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ABSTRACT 
The emerging hardware support for thread-level speculation 
opens new opportunities to parallelize sequential programs 
beyond the traditional limits.  By speculating that many data 
dependences are unlikely during runtime, consecutive iterations 
of a sequential loop can be executed speculatively in parallel.  
Runtime parallelism is obtained when the speculation is correct.  
To take full advantage of this new execution model, a program 
needs to be programmed or compiled in such a way that it 
exhibits high degree of speculative thread-level parallelism.  We 
propose a comprehensive cost-driven compilation framework to 
perform speculative parallelization. Based on a misspeculation 
cost model, the compiler aggressively transforms loops into 
optimal speculative parallel loops and selects only those loops 
whose speculative parallel execution is likely to improve program 
performance.  The framework also supports and uses enabling 
techniques such as loop unrolling, software value prediction and 
dependence profiling to expose more speculative parallelism.  The 
proposed framework was implemented on the ORC compiler.  
Our evaluation showed that the cost-driven speculative 
parallelization was effective.  Our compiler was able to generate 
good speculative parallel loops in ten Spec2000Int benchmarks, 
which currently achieve an average 8% speedup.  We anticipate 
an average 15.6% speedup when all enabling techniques are in 
place.  

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors – compilers, 
optimization, code-generation. 

 

General Terms 
Languages, Design, Algorithms, Performance. 

Keywords 
Speculative multithreading, speculative parallel threading, thread-
level speculation, speculative parallelization, cost-driven 
compilation, loop transformation.  

1. INTRODUCTION 
Hardware support for speculative multithreading has been 
extensively investigated as a way to speed up hard-to-parallelize 
sequential programs [3][4][10].   It is generally recognized that to 
take full advantage of the hardware thread-level speculation 
support, software support is required to identify and create likely 
successful speculative threads and to avoid poor speculations.  

 
Main thread Speculative thread
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Figure 1: An SPT Execution Model 

e propose a comprehensive cost-driven compiler framework to 
peculatively parallelize loops of sequential programs.  We 
eveloped a misspeculation cost model and used it to drive the 



speculative parallelization.  The compiler aggressively looks for 
loop-level speculative execution opportunities, selects and 
transforms candidate loops into speculative parallel loops that 
likely can gain from the speculative parallel threading (SPT) 
execution. The proposed framework also allows the use of 
enabling techniques such as loop unrolling, value prediction and 
dependence profiling to expose more speculative parallelism.     

Figure 1 depicts a general speculative parallel threading (SPT) 
execution model.  The main thread is the only non-speculative 
thread that can commit and change the program state.  It executes 
the main program.  The threads share the same memory space but 
have their own context and execution states.  During the parallel 
execution, the threads do not communicate.  For the speculative 
threads, all speculative results (including memory writes) are 
buffered and are not part of the program state. 

Suppose the main thread is executing the i-th iteration of a 
speculative parallel loop.  When it executes an SPT fork 
instruction, it spawns a speculative thread to execute the next 
iteration (i.e., the (i+1)-th iteration) speculatively.  To start the 
speculative execution, the context of the main thread is copied to 
the speculative thread as its initial context. Besides, the start 
address of the next iteration where the speculative thread starts 
execution is encoded in the SPT fork instruction and passed to the 
speculative thread. 

After the speculative thread is created, the main thread continues 
its normal execution with the current iteration.  When the main 
thread comes to the point where the speculative thread started 
execution (i.e., beginning of the next iteration), it will check the 
speculative execution results of the speculative thread and 
perform any of the following actions.   If there is no dependence 
violation, the main thread commits the entire speculative results 
(i.e., the context of the speculative thread) at once. Otherwise, the 
main thread will commit those correct speculative results and for 
those incorrect results it re-executes the corresponding 
misspeculated instructions.  The main thread then resumes normal 
program execution when it catches up with the speculative thread 
(i.e., when there is no more speculative results.)   
When the main thread executes an SPT kill instruction (usually at 
the exit of an SPT loop), it kills any running speculative threads. 

