
A Novel Approach for Flexible and Consistent
ADL-driven ASIP Design

Gunnar Braun, Achim Nohl
CoWare, Inc.

Dennewartstrasse 25-27
52068 Aachen, Germany

gunnar@coware.com

Weihua Sheng, Jianjiang Ceng,
Manuel Hohenauer, Hanno Scharwächter,

Rainer Leupers, Heinrich Meyr
Institute for Integrated Systems

Aachen, Germany

ABSTRACT
Architecture description languages (ADL) have been established
to aid the design of application-specific instruction-set processors
(ASIP). Their main contribution is the automatic generation of a
software toolkit, including C compiler, assembler, linker, and in-
struction-set simulator. Hence, the challenge in the design of such
ADLs is to unambiguously capture the architectural information
required for the toolkit generation in a single model. This is par-
ticularly difficult for C compiler and simulator, as both require in-
formation about the instructions’ semantics, however, while the C
compiler needs to know what an instructions does, the simulator
needs to know how. Existing ADLs solve this problem by either
introducing redundancy or by limiting the language’s flexibility.

This paper presents a novel, mixed-level approach for ADL-
based instruction-set description, which offers maximum flexibil-
ity while preventing from inconsistencies. Moreover, it enables
capturing instruction- and cycle-accurate descriptions in a single
model. The feasibility and design efficiency of our approach is
demonstrated with a number of contemporary, real-world proces-
sor architectures.

Categories and Subject Descriptors: C.0 [Computer Systems Or-
ganization]: General – Modeling of computer architecture; D.3.2
[Programming Languages]: Language Classifications – Design lan-
guages, LISA; I.6.5 [Simulation and Modeling]: Model Develop-
ment – Modeling methodologies; J.6 [Computer Applications]:
Computer-Aided Engineering – Computer-aided design (CAD)

General Terms: Design, Languages

Keywords: ADL, ASIP, Embedded Processors

1. INTRODUCTION
Recently, architecture description languages (ADL) have been

established as an efficient solution for the design of application-
specific instruction-set processors (ASIP). The main contribution
of such languages is the automatic software toolkit generation from
ADL processor models, i.e., automatic retargeting of C compiler,
assembler, linker, and instruction-set simulator on instruction- and
cycle-accurate level. The most challenging tasks in the design of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC’04,June 7–11, 2004, San Diego, California, USA.
Copyright 2004 ACM 1-58113-828-8/04/0006 ...$5.00.

ADLs is to capture the architectural information required for the
tool generation in a consistent and unambiguous way. In particular,
the C compiler and the instruction-set simulator (possibly on differ-
ent abstraction levels) require the specification of the instructions’
semantics, however, from very different points of view. While a C
compiler generally only needs information about what an instruc-
tion does, the simulator needs the details how the instruction per-
forms its particular task. As it turned out to be a difficult if even im-
possible task to derive the what from the how(or vice versa), none
of today’s ADLs solves this problem satisfactory. Examining the
variety of ADLs, one can distinguish two major approaches: either
redundancy is introduced by providing the semantical information
separate from the behavioral information (compiler and simulator
specification), or the set of architectures that can be modeled is re-
duced by introducing a more formalized but inflexible description
of the instruction behavior.

In this paper, we present a novel approach that neither sacri-
fices flexibility nor introduces redundancy. Besides providing an
elegant solution for the problem presented above, it allows for the
generation of instruction- and cycle-accurate simulator from a sin-
gle model, and furthermore enables the generation of a consistent
instruction-set documentation (not covered in this paper). The solu-
tion presented in this paper is based on an extension of the LISA ar-
chitecture description language accompanied by an efficient mod-
eling methodology.

The rest of the paper is organized as follows: section 2 elaborates
the problem and discusses the approaches of related work. Section
3 defines the design criteria of the language extension and shows
how such are addressed within scope of LISA. Section 4 shows
how the simulator generator utilizes the information provided in the
model, and reveals the relevant implementation details. A method-
ology for incorporation of instruction-set and microarchitecture in-
formation in a single model description, namely the generation of
an instruction-accurate (IA) simulator from a cycle-accurate (CA)
model, is discussed in section 5. Section 6 presents results on mod-
eling efficiency and IA simulator generation, while the generation
of the C compiler will be presented in a separate paper, as it would
exceed the scope of this paper. Section 7 concludes the paper.

