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ABSTRACT
This paper presents an efficient two-stage project-and-balance
scheme for passivity-preserving model order reduction. Or-
thogonal dominant eigenspace projection is implemented by
integrating the Smith method and Krylov subspace itera-
tion. It is followed by stochastic balanced truncation wherein
a novel method, based on the complete separation of stable
and unstable invariant subspaces of a Hamiltonian matrix,
is used for solving two dual algebraic Riccati equations at
the cost of essentially one. A fast-converging quadruple-
shift bulge-chasing SR algorithm is also introduced for this
purpose. Numerical examples confirm the quality of the
reduced-order models over those from conventional schemes.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
modeling methodologies; J.6 [Computer-Aided Engineer-
ing]: —computer-aided design (CAD)

General Terms
Algorithms

Keywords
Model Reduction, Dominant Eigenspace, Projection, Stochas-
tic Balanced Truncation, Riccati Equation, SR Algorithm

∗This work was supported in part by the Hong Kong Re-
search Grants Council, the University Research Committee
of The University of Hong Kong, and the National Science
Foundation of the United States of America under Grant
No. ECS-0200320.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

1. INTRODUCTION
Model reduction is an integral part in modern system de-

sign (e.g., [1–15]). Initial state space modeling of a physical
system often involves thousands or millions of state vari-
ables, rendering the direct simulation and analysis compu-
tationally prohibitive. A common strategy is to reduce the
order of the original model, or when the original model is
big, divide and reduce smaller subsystems which are then
connected back for global simulation. Subsequently, it is de-
sirable that the reduced-order models have small approxima-
tion error over the frequency and/or time-domain(s). Also,
important properties such as stability and passivity1 must
be preserved during the reduction in order for the smaller
models to be meaningful (e.g., a non-passive reduced-order
model can generate erroneous responses when connected to
other passive systems or nonlinear circuits [1,2]).
In the context of VLSI synthesis, interconnect modeling

is becoming more and more critical as circuits are designed
with ever-increasing speed and complexity. Using meth-
ods such as sparse tableau, nodal formulation and modi-
fied nodal analysis (MNA), etc. [16], the RLC interconnect
model extracted from a netlist often results in an order not
amenable to simulation or analysis. Techniques to carry out
model reduction include transfer function moment matching
(e.g., asymptotic waveform evaluation (AWE) [3]), Krylov
subspace projections (e.g., Padé Approximation via Lanc-
zos (PVL), matrix PVL (MPVL) [4]), and the passivity-
preserving congruence transform (e.g., PRIMA [1]). These
schemes, usually implemented by Krylov methods, are com-
putationally effective, but suffer from the lack of optimal-
ity. Another class of model reduction techniques stems from
control theory. Examples of which are optimal Hankel-
norm approximation [5], standard balanced truncation (BT)
[6–9], and the passivity-preserving stochastic balanced trun-
cation (SBT) [10–13]. A merit of these control-theoretic
approaches is the availability of error bounds for the ap-
proximation errors [5, 11] and the superior global accuracy.
These schemes are, however, expensive to deploy due to the
need of solving large-size matrix equations and factoriza-
tions. In view of this, a two-stage reduction is proposed
to provide tradeoff between computational cost and model
quality (e.g., [12, 14, 15]). Such approach starts with (dom-
inant) gramian eigenspace projection to reduce the original

1Roughly speaking, a passive system is one that cannot gen-
erate energy.

369

24.1



models to some moderately sized ones (say, order less than
a hundred), followed by BT or SBT to generate further-
reduced models (say, order less than a few tens).
The contribution of this paper is a computationally effi-

cient two-stage project-and-balance model reduction algo-
rithm with stability and passivity-preserving features. The
initial projection basis is formed by the dominant eigenspaces
of the controllability and observability gramians [7, 14, 15].
Utilizing the Smith method and Krylov subspace iteration in
solving Lyapunov equations, we show that orthogonal bases
for the eigenspaces are readily obtained. The second stage
of the reduction is done by SBT via the solution of a pair of
dual continuous-time algebraic Riccati equations (CAREs).
A novel observation arising from the Hamiltonian invari-
ant subspaces reveals that two CAREs can be solved si-
multaneously at the cost of essentially one. The idea relies
on completely separating the stable and unstable invariant
subspaces, and a fast-converging quadruple-shift SR algo-
rithm (analogous to the QR algorithm [17]) to achieve this
is described. Numerical examples show that the proposed
scheme has a competitive computational cost and produces
low-order models with excellent accuracies.
Section 2 provides the state-space formulation and back-

