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ABSTRACT 
Previous results show that both flat and hierarchical methodologies present 
obstacles to effectively completing combinational equivalence checking. A 
new approach that combines the benefits while effectively dealing with the 
pitfalls of both styles of equivalence checking is presented. 

Categories and Subject Descriptors 
B.5.2 [Design Aids]: Verification 

General Terms: Design, Verification 

Keywords: Logic Design, Verification, Equivalence Checking 

1. INTRODUCTION 
Formal equivalence-checking tools check an implementation version 

of an electronic design for functional equivalence against a reference 
version of the same design, which simulation and/or formal methods have 
proven correct. 

Commercially available tools perform combinational equivalence 
checking[3][14]. That is, they verify the equivalence of combinational 
cones of logic between matched primary inputs, internal registers, and 
primary outputs of the two designs. Each primary input and internal register 
is viewed as an input point to downstream cones of logic, and each internal 
register and primary output is viewed as a compare point, which terminates 
a cone of logic and must be verified. Input points and compare points in the 
reference are matched, typically by name, function, or topology, with 
corresponding input points and compare points in the implementation, and 
matched compare point pairs are compared for functional equivalence. If 
each reference primary output has a matching implementation primary 
output and combinationally equivalent driving cones define each matched 
pair of compare points, then it follows that the two designs produce identical 
compare point values for all possible combinations of binary values at input 
points and are functionally equivalent.  

Although combinational equivalence checkers can definitively prove 
that two designs are equivalent, they generally cannot definitively prove 
non-equivalence.  They may report false negatives for the following 
reasons: 

(1) A complete match between reference and implementation input 
and compare points may be difficult to find, or nonexistent[2][5][7], even 
though the designs’ sequential behavior, as observed at primary outputs, is 
identical. Such matching issues are beyond the scope of this paper. 

(2) Because of their combinational view of sequential behavior, they 
may report a difference in combinational function that does not actually 
result in a difference in sequential behavior as observed at primary outputs. 
However, experience indicates that the typical use of these tools does not 
require verification of design transformations that modify combinational 
function, so this limitation is not currently of great practical significance.  

(3) Because they view input points as unconstrained variables, these 
tools may report differences in function that cannot actually occur unless 
functional constraints imposed by logic outside the design being verified are 
violated[8][9]. Unfortunately, this limitation often is of great practical 
significance, particularly when verifying individual hierarchical blocks of a 
design in isolation. Users may define external constraints to avoid false 
negatives, but such set-up is often difficult and time-consuming.  

The computational difficulty of checking the equivalence of two 
designs depends largely on their degree of internal structural similarity, or 
the number of equivalent points internal to their cones. If internal structure 
has been radically modified and the cones are very large, the equivalence-
checking problem may become intractable. This is more likely to occur 
when verifying a post-synthesis netlist against a pre-synthesis RTL 
description (RTL-to-gate verification) than when verifying later 
transformations to a gate-level netlist (gate-to-gate verification). 

To mitigate verification complexity, equivalence checkers may insert 
cut-points at potentially equivalent nets[8][9]. If these nets are proven 
equivalent, they can be treated as input points for verification of 
downstream logic, simplifying the cones to be verified. However, not only 
can potentially useful cut-points be missed, but also some solvers may be 
unable to use the ones that were found. Therefore it is often helpful to 
explicitly bound cones to be verified by performing the verification 
hierarchically. 

In a hierarchical methodology each hierarchical block is verified in 
isolation, with lower-level blocks excised. It is assumed that exact functional 
equivalence at hierarchical boundaries is preserved, and that the equivalence 
of each block does not depend on constraints imposed by higher- or lower-
level blocks—in contrast to a flat methodology, in which the entire design is 
verified at once, disregarding hierarchical boundaries. 

A hierarchical approach can enable an intractable or lengthy 
verification to complete in reasonable time. A second advantage is that it is 
likely to require less memory than flat verification. However, flat 
verification offers one major advantage: if it completes, it is more likely to 
produce the correct result. False negatives arise in hierarchical verification 
when either (a) functional equivalence at hierarchical boundaries has not 
been preserved, or (b) a block of the design is functionally equivalent only 
when the containing or contained blocks that drive its input points properly 
constrain them. These conditions occur frequently enough to severely limit 
the applicability of hierarchical verification. 

Table 1 shows run-time, memory, and verification results for several 
designs, verified flat and hierarchically. These designs are “real world” 
verifications, both RTL-to-gate (identified as “R2Gn”) and gate-to-gate 
(identified as “G2Gn”). Verifications exceeding a 4Gb process size or 40 
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hours of CPU time were deemed to have “maxed out.” All tests were run on 
a 750 MHz Sun Microsystems Sparc 4800 with SunOS Release5.8. 