2. RELATED WORK
Architecture description languages have been developed to sup-

port the design of instruction-set processors. The major contribu-
tion of ADLs is the automatic generation of software toolkit, sys-
tem interfaces, and even synthesizable RTL code. The high degree
of automation reduces the design effort significantly, and thus al-
low for an efficient architecture exploration. Most ADLs known
today have originally been designed to aid the automation of a par-
ticular piece in the puzzle, and have then been extended to address

44.1

717

larger parts of the embedded processor design. As a result, most
ADLs are well-suited for, for instance, the automatic generation of
a C compiler while they impose major restrictions on, or are even
incapable of, the generation of a cycle-accurate simulator.

Especially the synthesis of compiler and simulator from a sin-
gle model reveals an interesting problem, since both require a same
kind of information, but from a different perspective, or view. A
C compiler, or better, the compiler’s code selector, relies on the
knowledge of each instruction’s purpose (and its constraints) in
order to select the appropriate assembly instruction(s) for a given
piece of C code – in other words, the instruction semantics. In con-
trast, a cycle-accurate simulator is based on the detailed behavior
of an instruction, i.e, howthe instruction is executed on the proces-
sor, including the description of possibly occurring pipeline stalls
or operand forwarding. As it is obviously impossible to create mi-
croarchitecture behavior from a semantic description, it is likewise
impossible to extract the abstract, semantic information from a mi-
croarchitecture description without imposing major restrictions on
the class of architectures that can be modeled at all.

After examination of today’s state of the art, the existing ADLs
can be separated into three categories: those which are capable of
generating eithercompiler or CA simulator for contemporary pro-
cessors, those which introduce redundancy by separating semantic
and behavioral description, and those which combine both views
into a very restrictive grammar, hence sacrificing flexibility.

The first category includes languages as ISDL [6] or LISA 1.0,
a former version of LISA used by Axys Design Automation [1].
ISDL has been reported to generate efficient compilers, however, is
not capable of describing processors on cycle-accurate level. Hence,
CA simulators cannot be generated. LISA 1.0 allows for the gener-
ation of fast, compiled simulators on IA and CA level, but nothing
has been published on C compiler generation yet.

The EXPRESSION [4] ADL belongs to the second group as C
compiler (EXPRESS) as well as simulator (SIMPRESS) are au-
tomatically generated, however, the views for both are separated
into two different sections of the architecture description. While
the simulator employs the information in a behavior section, the
compiler relies on the existence of a so-called operation mapping,
which associates the instruction with a tree of primitive operations
similar to the nodes in a compiler’s intermediate representation
(IR). Naturally, this aids the task of code selection, but at the ex-
pense of the incorporation of redundant, purely compiler-specific
information into the ADL.

By far the most approaches can be found in the third category.
ADLs such as nML [8], MIMOLA [15], and PEAS-III [9] define
a very restricted grammar for the modeling of the instruction be-
havior, mostly by offering a set of predefined operators which can
be combined into a behavioral description. For each operator, the
functional behavior (for simulation) as well as its semantics (for
compilation) are defined and usually contained in additional li-
braries. A further step is taken by a number of approaches em-
ploying so-called parameterizable generic processor cores, such
as Tensilica’s Xtensa [3, 14] architecture. Such cores usually have
a fixed instruction-set, which can be extended by adding predefined
or user-defined instructions. As software toolkit and synthesizable
RTL model are available for the fixed part of the core, only the ad-
ditional instructions must be taken into account, and still, most of
the user-defined instructions cannot be utilized by the compiler’s
code selector. The approaches in this category are rather suitable
for the design of domain-specific processors than for ASIPs as they
pose too little flexibility on the modeling of complex pipelines and
execution schemes.

Recently, Weber et al. formalized the problem of capturing mul-
tiple architecture views in a single architecture model, and pre-
sented an analytical solution approach applied to a channel encod-

OPERATION ADD {
DECLARE {

GROUP src1, dst = { reg };
GROUP src2 = { reg || imm };}

SYNTAX { "add" dst "," src1 "," src2 }
CODING { 0b0000 src1 src2 dst }
BEHAVIOR {

dst = src1 + src2;
if (((src1 < 0) && (src2 < 0))

|| ((src1 > 0) && (src2 > 0) && (dst < 0))
|| ((src1 > 0) && (src2 < 0) && (src1 > -src2))
|| ((src1 < 0) && (src2 > 0) && (-src1 < src2)))
)

{ carry = 1; }}}

Figure 1: LISA Operation (IA)

ing processor [17]. However, details on how the semantic consis-
tency is kept are not available, and no results have been published
on the C compiler generation yet.