ground on gramian eigenspaces and SBT. Section 3 shows
how the bases of gramian eigenspaces are obtained from the
solution of Lyapunov equations via the Smith method. The
intermediate model thus formed is then stochastically bal-
anced and truncated by simultaneously solving two dual
CAREs as in Section 4. Numerical examples in Section 5
demonstrate the effectiveness of the proposed scheme over
conventional ones. Section 6 draws the conclusion.

2. PROBLEM SETTINGS
A target application of the proposed algorithm is in the

model reduction of large-scale RLC circuits commonly en-
countered in VLSI interconnect and pin package simulations.
Consider a state space model of

ẋ = Ax+Bu (1a)

y = Cx+Du (1b)

where A ∈ �n×n, B ∈ �n×m, C ∈ �m×n, D ∈ �m×m, B, C
are of low ranks, i.e., m � n, and u, y are power-conjugate2.
UsingM > 0 (M ≥ 0) to denote a positive definite (positive
semidefinite) matrix M , we assume D +DT > 0. For RLC
state space models in MNA format, we also have A+AT ≤
0, B = CT , and D = 0. In [9], it is shown that such a
system can be transformed into an equivalent system with
D + DT > 0. Moreover, a system in descriptor format [2]
with a singular E matrix preceeding ẋ can be transformed
into the standard form in (1) [8], so the settings of (1) are
assumed without loss of generality.
The controllability gramian,Wc, and observability gramian,

Wo, are solved through the following Lyapunov equations

AWc +WcA
T +BBT = 0 (2a)

ATWo +WoA+ CTC = 0 (2b)

The spans (ranges) of Wc and Wo denote the reachable and
observable sets of the states, respectively. For many physical
2For every component of u that is a node voltage (branch
current), the corresponding component of y is a branch cur-
rent (node voltage) so that uT y represents the instantaneous
power delivered to the system.

systems including RLC circuits,Wc andWo are of low ranks.
On the other hand, the positive real lemma [2] states that
a system in (1) is passive if and only if there exists a P ∈
�n×n, P = P T ≥ 0, satisfying the linear matrix inequality[

ATP + PA PB − CT

BTP −C −(D +DT )

]
≤ 0. (3)

Using Schur complement, (3) is equivalent to

ATP + PA+ (PB − CT )(D +DT )−1(BTP − C) ≤ 0 (4)

The solution of (4) being zero is a CARE. Taking the matrix

root UUT = (D+DT )−1 and defining B̂ = BU , Ĉ = UTC,

and Â = A− B̂Ĉ, the CARE is expressible as

F (P ) = ÂTP + PÂ+ PB̂B̂TP + ĈT Ĉ = 0 (5)

The solution of (5), if it exists, is not unique. Among them
there is a unique stabilizing solution, P∞, in the sense that
(Â + B̂B̂TP∞) is stable, i.e., all eigenvalues have negative
real parts. In SBT, the stabilizing solutions, Pmin and P

−1
max,

to the two dual CAREs are solved

ÂTPmin + PminÂ+ PminB̂B̂TPmin + ĈT Ĉ = 0 (6a)

ÂP−1
max + P−1

maxÂ
T + P−1

maxĈ
T ĈP−1

max + B̂B̂T = 0 (6b)

Let P−1
max = XXT , Pmin = Y Y T be any root decomposi-

tions, now do the singular value decomposition (SVD)

XTY = UΣV T (7)

where Σ ≥ 0 is an “economy size” k-by-k (k ≤ n) diagonal
matrix with singular values in descending order. Suppose
the singular values of Σ are

σ1 ≥ σ2 ≥ · · · ≥ σr 	 σr+1 ≥ · · · ≥ σk (8)