Figure 2 shows how a loop can be transformed into a speculative 
parallel loop or SPT loop.  In the SPT loop (Figure 2(b)), the 
SPT_FORK statement represents the SPT fork instruction.  The 
code before the fork instruction is called the pre-fork region of 
the SPT loop.  The code after the fork instruction is called the 
post-fork region.  The partitioning of a loop body into pre-fork 
region and post-fork region has special meaning in the speculative 
parallelization. (Hereafter we refer such a partition an SPT loop 
partition.) Because all statements in the pre-fork region are 
executed before the speculative thread is spawned, their results 
are visible to the speculative thread.  Their uses in the speculative 
thread do not violate any data dependences and are always 
correct. On the contrary, a statement in the post-fork region is 
executed after the speculative thread starts. If its result is 
supposed to be used in the next iteration, the speculative thread 
may use the old value in its speculative execution and violates the 
true data dependence.  The corresponding speculative instruction 
and all its dependent instructions need to be re-executed.   
One key speculative parallelization transformation in our 
framework is code reordering.  If a define statement in the post-
fork region can be moved into the pre-fork region, all re-
executions due to its data dependence violation can be avoided.  
The example in Figure 2 illustrates this transformation.  The 
increment of the induction variable i at the end of the original 
loop (Figure 2(a)) will cause many re-executions if it remains in 
the post-fork region. The SPT loop transformation moves it from 
the end of the loop body to the pre-fork region (Figure 2(b)) and 
avoids the corresponding re-executions.   Note that the temporary 
variable temp_i is introduced to allow overlapping of the life 
ranges of the old and new values of the variable i.  
We have implemented the proposed compilation framework on 
the Open Research Compiler (ORC) [8] and used it to generate 
speculative parallel loops. ORC is an open-source C/C++/Fortran 
compiler targeting Intel’s Itanium™ processor family (IPF) 
processors.  The performance of ORC 2.1 is on par with the Intel 
IPF product compiler ecc 7.0 and 30% ahead of gcc 3.1 on an 
Itanium system for the spec2000 integer benchmarks. We 
implemented our speculative parallelization framework primarily 
in the machine-independent scalar global optimization (WOPT) 
phase of ORC, right after its loop-nested optimization (LNO) 
phase.  Most analyses and transformations were done in ORC’s 
SSA form [14]. temp_i=i; 

while (i<n) { 
  i=temp_i; 
  temp_i=temp_i+1; 
  SPT_FORK(loop_id); 
  cost0=0; 
  for (j=0;j<i;j++) { 
    cost0+=fabs(error[i][j]-p[j]); 
  } 
  cost+=cost0; 
  i=temp_i; 
} 
SPT_KILL(loop_id); 
 
(b)  SPT-transformed loop 

The rest of this paper is organized as follows. Section 2 discusses 
related work. In Section 3, we give an overview of our 
compilation framework. Section 4 describes the misspeculation 
cost model that we use to drive the speculative parallelization. 
Section 5 describes how we obtain the optimal loop partition that 
generates the least amount of re-executions for a particular loop 
candidate. Section 6 describes the final SPT loop selection and 
transformation. This framework was designed to support a 
number of important techniques that enables speculative 
parallelization.  Section 7 describes the enabling techniques being 
supported and used.  In Section 8, we present results to evaluate 
our framework and the generated SPT code.  Section 9 concludes 
the paper.  

while (i<n) { 
 cost0=0; 
 for (j=0;j<i;j++) { 
   cost0+=fabs(error[i][j]- p[j]); 
 } 
 cost+=cost0; 
 i++; 
} 
 
(a) Original loop 

2. RELATED WORK Figure 2: An SPT Loop Transformation Example 
The Multiscalar project was the first comprehensive study of both 
hardware and software supports for speculative multithreading 
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[3][12].  In particular, Vijaykumar et. al. described the use of 
compiler techniques to partition a sequential program into tasks 
for the Multiscalar architecture [12].   They showed that good task 
selection is crucial to the performance achieved by the 
Multiscalar architecture, as it pertains to performance issues such 
as control flow/data speculation, register communication and load 
imbalance.  Various compiler heuristics were developed for task 
selection and register communication.   

Tsai et. al. described how basic techniques such as alias analysis, 
function inlining and data dependence analysis could be used to 
partition a program into threads which are then pipelined in the 
superthread architecture [11].  For their experiments, the 
benchmark programs were manually transformed at the source 
level. 

