
Efficient Equivalence Checking with Partitions and
Hierarchical Cut-points

Demosthenes Anastasakis
Synopsys, Inc.

2025 NW Cornelius Pass Rd.
Hillsboro, OR 97124

demosthenes.anastasakis@synopsys.com

Lisa McIlwain
Synopsys, Inc.

2025 NW Cornelius Pass Rd.
Hillsboro, OR 97124

lisa.mcilwain@synopsys.com

Slawomir Pilarski
University of Washington, Tacoma

Tacoma, WA 98402-3100
sp5@u.washington.edu

ABSTRACT
Previous results show that both flat and hierarchical methodologies present
obstacles to effectively completing combinational equivalence checking. A
new approach that combines the benefits while effectively dealing with the
pitfalls of both styles of equivalence checking is presented.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Verification

General Terms: Design, Verification

Keywords: Logic Design, Verification, Equivalence Checking

1. INTRODUCTION
Formal equivalence-checking tools check an implementation version

of an electronic design for functional equivalence against a reference
version of the same design, which simulation and/or formal methods have
proven correct.

Commercially available tools perform combinational equivalence
checking[3][14]. That is, they verify the equivalence of combinational
cones of logic between matched primary inputs, internal registers, and
primary outputs of the two designs. Each primary input and internal register
is viewed as an input point to downstream cones of logic, and each internal
register and primary output is viewed as a compare point, which terminates
a cone of logic and must be verified. Input points and compare points in the
reference are matched, typically by name, function, or topology, with
corresponding input points and compare points in the implementation, and
matched compare point pairs are compared for functional equivalence. If
each reference primary output has a matching implementation primary
output and combinationally equivalent driving cones define each matched
pair of compare points, then it follows that the two designs produce identical
compare point values for all possible combinations of binary values at input
points and are functionally equivalent.

Although combinational equivalence checkers can definitively prove
that two designs are equivalent, they generally cannot definitively prove
non-equivalence. They may report false negatives for the following
reasons:

(1) A complete match between reference and implementation input
and compare points may be difficult to find, or nonexistent[2][5][7], even
though the designs’ sequential behavior, as observed at primary outputs, is
identical. Such matching issues are beyond the scope of this paper.

(2) Because of their combinational view of sequential behavior, they
may report a difference in combinational function that does not actually
result in a difference in sequential behavior as observed at primary outputs.
However, experience indicates that the typical use of these tools does not
require verification of design transformations that modify combinational
function, so this limitation is not currently of great practical significance.

(3) Because they view input points as unconstrained variables, these
tools may report differences in function that cannot actually occur unless
functional constraints imposed by logic outside the design being verified are
violated[8][9]. Unfortunately, this limitation often is of great practical
significance, particularly when verifying individual hierarchical blocks of a
design in isolation. Users may define external constraints to avoid false
negatives, but such set-up is often difficult and time-consuming.

The computational difficulty of checking the equivalence of two
designs depends largely on their degree of internal structural similarity, or
the number of equivalent points internal to their cones. If internal structure
has been radically modified and the cones are very large, the equivalence-
checking problem may become intractable. This is more likely to occur
when verifying a post-synthesis netlist against a pre-synthesis RTL
description (RTL-to-gate verification) than when verifying later
transformations to a gate-level netlist (gate-to-gate verification).

To mitigate verification complexity, equivalence checkers may insert
cut-points at potentially equivalent nets[8][9]. If these nets are proven
equivalent, they can be treated as input points for verification of
downstream logic, simplifying the cones to be verified. However, not only
can potentially useful cut-points be missed, but also some solvers may be
unable to use the ones that were found. Therefore it is often helpful to
explicitly bound cones to be verified by performing the verification
hierarchically.

In a hierarchical methodology each hierarchical block is verified in
isolation, with lower-level blocks excised. It is assumed that exact functional
equivalence at hierarchical boundaries is preserved, and that the equivalence
of each block does not depend on constraints imposed by higher- or lower-
level blocks—in contrast to a flat methodology, in which the entire design is
verified at once, disregarding hierarchical boundaries.