The table shows that hierarchical verification generally uses much less 
time and memory than flat verification. For these examples, automatically 
generated scripts performed the hierarchical verification, including set-up 
information defining simple constraints derived from each block’s 
containing and contained blocks, such as input constants, known input 
equivalences, and pin matching information. Nevertheless, the table shows 
that hierarchical verification is highly subject to false negatives. 
2. SYSTEM ARCHITECTURE 

A new approach to combinational equivalence yields both the 
accuracy and ease of setup of a fully flat methodology and the reduced 
complexity and memory requirements of a fully hierarchical methodology. 
It achieves low memory consumption by partitioning the designs 
sequentially instead of by hierarchical blocks. It achieves performance 
comparable to that of hierarchical verification, without its false-negative 
risk, by effective management of cut-points on nets crossing hierarchical 
boundaries. 

The overall system architecture consists of several major components. 
First, to control memory requirements, the partition manager groups 
compare points into partitions, and the verification model of the first 
partition is built. Second, to reduce verification complexity, the cut-point 
manager inserts cut-points selectively at hierarchical boundaries within the 
current partition. Third, the solver controller verifies the given partition. 
Deployment of verification solvers is beyond the scope of this paper[6][12]. 
If failures are found, hierarchical cut-points are progressively removed and 
downstream compare points and cut-points are re-verified, repeating until 
either no failure exists, i.e. verification has succeeded, or no cut-point exists, 
i.e. verification has failed. Verification continues until all partitions have 
been processed.  

In one extreme, the case when the designs are hierarchically 
equivalent, verification will succeed with no need to remove any 
hierarchical cut-points, therefore reaching the correct result as fast as a 
traditional hierarchical verification approach. In the other extreme, the case 
when the designs are equivalent only when verified completely flat or are 
simply not equivalent, this approach will progressively remove all 
hierarchical cut-points and re-verify in an effort to eliminate false negatives. 
This is the worst-case scenario for this approach.  

In practice, experience shows that most designs have a high degree of 
similarity at hierarchical boundaries and this approach reduces verification 

complexity by optimally exploiting such similarity. Hierarchical cut-points 
are present for the portions of the design that can be verified hierarchically, 
while they are removed for the portions of the design that need to be 
appropriately constrained by surrounding logic in order to achieve 
verification success. 
 
2.1 Partitioning Management 

The purpose of partitioning is to limit memory consumption. A 
partition is defined as a group of related compare points and their driving 
cones. Building the verification model for, and verifying, only one partition 
at a time limits memory consumption. 

To avoid the performance penalty of reprocessing already-processed 
sub-cones and to maximize the benefits of previously identified internal 
equivalences, a straightforward criterion for partitioning is to group compare 
points that share large portions of logic. However, experience has shown 
that this simple criterion is insufficient, because partitioning decisions also 
affect the complexity of the verification. Verification can become hard or 
easy depending on compare point grouping. This is because verification 
solvers often save information learned during processing shallow cones and 
re-use it while processing deeper cones of the same partition. Also, the 
performance and effectiveness of some BDD-based solvers can be 
hampered by dynamic variable re-ordering when same-partition sub-cones 
that depend on the same set of input points impose conflicting requirements 
on the ordering of these input points. 

We would like to minimize the number of times any cone is 
processed; i.e., each cone should appear in as few partitions as possible, 
ideally just one. However, it is more important to minimize the number of 
times a complex cone is processed than the number of times a large cone is 
processed. Unfortunately, there is no known method of pre-computing the 
complexity of verifying a given cone. However, experience indicates that 
cone depth offers a good tradeoff between complexity and size when 
predicting the cost of processing a cone.  

The partition manager first assigns a predicted cost, based on cone 
depth, to each shared cone, and then sorts the shared cones based on their 
cost. The current partition is initialized with the compare points in the fanout 
of the highest-cost unprocessed shared cone. Populating the partition 
continues by exploring the fanout of the next unprocessed shared cone 
already in the current partition. The partition cost threshold is based on the 
size of the designs being verified. When the partition cost threshold is 
exceeded, populating stops. It may also stop before the cost threshold is 
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Table 1. Hierarchical vs. Flat Verification. 
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exceeded, when a group of compare points is found to be disjoint from 
every other group of compare points (they share little or no logic). 

2.2 Hierarchical Cut-point Management 
The approach described here reduces the size and complexity of cones 

to be verified by conditionally inserting and removing explicit cut-points on 
nets that cross hierarchical boundaries within each partition. 

2.2.1 Cut-point Insertion 
A net cut-point consists of a new compare point and input point pair. 

The compare point verifies the function of the cut net, and the input point 
replaces the function of the cut net in the cones of downstream compare 
points. If verification of the new compare point and all compare points 
downstream from the new input point succeeds, then the complete cones are 
equivalent. Initially, we create cut-points on nets that cross hierarchical pin 
boundaries, when the hierarchical pins are matched and not constant. 