Zhai et.al. studied compilation techniques to improve thread-level 
speculation performance [13].  They focused on code scheduling 
and inter-thread communication optimization.  They showed that 
the compiler could reduce value communication delay between 
the threads significantly by forwarding scalar values to the 
speculative threads and by inserting synchronization instructions 
into the threads.   

More recently, Chen et. al. described a dynamic parallelization 
system that transformed sequential Java programs to run on a chip 
multiprocessor that supports speculative threads [1][2].  They 
used hardware profiling support to guide speculative thread 
decomposition.  They estimated the execution time of a 
speculative loop from the profiling data (such as time stamps 
collected during profile runs) and based on the estimation selected 
which nested level of a loop to be run speculatively. While our 
speculative parallelization also does profiling and loop selection, 
our work provides a more general speculative parallelization 
framework and applies more aggressive cost-directed loop 
transformation and selection at compilation time.  

3. SPT COMPILATION FRAMEWORK 
This section gives an overview of our cost-driven compilation 
framework.  There are two key elements in our speculative 
parallelization approach. First it is cost-driven. Because 
speculation does not always gain performance, it is essential to 
estimate and reduce the cost associated with misspeculation.  We 
developed a misspeculation cost model to drive our speculative 
parallelization.  The second element is aggressive but careful 
selection.  We use a two-pass compilation process to explore 
every speculative parallelization opportunity, obtain the best 
transformation and select only loops that are likely to deliver 
performance gain.  

3.1 Cost-driven transformations 
The notion of misspeculation cost is central to our speculative 
parallelization.  Given a particular SPT loop partition, its 
misspeculation cost is defined as the expected amount of 
misspeculated computation that needs to be re-executed within a 
speculative executed loop iteration. 
Figure 3 shows the core of our compilation framework.  
The central service component is the misspeculation cost 
computation.  We developed a misspeculation cost model to 
estimate misspeculation cost of an SPT loop partition.  The cost 
model is built using annotated control-flow and data dependence 

graphs.   The following section will describe in detail the cost 
model construction and how it is used to compute misspeculation 
cost.   
 

  
Figure 3: Core of compilation framework 

 
The bottom component is the algorithm to find an optimal SPT 
loop partition for a given loop.  The purpose of this component is 
to determine if a loop can become a good SPT loop. It searches 
for all possible SPT loop partitions of the loop, evaluate their 
misspeculation costs, and determine the best SPT loop partition 
that generates the least misspeculation cost. We will describe this 
algorithm in detail in Section 5. 
  

3.2 Two-pass compilation 
 

 
Figure 4: Overall framework -- Combination of core with 

compiler transformation techniques 
 
Figure 4 shows our overall framework with a two-pass 
compilation process.  The purpose of the two-pass compilation 
process is to select and transform only all good SPT loops in a 
program.   
In the first pass compilation, the initial loop selection selects all 
loops that meet simple selection criteria (such as the loop body 
size requirement) as SPT loop candidates. Loop preprocessing 
such as loop unrolling and privatization is then applied to 
transform the loops into better forms for speculative 
parallelization. For each loop candidate, the SPT compilation 
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framework core is invoked to determine its best SPT loop 
partition.  The result of the first pass is a list of SPT loop 
candidates with their optimal SPT loop partition results.  All loop 
transformations are performed in a tentative manner and do not 
alter the compiled program.   No actual SPT code is generated.  
This pass allows us to measure the amount of speculative 
parallelism in all loop candidates (including each nested level of a 
loop nest) and evaluate their potential benefits/costs. 
The second pass takes the result list from the first pass and 

6, we will describe the SPT loop selection and 

4. MISSPECULATION COST MODEL 
in this 

loop body.  In order to 

m the base reason for 

ulation cost 

xecution 
                                                                

performs the final SPT loop selection.  It evaluates all loop 
candidates together (not individually as in the case in the first 
pass) and selects only those good SPT loops. Then the selected 
loops are again preprocessed and partitioned.  Finally the 
compiler applies the SPT transformations to generate the SPT 
loop code. 
In Section 
transformation in detail. 