A hierarchical approach can enable an intractable or lengthy
verification to complete in reasonable time. A second advantage is that it is
likely to require less memory than flat verification. However, flat
verification offers one major advantage: if it completes, it is more likely to
produce the correct result. False negatives arise in hierarchical verification
when either (a) functional equivalence at hierarchical boundaries has not
been preserved, or (b) a block of the design is functionally equivalent only
when the containing or contained blocks that drive its input points properly
constrain them. These conditions occur frequently enough to severely limit
the applicability of hierarchical verification.

Table 1 shows run-time, memory, and verification results for several
designs, verified flat and hierarchically. These designs are “real world”
verifications, both RTL-to-gate (identified as “R2Gn”) and gate-to-gate
(identified as “G2Gn”). Verifications exceeding a 4Gb process size or 40

 Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA
Copyright 2004 ACM 1-58113-828-8/04/0006…$5.00.

539

31.5s31.5

hours of CPU time were deemed to have “maxed out.” All tests were run on
a 750 MHz Sun Microsystems Sparc 4800 with SunOS Release5.8.

The table shows that hierarchical verification generally uses much less
time and memory than flat verification. For these examples, automatically
generated scripts performed the hierarchical verification, including set-up
information defining simple constraints derived from each block’s
containing and contained blocks, such as input constants, known input
equivalences, and pin matching information. Nevertheless, the table shows
that hierarchical verification is highly subject to false negatives.
2. SYSTEM ARCHITECTURE

A new approach to combinational equivalence yields both the
accuracy and ease of setup of a fully flat methodology and the reduced
complexity and memory requirements of a fully hierarchical methodology.
It achieves low memory consumption by partitioning the designs
sequentially instead of by hierarchical blocks. It achieves performance
comparable to that of hierarchical verification, without its false-negative
risk, by effective management of cut-points on nets crossing hierarchical
boundaries.

The overall system architecture consists of several major components.
First, to control memory requirements, the partition manager groups
compare points into partitions, and the verification model of the first
partition is built. Second, to reduce verification complexity, the cut-point
manager inserts cut-points selectively at hierarchical boundaries within the
current partition. Third, the solver controller verifies the given partition.
Deployment of verification solvers is beyond the scope of this paper[6][12].
If failures are found, hierarchical cut-points are progressively removed and
downstream compare points and cut-points are re-verified, repeating until
either no failure exists, i.e. verification has succeeded, or no cut-point exists,
i.e. verification has failed. Verification continues until all partitions have
been processed.

In one extreme, the case when the designs are hierarchically
equivalent, verification will succeed with no need to remove any
hierarchical cut-points, therefore reaching the correct result as fast as a
traditional hierarchical verification approach. In the other extreme, the case
when the designs are equivalent only when verified completely flat or are
simply not equivalent, this approach will progressively remove all
hierarchical cut-points and re-verify in an effort to eliminate false negatives.
This is the worst-case scenario for this approach.

In practice, experience shows that most designs have a high degree of
similarity at hierarchical boundaries and this approach reduces verification

complexity by optimally exploiting such similarity. Hierarchical cut-points
are present for the portions of the design that can be verified hierarchically,
while they are removed for the portions of the design that need to be
appropriately constrained by surrounding logic in order to achieve
verification success.

2.1 Partitioning Management

The purpose of partitioning is to limit memory consumption. A
partition is defined as a group of related compare points and their driving
cones. Building the verification model for, and verifying, only one partition
at a time limits memory consumption.

To avoid the performance penalty of reprocessing already-processed
sub-cones and to maximize the benefits of previously identified internal
equivalences, a straightforward criterion for partitioning is to group compare
points that share large portions of logic. However, experience has shown
that this simple criterion is insufficient, because partitioning decisions also
affect the complexity of the verification. Verification can become hard or
easy depending on compare point grouping. This is because verification
solvers often save information learned during processing shallow cones and
re-use it while processing deeper cones of the same partition. Also, the
performance and effectiveness of some BDD-based solvers can be
hampered by dynamic variable re-ordering when same-partition sub-cones
that depend on the same set of input points impose conflicting requirements
on the ordering of these input points.