LISA 2.0, which this work is based on, belongs to the first cat-
egory [5]. LISA offers a high degree of flexibility by allowing the
usage of C for the description of the instruction behavior. This en-
ables the generation of high-speed simulators on IA and CA level
for a broad range of contemporary RISC, VLIW, NPU, DSP, and
ASIP architectures. On the other hand, a C description – possibly
on microarchitecture level – cannot be used for the extraction of the
instruction semantics.

The following sections present a semantic extension for LISA,
which enables the automatic generation of C compilers, while keep-
ing the model consistency by using the same information for simu-
lator generation as well. Unlike the above approaches, this does not
affect the flexibility, as C can still be used for the description of very
irregular instructions and microarchitecture details. Hence, on IA
level, consistency is kept by using the same information for simu-
lator and compiler generation. On CA level, semantic and behavior
description are separated, which enables the automatic generation
of IA and CA simulator from a single model, while still being able
to generate C compiler and instruction-set manual.

3. A SEMANTIC EXTENSION FOR LISA
LISA captures the instruction-set description in so-called oper-

ations. Depending on the abstraction level of the model – namely
IA or CA – an operation may describe an entire instruction, a part
of an instruction, e.g., an immediate operand, or even a piece of a
functional unit, e.g., a stage of a pipelined multiplier. Each opera-
tion may contain a number of sections describing the attributes of
the operation dependent on its purpose. As an example, an opera-
tion modeling (a part of) an instruction usually contains a SYNTAX

section specifying the instruction’s assembly syntax, while an op-
eration describing an instruction fetch unit would only contain a
BEHAVIOR section defining the functional behavior of the unit. An
exemplary LISA operation is shown in figure 1.

The operation (describing a simple add instruction) illustrates
the problem introduced in the previous sections: even for this rel-
atively simple operation, it is nearly impossible to extract the op-
eration’s semantics from the behavioral description, in particular,
when considering that due to the flexibility of C, the presented de-
scription is only oneway to model an add with carry flag computa-
tion.

From the example, we can derive the requirements for a semantic
operation description: uniqueness, simplicity, and flexibility. For
most operations, there should be only a single, concise way to de-
fine the semantics, while the grammar of a SEMANTICS section
should be flexible enough to describe complex operations.

718

3.1 Micro-operation Approach
The MIMOLA ADL [15] employs a set of so-called micro-op-

erationsto describe a processor’s instruction-set. Micro-operations
are primitive operations similar the instructions of a RISC ISA,
which allow to model simple instruction by means a single micro-
operation, and complex instructions (as found in CISC machines)
by a combination of such. Although the micro-operation approach
has turned out to be unsuitable for the description of complex mi-
croarchitectural behavior, it has proven feasible and complete for
the specification of instruction semantics. As the description of the
microarchitecture is left to the existing BEHAVIOR section in our
approach, we adapted the idea for the definition of a SEMANTICS

section.

OPERATION ADD {
DECLARE {

GROUP src1, dst = { reg };
GROUP src2 = { reg || imm };}

SYNTAX { "add" dst "," src1 "," src2 }
CODING { 0b0000 src1 src2 dst }
SEMANTICS { _ADDI[_C] (src1, src2) -> dst; }}

OPERATION reg {
DECLARE {

LABEL index;
SYNTAX { "R" index=#U4 }
CODING { index=0bxxxx }
SEMANTICS { _REGI(R[index])<0..31> }}

Figure 2: LISA Operation with Semantics

Figure 2 shows the operation from figure 1 using the SEMAN-
TICS section instead of the BEHAVIOR section. A single statement
consisting of a single micro-operation is required to precisely de-
scribe the purpose of the operation. The micro-operator ADDI de-
fines the integer addition, while the C in square brackets specifies
that the carry flag is affected by the operation. A comma-separated
list of operands follows in parenthesis, and finally, the pointer (->)
specifies the location for the result.

The operands of the micro-operator can be either terminal ele-
ments, such as integer constants, or other operations. In the lat-
ter case, the respective operations (here: reg and imm) must con-
tain a SEMANTICS section on their own. In the example, the SE-
MANTICS section of the reg operation defines the semantic type of
the operand – here, a 32-bit integer register specified as array R in
LISA’s RESOURCE section (not shown).

In general, each operand of a micro-operation can be represented
as a 3-tuple (u, v, w) consisting of the value/resource (u) and a
bit-field specification represented by bit offset (v) and bit width
(w). The corresponding 3-tuple for operation reg is (u, v, w) =
(R[index], 0, 32). The same formalism can be applied to opera-
tion ADD. As no explicit bit-field specification is given in its SE-
MANTICS section, the expression shares the specification of the
operands. In other words, the addition of two operands (a, 0, 32)
and (b, 0, 32) results in the 3-tuple (c, 0, 32), where c is the re-
sult of the 32-bit addition of a and b. A constraint for the ADDI
micro-operator is that both operands have the same bit width. If
that constraint is not met, the respective operand has to be extended
to match the width of the second operand by means of an explicit
sign/zero extension. Two separate micro-operations SXT and ZXT
serve that purpose.