Define Im to be the identity matrix of dimension m, 0m×n

an m× n zero matrix, and

TL =
[
Ir 0r×(k−r)

]
Σ− 1

2 V TY T (9a)

TR = XUΣ− 1
2

[
Ir

0(k−r)×r

]
(9b)

The system (TLATR, TLB,CTR,D) represents the stochasti-
cally balanced reduced-order model whose states are aligned
in descending involvement in the energy transfer process [9].
The best bound to date for the frequency domain approxi-
mation error can be found in [11]. SBT is preferred over BT
because it guarantees passivity, further to stability, of the
reduced-order model (e.g., [9, 11,12]).

3. EIGENSPACE PROJECTION
The first stage of the reduction is to select an appropriate

subspace onto which the original high-order system is pro-
jected. It is therefore well justified to use the spans (approx-
imate spans) of Wc and Wo as they capture all (most) state
activities. This idea appeared as dominant subspaces projec-
tion in [7] and later as dominant gramian eigenspaces method
in [15]. To effectively extract the span of, say, Wc, we note
that the Smith method, which transforms a continuous-time
Lyapunov equation into a discrete one, provides a viable
alternative to solving (2a). Specifically, the following two
equations solve the same Wc:

AWc +WcA
T +BBT = 0 (10a)

AzWcA
T
z −Wc +BzB

T
z = 0 (10b)
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where Az = (pI + A)(pI − A)−1, Bz = −√
2p(pI − A)−1B,

p > 0 is a shift parameter, and the subscript z means dis-
crete time. Subsequently, Wc =

∑∞
i=0 A

i
zBzB

T
z (A

T
z )

i. We
want to minimize the norm of Az so the power terms de-
cay quickly and the infinite summation can well be repre-
sented by finite terms. A good choice of p to achieve this is
p =

√|λmax(A)λmin(A)| [9], where λmax(◦) and λmin(◦) re-
spectively denote the maximum and minimum eigenvalues,
which are found by simple power iterations in practice [8,17].
An important observation is that Wc is naturally cast as a
matrix factorization, namely, when the growth of the sum-
mation decays to machine precision after τ terms,

Wc ≈
τ−1∑
i=0

Ai
zBzB

T
z (A

T
z )

i = Kτ (Az, Bz)Kτ (Az, Bz)
T (11)

where the factor Kτ (A,B) =
[
B AB · · · Aτ−1B

]
is

called the τ th-order Krylov matrix. Application of the Smith
method in standard BT of VLSI models can be found in
[8, 9]. Arnoldi and Lanczos algorithms [17] are efficient al-
gorithms to obtain the Krylov matrix. Here we present only
the Arnoldi algorithm due to space limitation. The following
codes assume a rank-one Bz, but block versions of Arnoldi
and Lanczos algorithms are readily available to handle ar-
bitrary ranks (e.g., [1, 2]).

Smith Arnoldi: Input (Az, Bz, max itr, tolerance)
j = 1;
q1 = Bz/‖Bz‖2; β = 1; Q1 = q1; R1 = ‖Bz‖2; H1 = [ ];
while j ≤ max itr {

for i = 1 : j
hij = qT

i Azqj;
end

rj+1 = Azqj −Σj
i=1hijqi;

Hj =




Hj−1




h1j

...
hj−1,j




[
0 · · · 0 β

]
hjj


;

if j > 1

Rj =

[
Rj−1[

0 · · · 0
]

∣∣∣∣ Hj

[
Rj−1(:, j − 1)

0

] ]
;

ωj = QjRj(:, j);
if (‖ωj‖2 < tolerance) break while loop;

end if
β = ‖rj+1‖2;
if (β < tolerance) break while loop;
qj+1 = rj+1/β;
Qj+1 =

[
Qj qj+1

]
;

j = j + 1;
end while
τ = number of columns in Rj ;
Return Qτ .

