
A Method for Correcting the Functionality of a
Wire-Pipelined Circuit∗

Vidyasagar Nookala Sachin S. Sapatnekar
Department of Electrical and Computer Engineering

University of Minnesota
Minneapolis, MN 55455

{vidya,sachin}@ece.umn.edu

ABSTRACT
As across-chip interconnect delays can exceed a clock cycle, wire
pipelining becomes essential in high performance designs. Al-
though it allows higher clock frequencies, it may change the mi-
croarchitecture altogether because of the arbitrary increase in the
latencies of the paths and cycles of the circuit. This paper proposes
a method to regain the functionality of a wire-pipelined circuit. In
this approach, increased cycle latencies are compensated by slow-
ing down the issue rate of the inputs. Our method finds the optimal
value of the slowdown required for a circuit as it directly affects the
throughput of the circuit. We also incorporate area minimization in
our formulation to minimize the number of extra flip-flops added
to the circuit. The formulation is tested on circuits derived from
ISCAS benchmarks and the results suggest that wire pipelining in-
creases the overall throughput in most of the cases.

Categories and Subject Descriptors
B.7.2 [Hardware]: Integrated Circuits—Design Aids

General Terms
Performance, Algorithms

Keywords
Wire pipelining, Synchronous design

1. INTRODUCTION
Semiconductor industry trends suggest that the operating fre-

quencies of leading edge integrated circuits approximately dou-
ble every process generation [1], in tune with the projections of
Moore’s Law. However, wire delays have become a dominant fac-
tor in determining the system performance, which is more evident
in deep submicron (DSM) technologies. In particular, the shrink-
ing clock periods have made across-chip communication a perfor-
mance bottleneck, where some global wires may have delays larger
than the intended clock period. The scenario is further aggravated
by the fact that die sizes increase by 7% with every process gen-
eration [1], resulting in even longer wire lengths, and hence longer

∗This work was supported in part by the NSF under award CCR-0205227,
and by the SRC under award 2003-TJ-1092.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2004, June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

wire delays. Even the theoretically best optimizers cannot over-
come the criticality of the global interconnects. For instance, even
after aggressive optimization, delay of a 2cm global interconnect,
a common occurrence in DSM designs, is projected to be 0.67ns
in 70nm technology [2], placing an upper bound of about 1.5GHz
on the operating frequency, much less than the multigigahertz fre-
quencies projected for that technology. This suggests that multi-
cycle across-chip communication is a necessity to support higher
operating frequencies. Several approaches can be used to address
the criticality of across-chip interconnects, such as:

• Adopting a Globally Asynchronous Locally Synchronous
(GALS) [3] design methodology: In this approach, the com-
munication between the synchronous subsystems (or blocks)
of a circuit, each of which can have a different clock, is based
on a full handshake protocol. Several other works have been
proposed based on this approach, such as [4, 5] to cite a few.
Carloni et al., proposed a latency insensitive design in [6].
However, the overhead for the asynchronous interface may
affect both the performance and the area of the design.

• Providing a slower clock for the flip-flops latching signals
from global wires: Each of the signals from the global wires
whose delay is greater than the system clock cycle are latched
by the flip-flops clocked by the new, slower clock network.
However, this approach adds new complications in the form
of routing the extra clock network and synchronization be-
tween the clock domains. Moreover, since the slower clock
must consider the worst case across-chip wire delay, latching
signals from wires whose delay is considerably smaller than
the clock cycle degrades the throughput of the circuit.

• Pipelining the global wires of the circuit: The delay of an in-
terconnect is distributed over several clock cycles by insert-
ing flip-flops, which allows a fully synchronous operation at
higher clock frequencies. A retiming [7] based method for
wire pipelining is proposed in [8]. However, since the la-
tencies of the cycles and input-output paths of the circuit re-
main unchanged in this approach, there is a lower bound on
the achievable clock cycle time. In contrast, the techniques
proposed in [9, 10] insert flip-flops to pipeline an intercon-
nect to enable higher clock frequencies, in conjunction with
repeater insertion. Although pipelining the wires of a circuit
using [9, 10] permits higher operating frequencies, the resul-
tant wire-pipelined circuit may be functionally different from
the initial circuit. This happens because wire pipelining can
arbitrarily increase the latencies of paths and cycles of the
circuit due to the insertion of extra flip-flops.

This paper will focus on the aftereffects of wire pipelining. Given
a circuit and a wire pipelined version of the circuit, which may be

34.1

570

functionally incorrect, we formulate a method to regain the correct-
ness of the wire pipelined circuit.