The generic 3-tuple operand representation allows for a very
compact instruction-set description while keeping the number of
required micro-operations small. But there is another advantage:
micro-operations can be used as operands for other micro-opera-
tions. This mechanism is further on called chaining and is dis-
cussed is the following paragraphs.

OPERATION DMAC {
DECLARE {

GROUP src1, src2, dst1, dst2 = { reg };
SYNTAX { "dmac " dst2 ":" dst1 "," src1 "," src2 }
SEMANTICS {

_ADDI (_MULUU(src1, src2)<0..31> , dst1) -> dst1;
_ADDI (_MULUU(src1, src2)<32..63> , dst2) -> dst2;}}

Figure 3: Chaining and Parallelizing

3.2 Complex Operations
It is obvious that only a limited set of RISC instructions can be

expressed by single micro-operations. In order to model complex
instructions, two mechanisms are employed that combine two or
more micro-operations, namely, chaining and parallelizing. Both
are illustrated in figure 3.

The example in the figure shows the description of a dual multi-
ply-accumulate instruction (DMAC), which carries out a 32x32 mul-
tiplication and accumulates the high and low word of the 64-bit
result in two separate registers. Each line of the SEMANTICS sec-
tion in figure 3 describes one of the MAC operations. The two
MACs are executed in parallel, which is reflected in the semantic
description by the following rule:

All statements in a singleSEMANTICS section are eval-
uated in parallel,

where a statement is defined as a (chain of) micro-operations
concluded by a semicolon. The individual MAC operations are
expressed as additions taking the result of a multiplication as first
operand, thus building a micro-operation chain. Chained expres-
sion are evaluated in a sequence, as defined by the following rule:

In a chained micro-operation, the innermost micro-
operation (operand) is evaluated before its embracing
micro-operation (operator).

The bit-field specification in angle brackets is required to meet
the constraint of matching bit widths of the operands of ADDI.

With those two mechanism to combine primitive operations into
complex operations, it has been possible to describe most instruc-
tions of five architectures under examination, namely Infineon’s
PP32 network processor [11], STMicroelectronics’ ST220 VLIW
multimedia core [7], CoWare’s LTRISC core [2], ARM’s ARM7
core, and Texas Instruments’ C54x digital signal processor. One
of the few exceptions is the FFS instruction of the PP32, which
computes the first occurrence of a set bit in a register. For such in-
structions, either a BEHAVIOR section or a special intrinsic micro-
operation can be used.

The micro-operation approach presented in this section has two
major advantages. Firstly, only a small set of micro-operations
(≈ 25) is sufficient to describe nearly all instructions of the ar-
chitectures mentioned above by means of SEMANTICS sections
without changing the operation structure of the (already existing)
models. Secondly, the chaining mechanism avoids the usage of
temporary variables (as allowed in the BEHAVIOR section), which
guarantees a tree structure for each semantic statement. Such trees
are extremely well-suited for C compiler generation, as most code
selectors of today’s compilers are based on tree grammars.

4. TOOLKIT GENERATION
The introduction of the semantic extension in the previous sec-

tion builds the foundation for the automatic generation of a C com-
piler. However, in order to maintain the model consistency, it is
mandatory that each operation in an instruction-accurate (IA) model
eithercontains a SEMANTICS or a BEHAVIOR section. Obviously,

719

Figure 4: Simulator Generation Work-flow

SEMANTICS {
_ADDI[_Z,_C] (Rs1<4..7>, Rs2<20..23>) -> Rd<5..8>;

}

BEHAVIOR {
Rd = (Rd & (~BITMASK(5,4))) |

(BIT_EXTRACT
(SEM_ADD (Rs1, 4, 4, /* op1 3-tuple */

Rs2, 20, 4, /* op2 3-tuple */
CARRY_FLAG | ZERO_FLAG

),
0, 4 /* result is also a 3-tuple */

) << 5
);

}

Figure 5: Semantics to Behavior Translation

this can only be achieved by using the semantic information for
simulator generation, too. Hence, this section shows how an IA
simulator can be generated from the semantic information. The in-
tegration of semantic information into cycle-accurate (CA) models
and its consequences are discussed in section 5. The C compiler
generation will be addressed in a separate paper, as it would by far
exceed the scope of this work.