We would like to minimize the number of times any cone is
processed; i.e., each cone should appear in as few partitions as possible,
ideally just one. However, it is more important to minimize the number of
times a complex cone is processed than the number of times a large cone is
processed. Unfortunately, there is no known method of pre-computing the
complexity of verifying a given cone. However, experience indicates that
cone depth offers a good tradeoff between complexity and size when
predicting the cost of processing a cone.

The partition manager first assigns a predicted cost, based on cone
depth, to each shared cone, and then sorts the shared cones based on their
cost. The current partition is initialized with the compare points in the fanout
of the highest-cost unprocessed shared cone. Populating the partition
continues by exploring the fanout of the next unprocessed shared cone
already in the current partition. The partition cost threshold is based on the
size of the designs being verified. When the partition cost threshold is
exceeded, populating stops. It may also stop before the cost threshold is

R es u lt
M em o ry
(G b yte s)

C P U T im e
(se co n d s) R es u lt

M em o ry
(G b yte s)

C P U T im e
(se co n d s)

R2G 1 157819 fa il fa il 1 .27 33791 fa il 0 .73 1262
R 2G 2 73870 fa il fa il 2 .13 20641 fa il 0 .64 2137
G 2G 1 68854 fa il fa il 2 .16 4153 fa il 0 .73 10804
R 2G 3 185344 fa il n /a m a xe d o u t n /a fa il 1 .32 1771
R 2G 4 120306 fa il n /a m a xe d o u t n /a fa il 1 .96 11011
R 2G 5 214961 fa il n /a m a xe d o u t n /a fa il 2 .1 9532
R 2G 6 42988 succeed succeed 0 .59 10215 succeed 0 .18 581
R 2G 7 36813 succeed succeed 0 .84 780 succeed 0 .76 777
G 2G 2 51033 succeed succeed 1 .63 2342 fa ls e n eg 0 .65 1514
R 2G 8 39691 succeed succeed 2 .28 2675 fa ls e n eg 1 .24 4604
R 2G 9 78331 succeed succeed 2 .97 86039 fa ls e n eg 0 .73 1039
R 2G 10 72012 succeed succeed 3 .25 110186 fa ls e n eg 0 .79 4080
R 2G 11 28573 succeed n /a n /a m a xe d o u t fa ls e n eg 0 .92 1486
R 2G 12 21707 succeed n /a n /a m a xe d o u t fa ls e n eg 1 .66 61220

H iera rch ica l
C o m p are

P o in tsT es t ID
C o rrec t

R es u lt

F la t

Table 1. Hierarchical vs. Flat Verification.

540

exceeded, when a group of compare points is found to be disjoint from
every other group of compare points (they share little or no logic).

2.2 Hierarchical Cut-point Management
The approach described here reduces the size and complexity of cones

to be verified by conditionally inserting and removing explicit cut-points on
nets that cross hierarchical boundaries within each partition.

2.2.1 Cut-point Insertion
A net cut-point consists of a new compare point and input point pair.

The compare point verifies the function of the cut net, and the input point
replaces the function of the cut net in the cones of downstream compare
points. If verification of the new compare point and all compare points
downstream from the new input point succeeds, then the complete cones are
equivalent. Initially, we create cut-points on nets that cross hierarchical pin
boundaries, when the hierarchical pins are matched and not constant.

Hierarchical pins may be matched by any method used to match
compare points. Cut-points representing hierarchical pins that are not
matched are omitted because they cannot enable verification to succeed.

Cut-points representing hierarchical pins that are known to be constant
are also omitted because they would not simplify the cones of downstream
compare points and would block constraint information (i.e. the constant)
that may be required for verification success.

Omitting cut-points representing unmatched or constant hierarchical
pins prevents many of the false negatives associated with traditional
hierarchical verification. In traditional hierarchical verification, every pin of
every separately verified hierarchical block is an input point or compare
point, regardless of whether it is matched or constant, unless the user
supplies specific external constraint information. Even relatively simple
design transformations, such as clock-tree synthesis or test insertion,
introduce unmatched hierarchical pins that cause traditional hierarchical
verification to produce false negatives. In this system, such pins do not
become input points or compare points; instead, their driving logic all the
way back to true input points is included in the verification of downstream
compare points, as it would be in a traditional flat verification. But by
simultaneously including cut-points representing matched, non-constant
hierarchical pins, the desired reduction in cone size and complexity is
obtained.