2. PROBLEM DESCRIPTION
A typical design flow may proceed as follows. After the blocks

and modules of the circuit are designed subject to a clock fre-
quency, a block-level placement of the circuit is performed. Wire
pipelining is then carried out on the global wires of the circuit,
sometimes concurrently with routing [10], or sometimes after rout-
ing is done [9], and this may insert flip-flops on a wire if the delay
of the wire exceeds a clock cycle. After the wires of a circuit are
pipelined, the following two problems must be resolved:

• Increase in the latencies of the cycles of the circuit.

• Nonuniform increase in the latencies of different paths to a
block from the inputs of the circuit.

B0 B1C B1B0 C

FF

b

a

z

y
 a

b

y

z

(b)(a)

ckt pckt i

Figure 1: A circuit with two inputs a and b. Signals y and z are
the input ports of the block B0. (a) The circuit before pipelining
its wires (ckti). (b) The circuit after pipelining its wires (cktp).

In this paper, we assume that all the flip-flops are edge-triggered.
Consider Figure 1, which depicts a circuit comprising two combi-
national logic blocks B0 and B1, before and after pipelining the
wires of the circuit. The two scenarios are labeled ckti and cktp,
as shown in Figures 1(a) and 1(b), respectively. The insertion of an
extra flip-flop on the cycle C increases its latency to 2 in cktp from
1 in ckti. Hence, the output of each block of C propagates back
to itself after 1 clock cycle in ckti, whereas it takes an extra clock
cycle in cktp, thus altering the original functionality of the cycle.
Moreover, with the insertion of an extra flip-flop between a and y,
the inputs a and b reach y and z, respectively, after an equal num-
ber of clock cycles in cktp, which is not the case in ckti. Hence,
ckti and cktp are not functionally equivalent.

B1B0 C

y

zb

a

Figure 2: A solution to the problem shown in Figure 1. We
refer to this circuit as cktf .

Wire pipelining can therefore result in a totally different microar-
chitecture. This is not the desired result and therefore, must be
corrected, and this paper proposes a method for doing so. The so-
lution lies in ensuring that every block receives its inputs at the
correct clock cycle. For increased cycle latencies, we use an ap-
proach similar to the c-slow concept mentioned in [7]. The idea is
to slowdown the input issue rate1 of the circuit by some factor ρ,
i.e., inputs are allowed to change only every ρth clock cycle. The
issue rate of the initial circuit ckti is assumed to be 1.

For instance, the cycle C of cktp will be functionally equivalent
to the cycle C of ckti, if the inputs a and b are permitted to change
only every other clock cycle in cktp. As a result, cktp computes its

1The issue rate is defined as the number of clock cycles between successive
input changes. An issue rate of 1 indicates that the inputs can change every
clock cycle.

outputs only every 2 clock cycles, which indicates a reduction in the
throughput of the circuit. Moreover, the latency difference between
any two paths to a block from the inputs of a circuit must also be
maintained in its wire-pipelined version. Going by this argument,
since the latency difference between the paths b → z and a → y
is 1 in ckti, and 0 in cktp, one extra flip-flop must be inserted on
the path b → z in cktp to make it functionally equivalent to ckti.
However, the slowdown has implications on the path latencies of a
wire-pipelined circuit. For example, the latency difference of the
paths a → y and b → z in ckti must be amplified by a factor of
ρ = 2 in cktp, since it receives its inputs only every 2 clock cycles.
Therefore, 2 extra flip-flops must be inserted on the path b → z in
cktp, as shown in Figure 2.

Our work finds the minimal value of slowdown required for a
circuit as this directly affects its throughput and also minimizes the
increase in area due to the insertion of extra flip-flops.

3. PRELIMINARIES
In the example in section 2, it was assumed that all blocks were

purely combinational. In general, a circuit may have sequential
as well as combinational blocks, i.e., the blocks may have internal
flip-flops and/or cycles. The existence of cycles in a circuit may
require that extra flip-flops be inserted within a sequential block of
the circuit. For instance, consider a scenario where there are two
paths from an input of a sequential block to one of its outputs. If
the two paths have different latencies, and if the circuit requires a
slowdown ρ > 1, then the solution may require that the difference
of latencies be increased by a factor of ρ. Therefore, all of the wires
of the block must be considered for the insertion of extra flip-flops.
However, in most cases, the blocks are internally undefined blocks
at an early stage of design, or IP cores, and therefore, arbitrary
insertion of extra flip-flops on the wires within the blocks is not
desirable. To avoid this, we use an abstract model for a sequential
block that decomposes it into a set of combinational sub-blocks,
interconnected by wires having flip-flops. This ensures that for any
sequential block, only those interconnections that have flip-flops
on them are considered for insertion of extra flip-flops. Figure 3
shows a sequential block and the abstract model of the block. The
block is modeled as two combinational sub-blocks, S1 and S2, with
flip-flops on the interconnections between them.

FF

S2

FF

S1

b
c

d

f

a

e

Figure 3: A sequential block and its abstracted model.