4.1 IA Simulator
Figure 4 shows the work-flow of the simulator generation from

a semantic instruction-set description. As can be seen from the
figure, the generator (2) is in fact a SEMANTICS-to-BEHAVIOR

translator, which translates each SEMANTICS section into a (set of)
BEHAVIOR section(s). The generator can be understood as a low-
ering engineoperating on an intermediate representation (IR) of
the input description, that means, the abstract semantic IR is trans-
formed into a lower-level behavioral IR on C level. The major ad-
vantage of the front-end implementation is the independence from
the model compiler’s backend, i.e., the already existing, powerful
backend generators can be employed without any change in order
to generate interpretive, compiled, or just-in-time cache-compiled
simulators (JIT-CCS) [12] (3).

A sample translation is shown in figure 5. The SEMANTICS sec-
tion in the figure is similar to the LISA description of the PP32 net-
work processor, which has an instruction-set designed to operate on
bit-fields instead of entire registers only. The following BEHAVIOR

shows the result of the translation1.
Firstly, it is noticeable that each micro-operation is translated

into a function call. In the figure, ADDI in the SEMANTICS section
results in a call to SEM ADD in the BEHAVIOR section. SEM ADD
takes three parameters – two 3-tuple operands (Rs1,4,4) and
(Rs2,20,4), and a specification of the affected flags resulting from
the contents of the square brackets following the micro-operation.
The (C) implementation of the function is found in an additional
micro-operation library, which can be either inlined or eventually
linked to the resulting simulator. It is furthermore noticeable that
the micro-operation itself also represents a 3-tuple (SEM ADD,0,4).
This is a prerequisite for the implementation of chaining (see sec-
tion 3.2).
1Usually, the textual BEHAVIOR sections are not visible as the
translation takes place on IR level as part of the front-end process-
ing

1 OPERATION arithmetic {
2 DECLARE {
3 GROUP ArithOp = { ADD | SUB | MUL | ... };
4 SEMANTICS {
5 ArithOp (Rs1, Rs2) -> Rd;}}
6
7 OPERATION ADD {
8 SEMANTICS { _ADDI }}
9
10 OPERATION arithmetic {
11 DECLARE {
12 GROUP ArithOp = { ADD | SUB | MUL | ... };
13 SWITCH (ArithOp) {
14 CASE ADD: { SEMANTICS { _ADDI (Rs1, Rs2) -> Rd; }}
15 CASE SUB: { SEMANTICS { _SUBI (Rs1, Rs2) -> Rd; }}
16 CASE MUL: { SEMANTICS { _MULU (Rs1, Rs2) -> Rd; }}}}

Figure 6: Semantics Hierarchy Transformation

Finally, the assignment from (SEM ADD,0,4) to (Rd,5,4) em-
ploys a number of bit-manipulation operations, as bitwise and (&),
or (|), negate(~), shift (<<), and few macros as BITMASK and
BIT EXTRACT.

4.1.1 Complex Translations
In contrast to simple, single-statement translation as shown in

figure 5, the complex operations require particular consideration.
Besides chaining and parallelism, which are easily translated by
employing nested function calls (chaining), or clock-sensitive reg-
ister types instead of simple C variables (parallelism), there is a
third type that requires more attention.

The SEMANTICS section allows to define non-terminals for mi-
cro-operations, such as LISA GROUPs. However, in contrast to the
BEHAVIOR section, it is possible to pass parameters to such non-
terminal micro-operation calls, as shown in lines 1-5 in figure 6.
As LISA 2.0 forbids to provide parameters to operation calls in the
BEHAVIOR section, a simple one-to-one mapping from SEMAN-
TICS to BEHAVIOR is not possible.

Fortunately, besides operations and sections, LISA comprises
so-called control-flow statements, which allow to bind sections to
certain conditions. The SWITCH/CASE construct in lines 13-16
is such a control-flow statement. In order to generate the corre-
sponding BEHAVIOR sections from the sematic description in lines
1-8, the operations arithmetic and ADD are first translated into
an equivalent representation still employing SEMANTICS sections.
This is achieved by completely removing the SEMANTICS section
from operation ADD, and rewriting the operation arithmetic into
the operation shown in lines 10-16. The SWITCH/CASE statement
evaluates the GROUP, and thus selects only one of the three SE-
MANTICS sections depending on the operation chosen. This way,
the non-terminal micro-operation call has been removed, and the
individual SEMANTICS sections can be easily translated into BE-
HAVIOR sections (as explained in the previous section).