 
The misspeculation cost model is the central component 
cost-driven framework.  For a given loop, we build a simplified 
control-flow graph and a dependence graph annotated with 
dependence probabilities. A misspeculation cost model is 
constructed based on these graphs and is used to compute the 
misspeculation cost of a loop partition.   

4.1 Data-dependence graph 
A dependence graph is built for each 
indicate the likelihood of a particular data dependence, each true 
data-dependence edge in the graph is annotated with a probability 
value.   A probability value of p on an edge W→R means for 
every N writes at W, only pN  reads will access the same memory 
location at R during program execution.   

These data dependence probabilities for
speculation.  If we have a cross-iteration W→R edge with a low p 
value, we know that that it is unlikely for the write in the main 
thread to cause a misspeculated read in the speculative thread so 
that we could speculate it.  A high p value on the other hand 
suggests a high probability of a misspeculated read when W is in 
the post-fork region.  In such a case, to reduce the misspeculation 
cost, the write W should be moved to the pre-fork region.   

4.2 Misspeculation cost computation 
This subsection describes the details of the misspec
model and how it is used to compute misspeculation cost.  
Misspeculation cost is a useful metric to evaluate the potential 
performance gains of an SPT partition.  It gives, for a given loop 
partition, the expected amount of computation (typically in 
number of elementary operations) within a speculative loop 
iteration that needs to be re-executed.  A higher cost means that 
the main thread needs more time to re-execute the misspeculated 
instructions, and hence such a partition is less desirable. 

We build a cost graph to represent the code re-e
dependency due to misspeculation.   Suppose we have an 
expression E, and it has a read R in a sub-expression.  If R is 
misspeculated and has to be re-executed, this will cause E to be 
re-executed as well.   

4.2.1 Violation candidate 
The source of a cross-iteration true data-dependence edge is 
called the violation candidate 1 .  A violation candidate will 
introduce some misspeculation cost if it is not in the pre-fork 
region. On the other hand, if the violation candidate is in the pre-
fork region, it is executed sequentially before the speculative 
thread starts. It is not part of the parallel execution and the amount 
of parallelism is reduced.  

4.2.2 Cost graph construction 
The control-flow and data-dependence graphs are used to 
construct the cost graph.  The cost graph is initialized with the set 
of violation candidates and their cross-iteration dependence 
edges.  Then nodes in the dependence graph that can be reached 
by the dependence edges and their intra-iteration dependence 
edges are added to the cost graph recursively. To estimate the 
misspeculation cost more accurately, the head of a cost graph 
edge is an operation, rather than a statement2.   Except the initial 
set of cost graph nodes, each subsequent node added to the cost 
graph represents an operation. 
Conceptually the initial set of cost graph nodes represents the 
statements in the main thread that may cause misspeculation in 
the speculative thread.   The subsequent portion of the graph 
represents the propagation effect of any misspeculation and re-
execution within the speculative thread iteration. 
Each edge X→Y in the cost graph is annotated with a probability 
p.  This is the conditional probability that a re-execution at X  will 
cause Y to be misspeculated and re-executed, given that X is 
misspeculated.   

4.2.3 Computation of re-execution probability 
The misspeculation cost of a given partition is calculated based 
on an estimate of the re-execution probability of each operation in 
the speculative thread.   This value is updated during the 
misspeculation cost computation.   
The following is an algorithm to estimate the re-execution 
probability of each node in the cost graph. 
Steps 1 and 2 are preparation steps which are performed once for 
a given loop candidate. 

1. We calculate the violation probability of each violation 
candidate node in the cost graph. The violation 
probability is the probability that the result of the 
corresponding statement is modified within an iteration.   
For a violation candidate, its violation probability 
means how often the main thread will reach it and 
modifies its results, thus initiating re-executions in the 
next but speculatively executed iteration. 

2. Topologically sort all nodes in the cost graph. 
3. For each node corresponding to a violation candidate 

not in the pre-fork region, initialize its re-execution 
probability to be its violation ratio. 