2.2.2 Cut-point Removal
Even with a selective approach to hierarchical pin cut-point insertion,

a preliminary false negative may be seen, for example due to boundary
optimization. In this case we selectively remove cut-points that may
contribute to false negatives, and re-attempt verification of only the affected
cones. The object is to remove cut-points that contribute to false-negatives,
but avoid removing any cut-points that do not contribute to false negatives.

Two conflicting goals in cut-point removal complicate the selection of
candidates. The first goal is to avoid making the verification very difficult.
This goal argues for very conservative cut-point removal, removing as few
cut-points as possible for each re-attempt. The second goal is to complete
the verification in as few attempts as possible. This goal argues for very
aggressive cut-point removal, or in the logical extreme, never inserting
any—this is illustrated most obviously in true failing verifications, for which
ultimately all cut-points in all failing cones must be removed. An effective
cut-point removal algorithm must strike a balance between overly
conservative and overly aggressive cut-point removal.

The method described here makes decisions based in part on the
difficulty of previous verification attempts, taking a more conservative
approach if previous verification was very difficult, and a more aggressive
approach otherwise. Characterization of the previous verification as
“difficult” versus “easy” is a heuristic derived from the relative expense of
verification solvers it employed.

The “conservative” approach removes cut-points “bottom-up”; that is,
it removes cut-points representing lower-level block boundaries before
those representing higher-level block boundaries. Within a hierarchical
level, it removes cut-points representing boundaries that were “easy” to
verify before removing those that were “difficult.” In addition, it removes
cut-points representing boundaries that have themselves failed verification
before those representing boundaries that have succeeded.

The “aggressive” approach also removes cut-points representing
boundaries that have themselves failed verification before those
representing boundaries that have succeeded, but without regard to
hierarchical level or previous verification difficulty.

Although this method is fairly naïve, it has yielded good results. More-
sophisticated analysis of previous verification attempts and the relationships
between failure points might be expected to yield even better results.
Selectively removing cut-points for individual pins, instead of all pins of a
given sub-block, is another obvious avenue to explore.

3. EXPERIMENTAL RESULTS
An equivalence checker implementing the described architecture

verified the test cases presented in Table 1. This implementation includes
underlying equivalence-checking solvers identical to those used in obtaining
the previous results. We refer to this implementation as “new.”

Figure 2 compares memory and CPU time used by the three
methodologies, “flat”, “hierarchical”, and “new”. In 5 of 14 verifications,
flat verification did not complete within 40 hours and 4 Gbytes. In 6 of 8
expected succeeding verifications, hierarchical verification yielded a false
negative. In contrast, the new approach yielded the correct result and
completed within 40 hours and 4 Gbytes in all cases.

It may be noted that for some failing verifications, e.g. G2G1, R2G3,
and R2G5, hierarchical verification appears to enjoy a performance
advantage over the new approach. This apparent advantage is greatly
mitigated by the fact that when hierarchical verification produces a failing
result it is generally difficult to ascertain whether the failure is a false
negative or not. Further, the failing verification results produced by

Input point

Compare point
Partition 1 Partition 2 Partition 3

Hierarchical
boundary

Figure 1. Hierarchical Cut-points.

541

hierarchical verification are likely to include false failures in addition to the
relevant true failures.

On the other hand, the cost of eliminating false negatives by the new
method is modest, as shown by cases G2G2, R2G8, R2G9, R2G10,
R2G11, and R2G12.

4. ACKNOWLEDGMENT
Thanks to Daniel Donahue for collecting the data.

5. REFERENCES
[1] “Digital Systems Testing and Testable Design”, M. Abramovici,

M.A. Breuer, A. D. Friedman, Computer Science Press, 1990
[2] “A Practical and Efficient Method for Compare-Point Matching”, D.