4.1.2 Intrinsics
As already mentioned in section 3.2, it is not possible to describe

the semantics of any instruction with the formalism presented in
section 3. In such cases, either a BEHAVIOR section or a particular
intrinsic micro-operation can be used. A sample SEMANTICS sec-
tion and the generated BEHAVIOR section for the previously men-
tioned FFS instruction are shown in figure 7. The quotation marks
indicate an intrinsic micro-operation. From the generated BEHAV-
IOR section2, it can be seen that a C function or macro SEM FFS
must be implemented by the user and added to the simulator li-
brary.

2For simplicity, the bit-extract and -mask operations have been left
out in the figure

720

OPERATION FFS {
SEMANTICS {

"_FFS" (Rs, ZeroOrOne, FromLeftOrRight) -> Rd; }}
BEHAVIOR { /* Generated from the above */

Rd = SEM_FFS(Rd,ZeroOrOne,FromLeftOrRight);

Figure 7: Intrinsic Micro-operation

OPERATION ADD IN pipe.EX {
DECLARE {

INSTANCE writeback;
GROUP src1, dst = { reg };
GROUP src2 = { reg || imm };}

SYNTAX { "addc" dst "," src1 "," src2 }
SEMANTICS { _ADDI[_C](src1, src2) -> dst; }
BEHAVIOR {

u32 op1, op2, result, carry;
u1 c;
if (forward) {

op1 = PIPELINE_REGISTER(pipe,EX/WB).result;}
else {

op1 = PIPELINE_REGISTER(pipe,DC/EX).op1;}
result = op1 + op2;
carry = compute_carry(op1, op2, result);
PIPELINE_REGISTER(EX/WB).result = result;
PIPELINE_REGISTER(EX/WB).carry = carry; }

ACTIVATION { writeback, carry_update }}

Figure 8: LISA CA Operation

The intrinsic approach has two major advantages: firstly, it pro-
vides enough information to the compiler generator in order to
automatically generate a so-called compiler-known function (ckf).
Secondly, it allows to avoid BEHAVIOR sections, which is impor-
tant when moving to cycle-accurate level (see section 5).

5. CYCLE-ACCURATE (CA) MODELING
In the previous sections, only instruction-accurate (IA) LISA

models have been taken into consideration. It has been shown that
the use of the SEMANTICS section obsoletes the need for an addi-
tional BEHAVIOR section for most operations, as the latter can be
automatically generated. Since C compiler as well as instruction-
set simulator are generated from the same, unique information,
consistency is maintained, and, in addition, the modeling effort is
much reduced due the presence of a micro-operation library. How-
ever, the question of the role of the SEMANTICS section in cycle-
accurate (CA) models arises.

The difference between CA and IA models is made up by the
way the behavior of an instruction is described. In an IA model,
each instruction is self-contained, that means, it is assumed to have
completed execution and written its results before the next instruc-
tion is decoded. In contrast, in a CA model instruction execu-
tion might be interleaved, for instance by means of an instruc-
tion pipeline. Hence, the behavioral description of an instruction
is distributed over several operations, which are potentially exe-
cuted at different clock cycles. Each of such operations gets the
result from the previous operation, possibly performs a computa-
tion, and passes its results to the next operation. Figure 8 shows the
implementation of the ADD operation from figure 1 in a CA model.

The first line of the excerpt indicates that the operation only de-
scribes ADD’s behavior in the execute (EX) stage of a pipeline. From
the content of the BEHAVIOR section, two observations are notice-
able:

1. It would be extremely difficult to extract the instruction se-
mantics from a cycle-accurate behavior description in C.

2. It is impossible to generate a cycle-accurate behavior de-
scription from a specification of the instruction semantics
(without assuming a fixed microarchitecture).

As a conclusion, in order to generate C compiler and CA sim-
ulator from a single model, it is inevitable to introduce a certain
amount of redundancy into the description, i.e., to describe behav-
ior and semantics at the same time. However, this relatively small
overhead pays off enormously when considering that it brings birth
to so-called biabstract models.

5.1 Biabstract Models
Biabstract models describe a single processor architecture on

two abstraction levels at the same time, namely instruction- and
cycle-accuracy. So far, few ADLs – including LISA 2.0 – are ca-
pable of modeling on different abstraction levels, but all of them
require a completely separate model for each abstraction level. In
practice, that means that two models have to be maintained, which
only differ in the behavioral part while the specification of assem-
bly syntax and instruction encoding is exactly the same in both
models. The potentially arising inconsistency and maintenance cost
eventually impairs the benefits of an ADL-based design approach.