For a general circuit, we will consider three scenarios: the ini-
tial circuit, a wire-pipelined version of the initial circuit, and a
corrected wire-pipelined version of the initial circuit. Flip-flops
and repeaters apart, each of the three circuits comprises of the
same placed and routed combinational block level or sub-block
level netlist. Each net of the circuits is a routed tree that con-
nects the output of a block/sub-block (source) to the inputs of other
blocks/gates (sinks) through branch points such as Steiner points
[11]. We use three edge weighted graphs to model the three scenar-
ios. The graphs have the same vertex and edge sets, represented as
V and E, respectively. The vertex set V of the graphs models the
blocks/sub-blocks, the inputs, the outputs and the branch points of
the circuit. The set E is the collection of the nets of the circuit. The
graphs are described below:

571

• The graph Gi = 〈V, E, wi〉 represents the initial circuit,
which may not satisfy the timing constraints. The weight
wi(e), ∀e ∈ E is the number of flip-flops along the wire
modeled by e in Gi.

• The graph Gp = 〈V, E, wp〉 represents the wire-pipelined
version of the initial circuit Gi, obtained using some wire
pipelining method such as [9, 10]. Although Gp satisfies the
timing constraints, it may not be functionally equivalent to
Gi. The weight wp(e), ∀e ∈ E is the number of flip-flops
along the wire modeled by e in Gp.

• The graph Gf = 〈V, E, wf 〉 represents the corrected wire-
pipelined circuit, obtained after altering Gp to make it func-
tionally correct. Hence, Gf satisfies the timing constraints,
and is also functionally equivalent to Gi. The weight wf (e),
∀e ∈ E is the number of flip-flops along the wire modeled
by e in Gf .

This paper accepts Gi and Gp as inputs and presents a method to
obtain Gf . The input issue rate of Gi is assumed to be 1, i.e., inputs
of Gi can be change every clock cycle. As was seen in section 2,
any attempt to correct the functionality of Gp to obtain Gf may
involve the insertion of extra flip-flops, thus increasing the area.
We formulate a method to minimize the increase in area, which
in detailed in section 4.2. For this purpose, we define two weight
functions on E, as shown below:

• The weight rp(e), ∀e ∈ E represents the number of re-
peaters along the wire modeled by e in Gp.

• The weight rf (e), ∀e ∈ E represents the number of re-
peaters along the wire modeled by e in Gf .

We assume that all repeaters are identical and therefore have
equal area. We make a similar assumption for the flip-flops as
well, i.e., each flip-flop has equal area. If extra flip-flops are to
be inserted along a wire, in going from Gp to Gf , some or all of
the repeaters along the wires in Gp can be replaced with flip-flops.
The repeaters of Gi are ignored in our model since they do not have
any role in area minimization.

We extend the weight functions wi, wp and wf to (simple) paths
and (simple) cycles of the graphs. The weight of a path/cycle is
defined as the sum of weights of all edges on the path/cycle. The
weights of any edge, path and cycle in Gf must not be less than
the corresponding weights in Gp, as we do not wish to unpipeline
the wires of Gp. However, the weights wp can be less than the
corresponding weights wi in Gi, indicating the presence of more
than necessary number of flip-flops required to meet the timing re-
quirements. Thus, for any edge or path, wf can be less than2 the
corresponding wi. To indicate that e is an edge from u and v in the
graphs, we will use the notation u

e→ v. We will also use the terms
“graph” and “circuit” interchangeably.

4. SOLUTION TECHNIQUE
4.1 Obtaining the optimal ρρρ

As explained in section 2, the concept of slowing down the input
issue rate can be used to correct the functionality of a cycle in Gp.
By specifying a restriction that inputs are not allowed to change
every clock cycle, we are providing “extra” clock cycles to the cy-
cle in Gp to complete its computations. In other words, slowdown
(of input issue rate) can be thought of a compensating factor for
increased cycle latencies in Gp.

Let c be any cycle of the graphs, whose latencies in Gi and Gp

are wi(c) and wp(c), respectively. Consider a block on the cycle,

2This not true for a cycle though. For any cycle c, wf (c) ≥ wi(c), since
ρ(c) ≥ 1.

and suppose it has an input y, not belonging to the cycle3. By
the time the output computed by the block propagates back to itself
through the other blocks of the cycle, the number of times the signal
seen at y may have changed is equal to wi(c) in Gi, and wp(c) in
Gp. For functional equivalence of the two circuits, the number of
input changes seen at y must be identical in both circuits, equal
to wi(c). This is achieved when the input y is permitted to change

only every wp(c)

wi(c)
clock cycles in Gp. This ratio gives the slowdown

ρ(c) required for c in Gp. If wi(c) does not divide wp(c), then the
weight wp(c) must be increased to the next higher integer. For
instance, if the values of wi(c) and wp(c) are 2 and 5, respectively,
then a slowdown of ρ(c) = 3 is required for c in Gp and the weight
wp(c) must be increased to ρ · wi(c) = 6. The same idea can be
applied to the cycle C of Figure 1, the slowdown ρ required for C
is the ratio of wp(C) and wp(C), i.e., ρ(C) = 2

1
= 2.