 
1 Each violation candidate is an SSA statement in our 
representation. 

2  In terms of actual implementation, each cost graph node 
corresponds to an operation (Coderep) rather than a statement 
(Stmtrep) in ORC’s SSA representation.    
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4. The remaining nodes in the cost graph are visited in the 
topologically sorted order.  We compute the probability 
that a node c is re-executed due to re-execution of any 
of its predecessors as follows: 

a. Initialize x = 0; 
b. For each predecessor node p of c,  

x = 1 - (1 - x)*(1 - r*v(p)), where v(p) is the 
re-execution probability of node p, and r is the 
dependency probability on edge p->c (as 
described in Section 4.2.2).  

c. Set the re-execution probability of c to be x 
For a node dependent on multiple predecessors, this algorithm 
assumes that the re-execution probabilities of different nodes are 
independent of one another.   So this algorithm only approximates 
the misspeculation cost. 

4.2.4 Computation of misspeculation cost 
The misspeculation cost of the given SPT partition is computed 
as: 

∑
c

cCostcv )(*)(    

The summation is for all nodes c in the cost graph (excluding 
those for the violation candidates), v(c) is the re-execution 
probability of node c and Cost(c) is the amount of computation in 
node c. 

4.2.5 An example 

 

Figure 5: A dependence graph example 
 
Figure 5 shows a data dependence graph of a loop body.  For 
clearer illustration, we assume there is no branch statement in the 
loop body.   All solid lines represent intra-iteration dependences 
while the dashed lines represent cross-iteration true data 
dependences.  The dependence probability for the edges without 
annotation is 1.   
The cost graph is shown in Figure 6.  D’, E’ and F’ are the pseudo 
nodes for violation candidates D, E and F respectively. 
Let us consider an SPT partition in which only D is in the pre-fork 
region.  
 
 

Figure 6: Cost graph for the dependence graph in Figure 5. 
 
The re-execution probabilities of the pseudo nodes for the 
violation candidates are initialized. 

v(D’) = 0 (since D’ is in pre-fork region) 
v(E’) = v(F’) = 1 (since there is no branch) 

The re-execution probability algorithm then calculates the re-
execution probabilities of other nodes in topological order. 

v(A) = 1 – (1– 0.2*v(D’)) = 0 
v(B) = 1 – (1 – 0.1*v(E’)) = 0.1 
v(C) = 1 – (1 – 0.5*v(B))(1– 0.2*v(F’)) = 0.24 
v(D) = v(F) = 0 
v(E) = 0.24 

Assuming all nodes have cost of one, the misspeculation cost of 
the SPT partition is 0.58. 

5. OPTIMAL LOOP PARTITION 
As described in Section 3, one key algorithm in our cost-driven 
framework is to determine an optimal SPT loop partition for a 
given loop.  In this section, we describe how we formulate the 
problem and how we search for an optimal partition.  

We formulate the optimal loop partitioning problem as an 
optimization problem: To find a legal loop partition such that its 
misspeculation cost is minimum under the constraint that the pre-
fork region size is no more than a given threshold.   

Legal partitions are those which maintain program correctness. 
Any partition that maintains all forward intra-iteration  
dependence edges is a legal partition of the loop.  A partition that 
causes a forward intra-iteration edge to become backward is 
illegal3.  

The fork region size threshold is imposed to limit the amount of 
sequential execution, thus allowing some minimum degree of 
parallelism after the speculative parallelization.  

A branch and bound search algorithm is used to find the optimal 
partition. Search efficiency is one of our major concerns. We 
reduce the search space by focusing on violation candidates only.  
We construct a violation candidate dependence graph (VC-dep 
graph) to facilitate the search. Furthermore, the search tree is 
pruned more effectively by observing that both the misspeculation 
                                                                 
3 This restriction can be relaxed when intra-thread speculation is 

allowed.  
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cost and size of pre-fork region are monotone functions of the set 
of statements in the pre-fork region. When additional statements 
are moved into the pre-fork region, the misspeculation cost will 
be reduced (compared to the partition prior to the move) and the 
size of the pre-fork region becomes larger. 

5.1 Construction of VC-dep graph 
A violation-candidate dependence graph (VC-dep graph) is built 
from the data dependence graph.  The node set of the VC-dep 
graph is the set of violation candidates.   A node N in the VC-dep 
graph is a successor of another node S iff the corresponding 
violation candidate for N is directly or indirectly dependent on the 
corresponding violation candidate for S in the data dependence 
graph.   Only intra-iteration data dependences are considered.   