A solution to this problem has already been presented in figure 8.
Here, abstract semantics and microarchitecture behavior co-exist,
while syntax and coding3 are only described once. Furthermore,
it has been shown in section 4.1 how an IA simulator can be gen-
erated from the information contained in the SEMANTICS section.
Thus, for IA simulator generation, the existing (CA) behavior de-
scription captured in BEHAVIOR and ACTIVATION sections can be
ignored, and an IA simulator can be generated from the translated
SEMANTICS sections. On the other hand, by ignoring all SEMAN-
TICS sections in the model, CA simulator generation can still take
place from the existing BEHAVIOR and ACTIVATION sections.

5.2 Limitations
A major limitation of the above approach is that it relies on the

fact that all operations can be described by means of the SEMAN-
TICS section. Two problems arise:

1. As mentioned in section 3.2, there are instructions whose se-
mantics cannot be expressed by means of micro-operations
(e.g., FFS).

2. The SEMANTICS formalism is intended to be used for the
description of instructions, while the functional description
of components which are not part of the instruction-set, for
instance, a fetch unit, will still employ BEHAVIOR sections.

The first problem is easily solved by the use of the intrinsic
micro-operation presented in section 4.1.2. For the second prob-
lem, there are two possible solutions. The most practical approach
is to employ preprocessor defines (#ifdefs) to make either one
or the other BEHAVIOR section visible to the LISA model com-
piler. A potentially better solution is the use of parameterizable,
functional models of instruction fetch unit and program sequencer.
Especially on IA level, such components are usually simple to im-
plement and do not vary much among different architectures. Most
existing IA LISA models employ only two operations not describ-
ing instructions, namely main and decode. The feasibility of em-
ploying generic, functional models is presented in [10] (although
in a different context).

6. RESULTS
In order to prove the concepts presented this thesis, the following

three items need to be examined with respect to the SEMANTICS

section.

3The CODING section is omitted in figure 8.

721

1. The feasibility to describe contemporary instruction-sets by
means of the SEMANTICS section,

2. the associated design effort, and

3. the impact on simulation performancefor IA models.

Overall, five architectures have been taken into account, namely
ARM’s ARM7 core, CoWare’s LTRISC core, STMicroelectronics’
ST220 VLIW multimedia processor [7], Infineon’s PP32 network
processing unit [11], and Texas Instruments’ C54x digital signal
processor. The LTRISC architecture is a very small RISC core (≈
14 instructions), which is provided with CoWare’s Processor De-
signer [2]. The PP32 is an evolution of [11] and comprises a bit-
level RISC instruction-set, that means, most instructions can oper-
ate on bit-fields rather than on byte- or word-aligned data only.

6.1 Feasibility
For comparison, existing LISA 2.0 models on instruction- and

cycle-accurate level have been enhanced with SEMANTICS sections
for compiler and simulator generation. Although the semantic ex-
tension is not primarily targeted for late incorporation into already
existing models, this approach proved that the nature of the SE-
MANTICS section does not impose any particular modeling style –
which is crucial with respect to the flexibility paradigm of LISA
2.0. All models taken into consideration have been enhanced with-
out any (or only marginal) changes to the existing parts. Table 1
summarizes the results.

ARM7 LTRISC32 ST220 PP32 C54x

Abstraction level IA IA CA CA CA
ISA RISC RISC RISC1 RISC2 CISC
Data path 32bit 32bit 32bit 32bit 16bit
No. operations 108 39 121 151 408
Design effort ∆3 4d 2d 6d 10d 15d
Avg. sim. perf.∆4 −8% −5% n/a n/a n/a

14-issue VLIW 2bit-field instructions 3design effort for adding semantics to the exist-
ing models (in man-days) 4relative to the performance of IA simulator generated from
behavioral description

Table 1: Model Statistics and Results

6.2 Design Effort
From table 1, it can be seen that the design effort for adding

SEMANTICS sections scales with the number of LISA operations
and the complexity of the instructions (RISC vs. CISC, for in-
stance). Generally, the effort for describing the instruction seman-
tics is much less than for a behavioral description in C (on IA level),
since the existing micro-operation library already defines, for in-
stance, a 17x17 multiplication, while a behavioral description usu-
ally requires a significant amount of C code (which still has to be
validated). Especially for the PP32, the explicit bit-field specifica-
tion (compared to a typical and/or/shift description in C) reduces
the design time enormously.

6.3 Simulation Performance
For performance considerations, only the IA models have been

taken into account, as the simulation of abstract semantics and
micro-architecture behavior (in a CA model) are not comparable.
Hence, IA simulators have been generated from the SEMANTICS

and the existing BEHAVIOR sections of the ARM7 and the LTRISC
models, and the performance of both simulators has been com-
pared. All benchmarked simulators employ the JIT-CCS simulation
technique.