In general, a circuit may have more than one cycle and each of
these may require a different slowdown. The critical cycle is the
cycle which requires the maximum value of slowdown. The slow-
down required for this cycle is the lower bound for the slowdown
required for the entire circuit Gf . If ρ̂(Gf), or ρ̂ in short denotes
the minimal (or optimal) slowdown required by Gf , then we have

ρ̂ = max
c∈C

‰
wp(c)

wi(c)

ıff

where C is the set of cycles of the graphs.
The equation shown above represents a maximum cycle ratio

problem (MCRP) [12] on the graphs Gi and Gp, where the time and
cost of each edge e ∈ E is given by the weights wp(e) and wi(e),
respectively. One method of obtaining ρ̂ is proposed by Lawler in
[12]. The idea is to iteratively apply the Bellman-Ford algorithm
[13] to find the longest paths in the graph Gl = 〈V, E, wl〉.

wl(e) = wp(e) − ρ̂ · wi(e) ∀e ∈ E (1)

If there is no cycle in Gl (C = ∅), then ρ̂ is 1, i.e., inputs can
be issued every clock cycle in acyclic circuits. Otherwise, a bi-
nary search is performed to find the minimal value of ρ̂ for which
there is no positive cycle in Gl. The presence of a positive cycle
in Gl indicates that for some cycle c in Gl, ρ̂ · wi(c) < wp(c),
i.e., the slowdown required for c is greater than ρ̂. The complexity
of Lawler’s method is O(|V ||E|log(|V |wmax)), where wmax =
maxe∈E wi(e). Several other more efficient ways of solving the
MCRP have been proposed in the literature [14].

4.2 Obtaining a solution to GfGfGf

4.2.1 A feasible solution
Let q and q′ be any two distinct paths from the inputs of the

circuits to any vertex v ∈ V . Since the inputs are issued only every
ρ̂ clock cycles in Gf , if the difference of weights of q and q′ in
Gi is k, then the corresponding difference in Gf must be ρ̂ · k.
For example, since the difference of weights of the paths a → y
and b → z in ckti, shown in Figure 1(a) is 1, the corresponding
difference must be 2 (since ρ̂ = 2 for the circuit) in Gf for the
circuit, shown in Figure 2. From this observation, we have

wf (q) − wf (q′) = ρ̂ · (wi(q) − wi(q
′))

⇒ wf (q) − ρ̂ · wi(q) = wf (q′) − ρ̂ · wi(q
′) (2)

If Qv is the set of all paths from the inputs to v in the graphs,
then from (2), the difference of the terms wf and ρ̂ · wi must be
equal ∀q ∈ Qv . We introduce a variable x(v) ∀v ∈ V such that

x(v) = wf (q) − ρ̂ · wi(q) ∀q ∈ Qv (3)
3An example of such a situation is illustrated by input y in Figure 1.

572

0x =

0x =

0x =

v0 v1 v1 v1 v1v0 v0v0

vb

va va va va

vb vb vb

C C C C

(a) (b)

x =

1

x = 1

(c) (d)

x =

x = 0

x =

1

1
0

1

1
0

1

1

1

1

−1

 1

−1

0 0

11

3

Figure 4: Illustration of the solution technique on the circuit shown in Figure 1. The numbers shown with the edges in the graphs
correspond to the weights of the edges. (a) The initial circuit (Gi) depicting ckti. (b) The wire pipelined circuit (Gp), depicting cktp.
(c) The corresponding graph Gl. The optimal slowdown, ρ̂ is 2. The number shown above each vertex in Gl is the x value for that
vertex. (d) A Solution (Gf). The weights wf shown with the edges are obtained by using (7).

We also have wf (q) ≥ wp(q) for all q ∈ Qv . From this and (3),
the following can be deduced:

x(v) ≥ wp(q) − ρ̂ · wi(q) ∀q ∈ Qv (4)

Let qu be any path starting from the inputs, ending at vertex u.
For u

e→ v, we can form a path qv ending at v by adding e to qu.
Therefore, we have

wp(qv) = wp(qu) + wp(e)

wi(qv) = wi(qu) + wi(e)

and wf (qv) = wf (qu) + wf (e) (5)

From (4) and (5), we have

(x(v) − x(u)) ≥ (wp(qv) − wp(qu)) + ρ̂ · (wi(qv) − wi(qu))

⇒ x(v) ≥ x(u) + (wp(e) − ρ̂ · wi(e)) (6)