Anastasakis, R. Damiano, T. Ma, T. Stanion, Proc. Design
Automation Conf., pages 305-310, 2002

[3] “Verification of Large Synthesized Designs”, D. Brand, Proc. Intl.
Conf. on Computer-Aided Design, pages 534-537, 1993

[4] “Graph-based algorithms for Boolean function manipulation”, R.E.
Bryant, IEEE Trans. on CAD, 1986

[5] “Robust Latch Mapping for Combinational Equivalence Checking”,
J. R. Burch, V. Singhal, Proc. Intl. Conf. on Computer-Aided Design,
pages 563–569, 1998

[6] “Tight Integration of Combinational Verification Methods”, J. R.
Burch, V. Singhal, Proc. Intl. Conf. on Computer-Aided Design ,
pages 570-576, 1998

[7] “Apparatus and method for deriving correspondence between storage
elements of a first circuit model and storage elements of a second
circuit model”, H. Cho, C. Pixley, U. S. Patent 5,638,381, June 1997

[8] “Equivalence Checking Using Cuts and Heaps”, A. Kuehlman, F.
Krohm,. Proc. Design Automation Conf., pages 263-268, 1997

[9] “An Efficient Equivalence Checker for Combinational Circuits”, Y.
Matsunaga, Proc. Design Automation Conf., pages 629-634, 1996

[10] “Hierarchical Verification for Equivalence Checking of Designs”, L.
McIlwain, D. Anastasakis, S. Pilarski, U.S. Patent 6,668,362,
December, 2003

[11] “CLEVER: Divide and Conquer Combinational Logic Equivalence
VERification with False Negative Elimination”, J. Moondanos, Carl
Seger, Ziyad Hanna, Daher Kaiss, 13th Conf. on Computer-Aided
Verification, Jul. 2001

[12] “An Efficient Filter-based Approach for Combinational Verification”,
R. Mukherjee, J. Jain, K. Takayama, M. Fujita, J. A. Abraham, D. S.
Fussell, IEEE Trans. On CAD, pages 1542-1557, 1999

[13] “A Verification Algorithm for Logic Circuits with Internal
Variables”, T. Nakaoka, S. Wakabayashi, T. Koide, N. Yoshida,
ISCAS 1995, pages 1920-1923

[14] “Novel Verification Framework Combining Structural and OBDD
Methods in a Synthesis Environment,” S. M. Reddy, W. Kunz and D.
K. Pradhan, Proc. Design Automation Conf., pp. 414–419, 1995

[15] “Circuit synthesis verification method and apparatus”, T. Stanion, U.
S. Patent 6,056,784, May 2000

[16] “Equivalence Checking of Hierarchical Combinational Circuits”, P.
F. Williams, H. Hulgaard, H.R. Andersen, 6th IEEE Intl. Conf.
Electronics, Circuits and Systems, Sep. 1999

Figure 2. Experimental Results.

Failing Verifications
M A X E D

O U T

M A X E D

O U T

M A X E D

O U T

0

0.5

1

1.5

2

2.5

3

3.5

4

R 2G 1 R 2G 2 G 2G 1 R 2G 3 R 2G 4 R 2G 5

GBytes

M A X E D

O U T

M A X E D

O U T

M A X E D

O U T

0

20000

40000

60000

80000

100000

120000

140000

R 2G 1 R 2G 2 G 2G 1 R 2G 3 R 2G 4 R 2G 5

Seconds

Flat

Hierarchical

N ew

Succeeding Verifications
M A X E D

O U T

M A X E D

O U T

*
*

* * *

*

0

0.5

1

1.5

2

2.5

3

3.5

4

R 2G 6 R 2G 7 G 2G 2 R 2G 8 R 2G 9 R 2G 10 R 2G 11 R 2G 12

M A X E D

O U T

M A X E D

O U T

* * * * *

*

0

20000

40000

60000

80000

100000

120000

140000

R 2G 6 R 2G 7 G 2G 2 R 2G 8 R 2G 9 R 2G 10 R 2G 11 R 2G 12

Test ID
*FALSE NEG

542

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