In short, the Arnoldi algorithm iteratively computes the τ
orthogonal columns of Qτ ∈ �n×τ and an upper triangular
matrix Rτ ∈ �τ×τ such that

• QT
τ Qτ = Iτ ;

• Hτ = QT
τ AzQτ is a τ -by-τ upper Hessenberg matrix;

• Kτ (Az, Bz) =
[
Bz AzBz · · · Aτ−1

z Bz

]
= QτRτ is

a QR factorization.

Obviously, Qτ spans the column range of Wc. A counter-
part, Qυ, corresponding to the column range of Wo is ob-
tained similarly. A Gram-Schmidt (GS) orthogonalization

of Qυ against Qτ (columns in Qτ are already orthogonal)
produces an orthogonal Qk = GS(

[
Qτ Qυ

]
) ∈ �n×k,

k ≤ τ + υ, which serves as a projection basis to generate an
intermediate model of order k.
Referring to (3), RLC models obtained from MNA have

the properties A + AT ≤ 0, B = CT , and D = 0 [13].
Passivity of the circuit is then borne out by the fact that
P = I is a solution satisfying (3). Performing a congruence
transformation of compatible dimensions, we have

[
QT

k 0
0 I

] [
A+ AT B − CT

BT −C 0

] [
Qk 0
0 I

]
≤ 0 (12)

It is easily seen that the system (QT
k AQk, Q

T
k B,CQk, 0)

inherits passivity from its parent. Careful inspection re-
veals that the Smith method is mathematically equivalent
to the vector alternate direction implicit (ADI) implemen-
tation [14, 15] with a single ADI parameter. The Smith
method, however, avoids the tridiagonalization of the A ma-
trix which can be numerically unstable. Also, compared to
ADI, SVDs of the low-rank square roots of Wc and Wo are
unnecessary as Qτ and Qυ are already orthogonal.

4. SOLVING DUAL CARES
The intermediate model from projection, say, of order

k < 100, is then subject to SBT to achieve further reduction
with guaranteed passivity (provided the original model is
passive). Standard ways of solving a CARE focus on iden-
tifying the stable invariant subspace of the corresponding
Hamiltonian matrix, (e.g., [18, 19]). While this is sufficient
for the stabilizing solution, information regarding the unsta-
ble invariant subspace is not utilized. We show that with a
few extra low-cost steps, the stable and unstable invariant
subspaces can be completely separated. This enables simul-
taneous solution of the pair of dual CAREs, (6a) and (6b),
thereby significantly reducing the computational cost. Con-
sider the Hamiltonian matrices, H and H ′, corresponding
to (6a) and (6b) respectively:

H =

[
Â B̂B̂T

−ĈT Ĉ −ÂT

]
,H ′ =

[
ÂT ĈT Ĉ

−B̂B̂T −Â

]
(13)

It can be seen that if λ is the eigenvalue of a Hamiltonian
matrix, then so is −λ. Since H and H ′ are real, eigen-
values apart from the real and imaginary axes occur even in
quadruple (λ,−λ,λ,−λ). Suppose (A,B) is stabilizable and
(A,C) is detectable, and H has no eigenvalues on the imag-
inary axis, then the stable and unstable invariant subspaces
can be decoupled, i.e.,

H

[
X11 X12

X21 X22

]
=

[
X11 X12

X21 X22

] [
Λs 0
0 Λu

]
(14)

where Λs contains the stable eigenvalues and Λu the un-
stable ones. A well-known fact is that X11 is invertible
and Pmin = P T

min = X21X
−1
11 . By the relationship H ′ =[

0 I
I 0

]
(−H)

[
0 I
I 0

]
, we get P−1

max = P−T
max = X12X

−1
22 .

In other words, all information about Pmin and P−1
max are

contained in (14), provided the invariant subspaces are com-

pletely separated. Defining J =

[
0 I
−I 0

]
, a matrix S

is called symplectic if STJS = J . Similarity transform of
a Hamiltonian matrix by symplectic matrices preserves its
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Hamiltonian structure. Here we present an effective imple-
mentation of the SR algorithm [20] to achieve subspace sep-
aration. It is assumed that H has already been transformed
into J-tridiagonal form (see remarks):

H =




a1 c1 b1

a2 b1 c2
. . .

. . .
. . .