From (6), it is evident that x(v) is the weight of the longest path
to v in Gl, defined in section 4.1. When there are no positive cy-
cles in Gl, longest paths are well defined and the Bellman-Ford
algorithm outputs the x values of the vertices. Therefore, solving
the MCRP by Lawler’s method also finds the x values, along with
ρ̂. We will now show that the weights wf of Gf can be determined
from the x values and ρ̂ obtained by solving the MCRP on Gi and
Gp. From (3) and (5), we have

wf (qv) = x(v) + ρ̂ · wi(qv)

⇒ wf (qu) + wf (e) = x(v) + ρ̂ · (wi(qu) + wi(e))

⇒ wf (e) = (x(v) − x(u)) + ρ̂ · wi(e) (7)

In (7), the weights wf are expressed in terms of x values and ρ̂.
To summarize, the following steps are involved in obtaining Gf .

1. Solve the MCRP to obtain ρ̂ and the x values.
2. From the ρ̂ and the x values computed in step 1, determine

the weights wf of Gf using (7).

LEMMA 1. Let (Gf = 〈V, E, wf 〉, ρ ≥ ρ̂) be a solution to
〈Gi, Gp〉. Then for any cycle c in the circuit, we have

wf (c) = ρ · wi(c)

The proof of Lemma 1 is omitted due to space limitations. The
lemma indicates that all cycle latencies are increased by a factor of
ρ in Gf . This shows that Gf represents a pipelined version of Gi,
retaining its functionality if the inputs are issued only every ρ clock
cycles. It produces outputs every ρ clock cycles.

We demonstrate the solution technique on the circuit shown in
Figure 1. Figures 4(a) and (b) show the graph models Gi and Gp,
for the circuits ckti and cktp, shown in Figures 1(a) and (b), respec-
tively. The blocks B0 and B1, and the inputs a and b are modeled
as the vertices v0, v1, va, vb, respectively. The graphs have one cy-
cle C = v0 → v1 → v0. We have seen at the beginning of this
section that the optimal slowdown required for the circuit is 2, i.e.,

ρ̂ = 2. Figure 4(c) shows the graph Gl obtained by computing
the edge weights using (1). For ρ̂ = 2, it can be observed that the
weight of C in Gl is 0, which indicates that the longest paths are
well defined in Gl. The x values of the vertices are shown in Figure
4(c). The solution obtained by using the x values from Figure 4(c)
is shown in Figure 4(d). It can be seen that the graph Gf of Figure
4(d) is identical to the circuit cktf of Figure 2.

4.2.2 A minimum area solution
The solution technique presented in the previous section only

finds a feasible solution, and does not consider minimization of the
area increase, incurred due to the possible insertion of extra flip-
flops. One way of minimizing the number of extra flip-flops is to
retime some or all of the extra flip-flops out of the wires of the
circuit, as illustrated in Figure 5. In this section, we will extend the
solution technique to incorporate area minimization and formulate
the problem as an Integer Linear Program (ILP) and then describe
a method to solve the ILP efficiently.

B0

B1

B2

B1

B2

B0Extra Flip−Flops

(a) (b)

Figure 5: Illustration of area minimization on a portion of a
circuit. (a) A solution to the problem requires one extra flip-
flop each on the outgoing edges of B1 and B2, respectively. (b)
The two flip-flops are moved over the blocks B1 and B2 to the
outgoing edge of B0, which reduces the flip-flop count by one.

Formulation as an ILP
In section 4.2.1, the x values are computed as the longest path
weights in Gl. However, the slacks in the longest path constraints
(henceforth referred to as latency constraints) (6) allow a range of
permissible values for x. This flexibility enables the movement of
flip-flops across vertices, which is exploited for area minimization.

We define the area of the edge e in Gf , af (e), as the area of
the repeaters and flip-flops along e. If area is the total area of the
repeaters and flip-flops of Gf , and wa and ra are the areas of a
single flip-flop and repeater, respectively, then for any ρ ≥ ρ̂,

af (e) = wf (e) · wa + rf (e) · ra ∀e ∈ E

and area =
X
e∈E

af (e) (8)

In the event of adding extra flip-flops to the edge e, some or all
of the repeaters present along e in Gp can be replaced with flip-
flops. In this paper, we assume that each extra flip-flop can replace
one repeater from the edge. The available number of slots, i.e.,
repeaters along the edge e in Gp is given by rp(e) and the num-

573

e1 e2deu v
e

(a) (b)

u v

Figure 6: Insertion of a dummy node de on an
edge e ∈ E.

v0 v0 v1 v2

0

1

0

4

1

v0 v1 v2
1

2

2

4

1

v0 v1 v2

0

0

4

2

2v1 v2
1

0

1

0 0

(a) (d)(c)(b)