All nodes in the VC-dep graph are topologically sorted before the 
search starts. That is for any two nodes u and v in the graph, if u 
is dependent on v, u must have a larger topological order number 
than v. 

5.2 The optimal search algorithm 
The search algorithm starts with an empty pre-fork region.  In 
each step, we will add one node of the VC-dep graph into the pre-
fork region if all its predecessors have been added into the pre-
fork region. Since there could be multiple candidate nodes to be 
added, each candidate is added separately to explore all possible 
cases whenever there is a branch in the search space. 

 

Figure 7: VC-dep graph for the dependence graph in Figure 5  
 

Let us consider the dependence graph example in Figure 5 again. 
Figure 7 shows the corresponding VC-dep graph.  There are three 
violation candidates D, E and F. E is a successor of D in the data 
dependence graph. 

 

 

 

 

 

 

 

 

Figure 8 gives the search space formed by searching all the 
different pre-fork regions.  

To avoid searching the pre-fork region {D, E, F} multiple times, a 
constraint is added.  At each step, only the node with larger 
topological order number could be added into the pre-fork region. 

5.2.1 Pruning heuristics 
To speedup the search, we adopt two pruning heuristics: 

1. When a pre-fork region’s size exceeds the given 
threshold, there is no need to search down the search 
tree. 

2. Suppose the current search node has a pre-fork region 
R.  Because we never move the nodes in current post-
fork region that has smaller topological order number 
than those in R into the pre-fork region when searching 
the offspring nodes of the current search node, we could 
estimate the lower bound cost for all offspring nodes in 
the search space. If this lower bound is already larger 
than the minimum misspeculation cost found so far, 
there is no need to search successors of the current 
node. 

 

 
Figure 9: Search space pruning.  The dash edge is pruned.  

  
Figure 9 illustrates the application of heuristic 1 applied to the 
search of the search space in Figure 8.  The search is pruned at 
node {D, E, F} because the size of its pre-fork region already 
exceeds the threshold.  
The search algorithm still has exponential time complexity. To 
avoid exceedingly long compilation time, loops with too many 
violation candidates are skipped.  Our experiments show that only 
a few loops in Spec2000Int have more than 30 violation 
candidates and got skipped due to this reason. 

6. SPT LOOP SELECTION & 
TRANSFORMATION 
After the first compilation pass, we obtain all optimal partitions 
and their associated optimal misspeculation costs for all loop 
candidates.  In the second compilation pass, our speculative 
parallelization examines all loop candidates together (such as all 
nesting levels of a loop nest) and select all those good SPT loops 
that are likely to deliver performance gain and does the final SPT 
transformation to generate SPT code.  This section describes the 
final SPT loop selection and transformation.  

6.1 SPT loop selection criteria 
We select SPT loops based on the following criteria:  
1. Misspeculation cost.   The optimal misspeculation cost of the 

loop must be smaller than a predefined threshold which is a 

{D}   

{D, E} {D, F}   

{D,E, F}   

Figure 8: Search space.  Each node represents a pre-
fork region which completely defines a partition. 
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fraction of the loop body size.  This attempts to limit the 
potential performance loss due to misspeculation. 

2. Pre-fork region size.  The size of the pre-fork region is less 
than a predefined threshold which is a fraction of the loop 
body size.  This limits the sequential execution portion in the 
speculative parallel execution.  The same threshold is used  
in the first pruning heuristic (Section 5.2.1). 

3. Loop body size. Loop body size is a fundamental 
characteristic of an SPT loop. It shows how far ahead of the 
current execution a speculative thread starts the speculative 
execution.  It also indicates roughly the size of the 
speculative thread. 

• It should be larger than a predefined threshold.  If 
the loop body size is too small, the performance 
gain of speculative parallelism will not be enough 
to compensate for the overhead of forking a thread. 

• It should be smaller than a machine-dependent 
threshold.  Hardware resources can only support 
speculative execution of limited size. 

4. Iteration count.  A small iteration count (especially a number 
smaller than 2) means the next iteration is not likely to be 
executed and any speculative thread is likely to be killed. We 
avoid speculatively parallelizing such loops. 