Hierarchical pins may be matched by any method used to match 
compare points. Cut-points representing hierarchical pins that are not 
matched are omitted because they cannot enable verification to succeed. 

Cut-points representing hierarchical pins that are known to be constant 
are also omitted because they would not simplify the cones of downstream 
compare points and would block constraint information (i.e. the constant) 
that may be required for verification success. 

Omitting cut-points representing unmatched or constant hierarchical 
pins prevents many of the false negatives associated with traditional 
hierarchical verification. In traditional hierarchical verification, every pin of 
every separately verified hierarchical block is an input point or compare 
point, regardless of whether it is matched or constant, unless the user 
supplies specific external constraint information. Even relatively simple 
design transformations, such as clock-tree synthesis or test insertion, 
introduce unmatched hierarchical pins that cause traditional hierarchical 
verification to produce false negatives. In this system, such pins do not 
become input points or compare points; instead, their driving logic all the 
way back to true input points is included in the verification of downstream 
compare points, as it would be in a traditional flat verification. But by 
simultaneously including cut-points representing matched, non-constant 
hierarchical pins, the desired reduction in cone size and complexity is 
obtained. 

2.2.2 Cut-point Removal 
Even with a selective approach to hierarchical pin cut-point insertion, 

a preliminary false negative may be seen, for example due to boundary 
optimization. In this case we selectively remove cut-points that may 
contribute to false negatives, and re-attempt verification of only the affected 
cones. The object is to remove cut-points that contribute to false-negatives, 
but avoid removing any cut-points that do not contribute to false negatives. 

Two conflicting goals in cut-point removal complicate the selection of 
candidates. The first goal is to avoid making the verification very difficult. 
This goal argues for very conservative cut-point removal, removing as few 
cut-points as possible for each re-attempt. The second goal is to complete 
the verification in as few attempts as possible. This goal argues for very 
aggressive cut-point removal, or in the logical extreme, never inserting 
any—this is illustrated most obviously in true failing verifications, for which 
ultimately all cut-points in all failing cones must be removed. An effective 
cut-point removal algorithm must strike a balance between overly 
conservative and overly aggressive cut-point removal. 

The method described here makes decisions based in part on the 
difficulty of previous verification attempts, taking a more conservative 
approach if previous verification was very difficult, and a more aggressive 
approach otherwise. Characterization of the previous verification as 
“difficult” versus “easy” is a heuristic derived from the relative expense of 
verification solvers it employed.  

The “conservative” approach removes cut-points “bottom-up”; that is, 
it removes cut-points representing lower-level block boundaries before 
those representing higher-level block boundaries. Within a hierarchical 
level, it removes cut-points representing boundaries that were “easy” to 
verify before removing those that were “difficult.”  In addition, it removes 
cut-points representing boundaries that have themselves failed verification 
before those representing boundaries that have succeeded.  

The “aggressive” approach also removes cut-points representing 
boundaries that have themselves failed verification before those 
representing boundaries that have succeeded, but without regard to 
hierarchical level or previous verification difficulty. 

Although this method is fairly naïve, it has yielded good results. More-
sophisticated analysis of previous verification attempts and the relationships 
between failure points might be expected to yield even better results. 
Selectively removing cut-points for individual pins, instead of all pins of a 
given sub-block, is another obvious avenue to explore. 

3. EXPERIMENTAL RESULTS 
An equivalence checker implementing the described architecture 

verified the test cases presented in Table 1. This implementation includes 
underlying equivalence-checking solvers identical to those used in obtaining 
the previous results. We refer to this implementation as “new.” 

Figure 2 compares memory and CPU time used by the three 
methodologies, “flat”, “hierarchical”, and “new”. In 5 of 14 verifications, 
flat verification did not complete within 40 hours and 4 Gbytes. In 6 of 8 
expected succeeding verifications, hierarchical verification yielded a false 
negative. In contrast, the new approach yielded the correct result and 
completed within 40 hours and 4 Gbytes in all cases.  

It may be noted that for some failing verifications, e.g. G2G1, R2G3, 
and R2G5, hierarchical verification appears to enjoy a performance 
advantage over the new approach. This apparent advantage is greatly 
mitigated by the fact that when hierarchical verification produces a failing 
result it is generally difficult to ascertain whether the failure is a false 
negative or not. Further, the failing verification results produced by 

Input point 

Compare point 
Partition 1 Partition 2 Partition 3 

Hierarchical 
boundary 

Figure 1. Hierarchical Cut-points. 
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hierarchical verification are likely to include false failures in addition to the 
relevant true failures. 

On the other hand, the cost of eliminating false negatives by the new 
method is modest, as shown by cases G2G2, R2G8, R2G9, R2G10, 
R2G11, and R2G12. 
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Figure 2. Experimental Results. 
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