Figure 7: Optimal ρ̂ may not mean minimum area. It is assumed that the circuits do
not have repeaters. The number shown with each edge in the graphs denotes the flip-
flop count of the edge. (a) Initial circuit. (b) Wire-pipelined circuit. (c) A minimum
area solution for ρ = ρ̂ = 2: number of flip-flops = 10. (d) A minimum area solution
for ρ = 4: number of flip-flops = 8.

ber of extra flip-flops to be added to the edge e in Gf is given by
extra(e) = wf (e) − wp(e). If extra(e) exceeds rp(e), then all
of the rp(e) will be removed and replaced with flip-flops. In such a
scenario, the repeater count, rf (e) will be 0. Otherwise, rf (e) will
be equal to the remaining number of repeaters of Gp, after some
of them were replaced by extra flip-flops. Therefore, rf (e) can be
expressed as follows:

rf (e) = max{rp(e) − (wf (e) − wp(e)), 0} (9)

The objective of the minimum area solution is to minimize area
given by (8) subject to the constraints (6) and (9), which can be
formulated as an ILP, by expressing (9) as two linear constraints.

Solving the ILP
Solving an ILP is generally NP–complete, unless the problem ex-
hibits integral polytope structure. The ILP described in the pre-
vious section can be formulated as an instance of the dual of the
Minimum Cost Network Flow (MCF) problem [15], which exhibits
integral polytope structure and can be efficiently solved. This can
be accomplished by eliminating the weights rf from the ILP for-
mulation. For each edge e ∈ E, where u

e→ v, we add a dummy
vertex de and split e into two edges, e1 and e2, such that u

e1→ de

and de
e2→ v, as shown in Figure 6. The edge e1 models the case

where the extra flip-flops to be inserted on e replace the repeaters
of e. Inserting a flip-flop on e1 increases the area of e by wa − ra.
The edge e2 models the case where more than rp(e) extra flip-flops
are to be inserted on e. The first rp(e) extra flip-flops to be inserted
on e are assigned to e1 and the remaining to e2. Therefore, wf (e2)
will be strictly positive only when the number of extra flip-flops
exceeds rp(e). Inserting an extra flip-flop on e2 increases the area
of e by wa. We have,

wf (e) = wf (e1) + wf (e2)

wf (e1) ≤ rp(e) + wp(e) (10)

rf (e) = rp(e) − (wf (e1) − wp(e)) (11)

The weights rf can now be eliminated from the ILP using (11).
The following latency constraints on e1 and e2 can be inferred from
the above equations.

x(de) ≥ x(u) + (wp(e) − ρ · wi(e)) (wf (e1) ≥ wp(e))

x(v) ≥ x(de) (wf (e2) ≥ 0)

x(de) ≤ x(u) + (rp(e) + wp(e) − ρ · wi(e)) (from (10))

It can be observed that the first two inequalities above add up to
obtain the constraint (6) on e. We now find the expression for area.

af (e) = wf (e) · wa + (rp(e) + wp(e) − wf (e1)) · ra

= (x(v) − x(u)) · wa − (x(de) − x(u)) · ra + ρ · const.

= x(v) · wa − x(u) · (wa − ra) − x(de) · ra + ρ · const.

area =
X

v∈V
S

Vd

(kv · x(v)) + ρ · const.

where Vd is the set of dummy vertices, and if FO(v) and FI(v)
are the number of outputs and inputs of v ∈ V , respectively,

kv =


FI(v) · wa − FO(v) · (wa − ra) : v ∈ V

−ra : v ∈ Vd

A minimum area solution to Gf is formulated as the ILP

Minimize area =
X

v∈V
S

Vd

(kv · x(v)) + ρ · const

∀e ∈ E s.t. u
e→ v

x(u) − x(de) ≤ ρ · wi(e) − wp(e)

x(de) − x(v) ≤ 0

x(de) − x(u) ≤ rp(e) + wp(e) − ρ · wi(e)

For a constant ρ, the preceding ILP is an instance of the dual of
the minimum cost flow problem, which can be efficiently solved
by several methods such as the network simplex method [15]. As
before, the weights wf can be computed using (7). There is a min-
imum area solution for each value of ρ ≥ ρ̂. In addition, the min-
imum area solution for ρ̂ may not be a global minimum solution,
as demonstrated in Figure 7. However, in most cases, maximizing
throughput (or minimizing ρ) is the primary objective, rather than
minimizing area. In such a scenario, the ILP is solved for ρ = ρ̂,
which is obtained by solving the MCRP, as detailed in section 4.1.

In general, it is not easy to determine how many repeaters can be
removed from a wire without worsening the clock period, when an
extra flip-flop is inserted. In the above procedure, it was assumed
that every extra flip-flop replaces one repeater on the wire. This
can easily be extended to other complex flip-flop repeater models.
One such a model can be as follows. For a wire, the number of
repeaters required for a range of number of flip-flops (inserted on
the wire) can be specified. Beyond a certain number of flip-flops,
no repeaters may be required to meet the timing requirements.