From table 1, it can be observed that the performance of the
simulators generated from the SEMANTICS description is slightly
worse than for the simulators generated from the existing BEHAV-
IOR description. This is due to the generic implementation of the

micro-operation behavior in the library, which contains a non-neg-
ligible overhead for native bit-widths, i.e., 8, 16, and 32-bit data.
Although the overall design efficiency is much increased due to
the enormous reduction in design effort, there is no doubt that the
micro-operation library can be optimized in order to meet the per-
formance of the BEHAVIOR-generated simulator.

7. CONCLUSION
In this paper, we presented a novel approach for solving the con-

sistency problem that arises as soon as an architecture description
language (ADL) serves multiple purposes. In particular, the auto-
matic generation of C compiler and instruction-set simulator from
a single model description either leads to a loss in modeling flex-
ibility, or introduces a huge potential for inconsistencies. Our ap-
proach avoids both by presenting a mixed-level behavior/semantics
modeling methodology supported by the underlying design tools.

Besides solving the consistency problem without any loss in
flexibility on instruction-accurate (IA) level, the presented solution
allows for the existence of so-called biabstract models, which in-
corporate instruction- and cycle-accurate model in a single archi-
tecture description.

Together with our previous work on automatic synthesis of in-
struction encoding [13] and generation of RTL descriptions [16],
the proposed semantic extension of the LISA ADL allows for a very
high design efficiency on abstract level, while maintaining consis-
tency by means of a single model throughout the entire design pro-
cess.

Our further research activities are in the area of C compiler re-
targeting, RTL code generation, and methodologies and tools for
seamless IA-to-CA model refinement.

8. REFERENCES
[1] Axys Design Automation. http://www.axysdesign.com.
[2] Coware, Inc. http://www.coware.com.
[3] Tensilica. http://www.tensilica.com.
[4] A. Halambi, P. Grun et al. EXPRESSION: A Language for Architecture

Exploration through Compiler/Simulator Retargetability. In Proc. of the DATE
conference, Mar. 1999.

[5] A. Hoffmann, T. Kogel et al. A Novel Methodology for the Design of
Application-Specific Instruction-Set Processors (ASIP) using a Machine
Description Language. IEEE Transactions on Computer-Aided Design,
Nov. 2001.

[6] G. Hadjiyiannis, S. Hanono et al. ISDL: An Instruction-Set Description
Language for Retargetability. In Proc. of the DAC, Jun. 1997.

[7] F. Homewood and P. Faraboschi. ST200: A VLIW Architecture for
Media-Oriented Applications. Microprocessor Forum, Oct. 2000.

[8] M. Hartoog, J.A. Rowson et al. Generation of Software Tools from Processor
Descriptions for Hardware/Software Codesign. In Proc. of the DAC, Jun. 1997.

[9] M. Itoh, M. Imai et al. PEAS-III: An ASIP Design Environment. In Proc. of
the ICCD, Sep. 2000.

[10] P. Mishra, N. Dutt, and A. Nicolau. Functional Abstraction Driven Design
Space Exploration of Heterogeneous Programmable Architectures. In Proc. of
the ISSS, Oct. 2001.

[11] X. Nie and L. Gazsi. A New Network Processor Architecture for High-Speed
Communications. In Proc. of the SIPS, 1999.

[12] A. Nohl, G. Braun, et al. A Universal Technique for Fast and Flexible
Instruction-Set Architecture Simulation. In Proc. of the DAC, Jun. 2002.

[13] A. Nohl and V. Greive et al. Instruction Encoding Synthesis for Architecture
Exploration using Hierarchical Processor Models. In Proc. of the DAC,
Jun. 2003.

[14] R. Gonzales. Xtensa: A Configurable and Extensible Processor. In Proc. of the
IEEE Micro, Mar. 2000.

[15] S. Bashford, R. Leupers et al. The MIMOLA Language, Version 4.1.
Reference Manual, Department of Computer Science, University of
Dortmund, 1994.

[16] O. Schliebusch, A. Hoffmann, et al. Architecture Implementation using the
Machine Description Language LISA. In Proc. of the ASPDAC, 2002.

[17] S. Weber, K. Keutzer et al. Multi-View Operation-Level Design – Supporting
the Design of Irregular ASIPs. Technical Report UCB/ERL M03/12, UC
Berkeley, Apr. 2003.

722

	Main
	DAC04
	Front Matter
	Table of Contents
	Author Index