. . . bk−1

ak bk−1 ck

q1 −a1

q2 −a2

. . .
. . .

qk −ak




(15)

SR algorithm converts H into a block J-upper-triangular
form to reveal the eigenvalues. The three types of symplectic
transforms being used in the SR algorithm are [20]:

• Algorithm J – Givens Rotations

J(i, c, s) =

[
C̃ S̃

−S̃ C̃

]
(16)

Here C̃, S̃ ∈ �k×k are the diagonal matrices C̃ = Ik + (c−
1)eie

T
i and S̃ = seie

T
i (ei is the ith unit vector). The choice

of c and s is standard [17]. Algorithm J zeroes single entries
in the lower half of the columns of the Hamiltonian matrix.
Given i, 1 ≤ i ≤ k, and x ∈ �2k, we have J(i, c, s)x = y
where yk+i = 0 (subscript indexes the k + i entry).

• Algorithm H – Householder Transform

H(i, l, w) =

[
Ψ 0
0 Ψ

]
(17)

where Ψ = diag(Ii−1, P, Ik−l−i+1) and P = Il−2wwT /wTw.
Again, the choice of w ∈ �l, 2 ≤ l ≤ k − i + 1, is standard
[17,20]. Algorithm H is used to zero column vectors of length
l on the upper half of the Hamiltonian matrix. Given i,
1 ≤ i ≤ k, and x ∈ �2k, we have H(i, l, w)x = y where
yi+1 = yi+2 = · · · = yi+l−1 = 0.

• Algorithm G – Gaussian Elimination

G(i, v) =

[
Θ Φ
0 Θ−1

]
, G(i, v)−1 =

[
Θ−1 −Φ
0 Θ

]
(18)

where Θ = Ik+((1+ v2)−1/4 −1)(ei−1e
T
i−1+ eie

T
i ) and Φ =

(v(1+ v2)−1/4)(ei−1e
T
i + eie

T
i−1). Algorithm G zeroes single

entries in the upper half of the columns of the Hamiltonian
matrix when yk+i = 0 (Algorithm J does not work). Given
i, 2 ≤ i ≤ k, x ∈ �2k, we have G(i, v)x = y where yi = 0.
The first two (stable) transformations use orthogonal sym-

plectic matrices, while the last one is a nonorthogonal sym-
plectic matrix with a condition number cond2(G(i, v)) =

(1 + v2)1/2 + |v|.
• Implicit Quadruple-Shift SR Algorithm

As in modern QR algorithm implementations [17], an SR
counterpart utilizes Implicit S bulge-chasing such that all
computations are in the real domain. Single and double-
shift strategies are investigated in the technical report ver-
sion of [19], in which the shifts are chosen from the real and

imaginary axes only. Our implementation waives this con-
traint, and complies better with the quadruple occurence of
eigenvalues away from the axes. A proven heuristic to speed
up convergence is to choose the four shifts as eigenvalues of
the 4× 4 subblock

Nj =




aj 0 cj bj

0 aj+1 bj cj+1

qj 0 −aj 0
0 qj+1 0 −aj+1


 (19)

Where j = k in the first iteration, and gradually decreases
when the J-tridiagonal matrix deflates [17, 20]. Defining
αj = a2

j + cjqj and βj = a2
j+1 + cj+1qj+1, the character-

istic polynomial of (19) is:

s4 − (αj + βj)s
2 + αjβj − qjqj+1b

2
j = 0 (20)

Analogous to the Implicit Q theorem in QR algorithm, the
first column of the following matrix product is required for
Implicit S similarity transform:

p(λ) = (H − λ)(H + λ)(H − λ̄)(H + λ̄)

= H4 − 2Re(λ2)H2 + |λ|4 I
= H4 − (αj + βj)H

2 + (αjβj − qjqj+1b
2
j)I (21)

where the shifts are roots of (20). Putting j = 1 in αj

and βj , and using a Matlab-type representation, the first
columns of H2 and H4 are

H2(:, 1) =




α1

b1q1
0
...
0



,H4(:, 1) =




α2
1 + b21q1q2

b1q1(α1 + β1)
b1q1b2q2

0
...
0




(22)

