction level modeling: An
overview. CODES+ISSS, October 2003.

[9] Carlstedt-Duke and T.B.M. A solution to high
performance acceleration of digital system design.
Hardware Accelerators for VLSI CAD, September
1988.

[10] R. Henftling, A. Zinn, M. Bauer, M. Zambaldi, and
W. Ecker. Re-use-centric architecture for a fully
accelerated testbench environment. Design
Automation Conference, June 2003.

[11] B. W. Kernighan and S. Lin. An efficient heuristic
procedure for partitioning graphs. The Bell System
Technical Journal, 49:291–307, 1970.

[12] N. Kim, H. Choi, S. Lee, S. Lee, I.-C. Park, and C.-M.
Kyung. Virtual chip: Making functional models work
on real target systems. Design Automation
Conference, June 1998.

298

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