5. EXPERIMENTAL RESULTS
For experimentation, we have used the ISCAS benchmark suite

[16]. An operating frequency of 3GHz was chosen for the sys-
tem and the target technology chosen has a feature size of 70nm.
After finding a placement using Capo [17], the area of the cir-
cuits was scaled to 4.30cm2 to mimic the layout of a realistic chip.
For smaller layouts, the wire lengths are not long enough to be
pipelined. The dimensions of the circuits were scaled accordingly.
Each gate in the original circuit is assumed to be a combinational
functional block, and each wire is assumed to be latched immedi-
ately, after it leaves the block. In addition, none of the global wires
is assumed to have flip-flops. For the wire delays, the projections
for a 2cm global wire made in [2] were used, where the delay of an
optimized 2cm wire in 70nm technology is projected to be 0.67ns.
The delays of the wires of the test circuits were determined by as-
suming a linear relationship between the delay of a wire and its
length, which is reasonable for buffered interconnects. It is also

574

Circuit |V ||V ||V | |E||E||E| GpGpGp GfGfGf ρ̂̂ρ̂ρ Incr Time
Rptrs Flops Rptrs Flops (%) (sec)

s27 15 18 21 19 18 22 1 5.1 0.1
s344 110 210 261 229 193 327 2 17.8 0.1
s349 114 215 238 231 212 260 1 4.6 0.1

s1196 360 836 1857 1108 1576 1459 1 10.3 1
s1238 389 925 2076 1228 1672 1794 1 16.1 1
s1423 449 913 1112 998 750 1504 2 20.5 1
s1494 364 1104 2991 1571 2502 2176 2 11.8 1

s13207 2014 3759 4825 4118 3327 5992 2 17.2 1
s15850 3504 7215 8892 7774 6010 11325 2 17.3 2
s38417 8029 17646 27572 20411 21297 28996 2 15.8 14
s38584 9616 22515 35831 26170 27240 36835 2 14.4 24

Table 1: Experimental results for ISCAS benchmarks.

Circuit MaxLen Delay MaxFreq SGpGpGp ρ̂̂ρ̂ρ SGfGfGf

(cm) (ns) (GHz)
s27 1.22 0.41 2.46 1.22 1 1.22
s344 1.75 0.59 1.71 1.76 2 0.88
s349 1.45 0.49 2.06 1.46 1 1.46

s1196 3.23 0.92 1.08 2.78 1 2.78
s1238 2.91 0.98 1.02 2.93 1 2.93
s1423 2.66 0.89 1.12 2.67 2 1.34
s1494 2.83 0.95 1.05 2.85 2 1.43

s13207 3.18 1.06 0.94 3.19 2 1.60
s15850 2.71 0.91 1.14 2.73 2 1.37
s38417 3.64 1.22 0.82 3.65 2 1.83
s38584 3.88 1.30 0.77 3.90 2 1.95

Table 2: Performance issues with wire pipelining.

assumed that a 2cm wire has 10 repeaters, and accordingly the re-
peater counts of the wires of the circuit were determined. The area
of a flip-flop was assumed to be twice that of a repeater.

First, the optimal slowdown, ρ̂ was obtained for each circuit by
solving the MCRP, as explained in section 4.1. Later, the ILP
was solved using the network simplex implementation of [18] to
obtain a minimum area solution subject to the ρ̂ for each circuit.
The experiments were performed on a 2.4GHz Pentium 4 machine
with 1GB RAM. The results obtained for different benchmarks are
shown in Table 1. The labels Rptrs and Flops denote the number
of repeaters and flip-flops, respectively, listed for both circuits Gp

and Gf . It can be seen that the number of repeaters decreases in
Gf , since some of the repeaters in Gp are replaced by flip-flops in
Gf . For circuits such as s1238 and s1196, a slowdown of 1 indi-
cates that none of the wires forming cycles in those circuits were
long enough to be pipelined. The last column lists the percentage
increase in the area of the repeaters and flip-flops in Gf . The area
is calculated as the sum of the areas of the flip-flops and repeaters,
which were normalized to 2 and 1, respectively. The run times are
in the order of a few seconds, as shown in the table.

Table 2 captures the speedup obtained by wire pipelining. The
entries of columns 2–4 are related to the circuit Gi for each bench-
mark. The column labeled MaxLen shows the maximum wire
length of the global interconnects for each benchmark, and cor-
responding wire delay is shown in column 3. Column 4 lists the
upper bound on the operating frequency of Gi for each bench-
mark, which is computed as the reciprocal of the delay shown in
column 3. The column labeled SGpSGpSGp shows the frequency speedup
achieved by performing wire pipelining on Gi for a clock frequency
of 3GHz. However, the frequency speedup of the wire-pipelined
circuit, Gp (which may be functionally incorrect) may not entirely
translate into the throughput speedup obtained for the corrected
wire-pipelined circuit, Gf , since the possibility of increased cy-
cle latencies in Gp will enforce a slowdown of ρ̂ in the input issue
rate in Gf . The column SGf

SGfSGf shows the actual throughput speedup
achieved by Gf , where SGf = SGp/ρ̂SGf = SGp/ρ̂SGf = SGp/ρ̂.