SettingH1 := H and using Algorithm H to find anH(1, 3, w)
such that H(1, 3, w)p(λ)e1 is a multiple of e1, the bulge-
chasing begins by forming H2 := H(1, 3, w)H1H(1, 3, w)

T

and Π := H(1, 3, w)T . An example H2 ∈ �12×12 looks like:




× × × × × × ×
× × × × × × ×
× × × × × × ×

× × × × × ×
× × × ×

× × ×
× × × × × ×
× × × × × ×
× × × × × ×

× ×
× ×

× ×




To restore the J-tridiagonal structure, we refer to the fol-
lowing matrix. Circles represents zeroing of entries and as-
terisks stand for newly generated entries. The (9, 1) entry
is zeroed using H3 := J(3, c, s)H2J(3, c, s)

T and the update
Π := ΠJ(3, c, s)T (entry at (7, 3) is automatically zeroed due
to the Hamiltonian structure-preserving symplectic trans-
form). Similarly, Algorithm J is used to zero (8, 1). Then
(3, 1) is zeroed by Algorithm H with H(2, 2, w), followed by
Algorithm G for (2, 1). Next, on the right half, (9, 7) and
(8, 7) are zeroed by two times of Algorithm J, and on the
upper right partition, (4, 7) and (3, 7) are zeroed with Algo-
rithm H with H(2, 3, w). Consequently, the bulge is pushed
to the lower right and the process is continued until it is
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completely driven out:



× ⊗ ⊗ × × ⊗ ⊗
⊗ × × ∗ × × × × ∗
⊗ × × ∗ ⊗ × × × ∗

∗ ∗ × ⊗ × × × ×
× ∗ ∗ × × ×

× × ×
× ⊗ ⊗ × ⊗ ⊗
⊗ × × ∗ ⊗ × × ∗
⊗ × × ∗ ⊗ × × ∗

∗ ∗ × ∗ ∗ ×
× ×

× ×




As iteration proceeds, some of the bjs become negligibly
small and the problem size deflates as in the QR algorithm.
Ultimately, the SR algorithm reduces the J-tridiagonal ma-
trix in into decoupled 2 × 2 and 4 × 4 subblocks. Stability
and passivity of the intermediate model (Section 3) implies
the absence of purely imaginary eigenvalues. Using the pro-
cedures in [20], the 2×2 (4×4) subblock can then be trans-
formed into an upper (block) triangular form with the upper
left (block) entry containing the eigenvalue(s) with negative
real part(s). We introduce here additional symplectic trans-
forms for each type of subblock that serve to completely
separate the stable and unstable invariant subspaces.

• 2× 2 Subblock

Let Nj be an ordered subblock taken from the j, k+ j plane
of the 2k × 2k matix:

Nj =

[ −λj xj

0 λj

]
(23)

where λj > 0 and xj is non-zero (otherwise no processing is
required). Define the 2× 2 symplectic matrix

Tj =

[
1/2λj xj

0 2λj

]
(24)

It is easy to verify that T−1
j NjTj gives the diagonal matrix

diag(−λj, λj). Lifting Tj into the j, k+j plane and updating
Π completes the subspace separation in this subblock.

• 4× 4 Subblock

Let Nj be an ordered subblock taken from the j, j+1, k+j,
k + j + 1 plane of the 2k × 2k matix:

Nj =

[
∆j Ωj

0 −∆T
j

]
(25)

where ∆j , Ωj(=Ω
T
j ) are 2×2 matrices. Assume ∆j contains

the stable eigenvalues −λj , −λj whose real parts are nega-
tive. The key to separating the subspaces is to realize that
the column range of Uj = (Nj + λjI)(Nj + λjI) spans the
unstable invariant subspace. Simple manipulation shows

span (Uj) = span

([
∆jΩj − Ωj∆

T
j + 2Re(λ)Ωj

−4Re(λ)∆T
j

])
(26)

On the right hand side of (26), denoting the upper part of
the partition by Z1 and the lower part by Z2, we define

Fj =

[
Z−T

2 Z1

0 Z2

]
(27)

It is easy to see that Fj is well defined (Z2 invertible) and
symplectic. Moreover, F−1

j NjFj gives diag(∆j ,−∆T
j ). Lift-

ing Fj into the j, j + 1, k+ j, k+ j + 1 plane and updating
Π completes the subspace separation in this subblock.
Eventually, HΠ = Πdiag(Λs,−ΛT

s ), and solutions to the
dual CAREs can be extracted from Π as in (14).

Remarks:
1. Techniques and results in this section are independent

of the projection in Section 3. In fact, an alternative to
perform the first-stage reduction is by an implicitly restarted
Lanczos algorithm [19]. In that case, H is readily in J-
tridiagonal format, but the projection may not be as good as
the eigenspace approach in capturing the state transitions.
2. The JHESS algorithm in [20] is used to transform

a Hamiltonian matrix into J-tridiagonal (or Hamiltonian
J-Hessenberg) form. Existence of this transformation is
strongly dependent on the first column of the similarity
transform matrix [19]. The set of these breakdown-free vec-
tors is dense in �2k. Should breakdown (or near-breakdown)
occurs due to high condition numbers in Algorithm G, a dif-
ferent projection basis Qk in Section 3 is chosen by varying
the order and/or number of columns in Qτ and Qυ. If the
implicitly restarted Lanczos algorithm is used, then it is a
simple matter of invoking an implicit start.
3. Convergence of the quadruple-shift SR algorithm is

excellent (usually within 10 iterations) under mild condi-
tions. In the few cases where Algorithm G produces a very
large condition number (only during early iterates), an ex-
ceptional shift is performed and the process is continued [20].
4. The most expensive step in the proposed scheme is the

matrix inversion (O(n3) work) in Az computation in the
Smith method. However, this step is done only once and
all other steps are of O(n2). In the SBT of the intermedi-
ate model, the transformation to J-tridiagonal form requires
O(k3) work (not required in implicitly restarted Lanczos),
while the SR algorithm is of O(k2). In practice, k � n and
the cost of the second stage is insignificant.

5. NUMERICAL EXAMPLES
The first example is a passive RLC system of order 300.

It is reduced to models of order 11 using full BT, full SBT,
PRIMA [1], low-rank square root method [7], and the pro-
posed scheme (intermediate model order = 20). As shown
in Fig. 1, the control-theoretic approaches have better per-
formance. Interestingly, the proposed scheme, resembling
the full SBT, has even lower error. This may arise from
the numerical conditioning issues in the large-size CAREs
being solved in the full-order approach. In terms of compu-
tational cost, Table 1 shows that the proposed scheme offers
an effective means to achieve tradeoff between the cost and
quality of the reduced-order models. The second example
in Fig. 2 is a system of order 300 with 80 dominant poles
close to the imaginary axis. The intermediate model order
is 82 and the reduced order is 22 in the proposed scheme,
while other schemes render 31. Again, similar observations
are obtained. This confirms the versatility of the project-
and-balance implementation.

6. CONCLUSION
This paper has presented a computationally efficient two-

stage project-and-balance scheme for passivity-preserving
model reduction. It is shown that bases for eigenspaces pro-
jection are readily obtained by integrating Smith method
and Krylov subspace iteration. The intermediate model is
stochastically balanced and truncated. A novel approach for
solving two dual CAREs simultaneously, namely, by sep-
arating the stable and unstable invariant subspaces of a
Hamiltonian matrix, has been introduced. A fast-converging

373



10
0

10
1

10
2

10
3

10
4

10
−5

10
−4

10
−3

10
−2

10
−1

2 π f /Hz

V
/V

Frequency Response

10
0

10
1

10
2

10
3

10
4

10
−10

10
−5

10
0

2 π f /Hz

V
/V

Magnitude Response Relative Error

proposed

PRIMA

full BT

low−rank sq. rt.

full SBT

Figure 1: Example RLC system of order 300 (re-
duced to 11).
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Figure 2: Example system of order 300 with 80 dom-
inant poles (reduced to 22 and 31).

quadruple-shift bulge-chasing SR algorithm has also been
described. Numerical examples have verified the effective-
ness of the proposed scheme over conventional approaches.
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