It can be observed from Table 2 that the throughput speedup
achieved is less than one for the circuit s344 which indicates that
wire pipelining has resulted in throughput degradation for this cir-
cuit. The slowdown required can be improved by using better ob-
jective functions in placement.

Although wire pipelining causes a degradation in performance
for some circuits, there could be several system-wide reasons for
having a higher clock frequency. Typically, decision on the oper-
ating frequency is made at the system level and is handed down to
the designer to implement, who tries to ensure best possible perfor-
mance under this decision.

6. CONCLUSION
This paper has presented an approach to solve the problems cre-

ated by wire pipelining. The method presented in this paper also
finds the optimal value of input issue rate slowdown required for
the circuits, which directly affects the throughput. The problem is
formulated as an instance of the dual of minimum cost flow prob-
lem, to incorporate the minimization of area increase, incurred due
to the insertion of extra flip-flops. Though wire pipelining improves
overall throughput of most circuits, it may degrade the throughput
for some circuits. However, this is still a useful solution since clock
frequencies are typically decided by system-wide considerations,
and the task of the designer is to obtain the best achievable perfor-
mance under such system-level constraints.

7. REFERENCES
[1] S. Borkar, “Obeying Moore’s law beyond 0.18 micron,” in Proceedings of the

International ASIC/SOC Conference, pp. 26–31, Sep. 2000.
[2] J. Cong, “An interconnect-centric design flow for nanometer technologies,” in

Proceedings of the IEEE, vol. 89, pp. 505–528, April 2001.
[3] D. M. Chapiro, Globally-Asynchronous Locally-Synchronous systems. PhD the-

sis, Stanford University, Stanford, California, Oct. 1984.
[4] J. N. Seizovic, “Pipeline synchronization,” in Proceedings of the IEEE ISASYNC,

pp. 87–96, Nov. 1994.
[5] D. S. Bormann and P. Y. K. Cheung, “Asynchronous wrapper for heterogeneous

systems,” in Proceedings of the IEEE ICCD, pp. 307–314, Oct. 1997.
[6] L. P. Carloni and A. L. Sangiovanni-Vincentelli, “Performance analysis and op-

timization of latency insensitive systems,” in Proceedings of the ACM DAC,
pp. 361–367, Jun. 2000.

[7] C. E. Leiserson et al., “Optimizing synchronous circuitry by retiming,” in Pro-
ceedings of the Third Caltech Conference on VLSI, pp. 87–116, Mar. 1983.

[8] C. Lin and H. Zhou, “Retiming for wire pipelining in system-on-chip,” in Pro-
ceedings of the IEEE ICCAD, pp. 215–220, Nov. 2003.

[9] P. Cocchini, “Concurrent flip-flop and repeater insertion for high performance
integrated circuits,” in Proceedings of the IEEE ICCAD, pp. 268–273, Nov. 2002.

[10] S. Hassoun et al., “Optimal buffered routing path constructions for single and
multiple clock domain systems,” in Proceedings of the IEEE ICCAD, pp. 247–
253, Nov. 2002.

[11] N. Sherwani, Algorithms for VLSI Physical Design Automation. Kluwer Aca-
demic Publishers, Boston, Massachussets, 2nd ed., 1995.

[12] E. L. Lawler, “Optimal cycles in doubly weighted directed linear graphs,” in
Proceedings of the International Symposium on Theory of Graphs, pp. 209–213,
Jul. 1966.

[13] T. H. Cormen et al., Introduction to Algorithms. MIT Press, Cambridge, Mas-
sachussets, 1st ed., 1989.

[14] A. Dasdan et al., “Efficient algorithms for optimum cycle mean and optimum
cycle cost to time ratio problems,” in Proceedings of the ACM DAC, pp. 37–42,
Jun. 1999.

[15] M. S. Bazaara et al., Linear Programming and Network Flows. John Wiley and
Sons, New York, 2nd ed., 1990.

[16] CBL: NCSU, “ISCAS89 Benchmark Suite.” Available at http://www.
cbl.ncsu.edu/CBL Docs/iscas89.html.

[17] A. Caldwell et al., “Capo: A large-scale fixed-die placer.” Available at
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/Placement/
Capo/.

[18] A. Loebel, “MCF Version 1.2 - A network simplex implementation .” Available
at http://www.zib.be.

575

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