6.2 SPT loop transformation 
After the SPT loop selection, the original loop bodies of the 
selected loops are transformed into SPT loops using the optimal 
partition results obtained earlier. 
To simplify the transformation procedure, the CFG of original 
loop is duplicated with empty basic blocks as the initial CFG of 
the pre-fork region.  Then the statements are moved from the 
original loop body (which becomes the post-fork region) into the 
pre-fork region according to the optimal partition result.  After 
that, the pre-fork and post-fork regions are connected together 
with the SPT_FORK statement inserted between them. 
There are two complications in the SPT loop transformation.  One 
is how to deal with overlapped live ranges after code reordering. 
The other one is to deal with code motion of partial conditional 
statements. 
 

Figure 10: Life-range overlap after partition 
 
After code reordering, the life ranges of different definitions of 
the same variable may be overlapped.  For example, in Figure 10, 
suppose the partition result requires statements (1) and (3) to be 
moved into the pre-fork region.  After the code is moved, we find 
that the life range of i_2 overlaps with the life range of i_3.  This 
is not permitted in the SSA form in ORC.   

 

 
Figure 11: Temporary variable insertion to avoid the life-

range overlap in Figure 10.   
(Code is in SSA form with phi-nodes not shown.) 

 
The above problem is solved by introducing temporary variables 
to break the life ranges.  Figure 11 shows the immediate results 
after the temporary variables are inserted.  The temporary variable 
temp_i_2 is used to avoid the life-range overlap within the loop 
body while the temporary variable temp_var carries the cross-
iteration definition (3). 
After the above code motion and temporary variable insertions, 
the code is immediately cleaned and optimized by applying SSA 
renaming, copy propagation and dead code elimination in ORC. 
When there is a branch statement inside the loop body and some 
code control-dependent on the branch statement is to be moved 
into the pre-fork region, the branch statement needs to be copied 
into the pre-fork region as well.  In Figure 12, the partial 
conditional statement ‘if (x<y) s++;’ is moved into the pre-fork 
region. The branch statement ‘if (x<y)’ is replicated so that the 
transformed code maintains the correct control flow in both the 
pre-fork and post-fork regions. 

 
Figure 12: Moving a partial conditional statement into the 

pre-fork region 

7. SPT-ENABLING TECHNIQUES 
While the core SPT speculative parallelization attempts to 
identify and transform the best SPT loops, other SPT-enabling 
techniques are needed to expose more speculative parallelism to 
the compiler.   Our compilation framework can be easily extended 
to support and use some of these techniques.   This section 

    temp_var=i_1; 
start_of_loop: 
    i_3=temp_var; 
    temp_i_3=i_3; 
    i_2=i_3+1;              (3) 
    temp_i_2=i_2; 
    temp_var=i_2; 
    SPT_FORK(loopid) 
    i_3’=temp_i_3; 
    foo(i_3’);                (2) 
    i_2’=temp_i_2; 
 

… 
if (x<y) { 

s++; 
foo(); 

} 
 

… 
temp_cond=(x<y); 
if (temp_cond) { 

  s++; 
i_3=phi(i_1,i_2)      (1) 
i_2=i_3+1;              (3) 
SPT_FORK(loopid) 
foo(i_3);                  (2) 
 
(b) SPT loop partition 

} 
SPT_FORK(loopid) i_3=phi(i_1,i_2)      (1) 

foo(i_3);                  (2) 
i_2=i_3+1;              (3) 
 
(a) Original loop 

… 
if (temp_cond) { 

foo(); 
} 
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describes three techniques which our framework has incorporated 
– loop unrolling, software value prediction and data-dependence 
profiling.    

7.1 Loop unrolling 
 is focused on generating speculative 

efore the 

ng is always enabled in all our experiments. 

oops are 

7.2 Software value prediction 
tion (SVP) technique 

Figure 13: Speculative parallelization with software value 

Figure 13 gives a softw rediction example.  The 
                                                                

 
Our current SPT compilation
threads for next iterations of a loop.   It is therefore important that 
the loop body size be sufficiently large to compensate for the 
overheads of the speculative thread execution.  Loop unrolling is 
a useful technique to increase the body size of a loop.    

The SPT compilation does loop unrolling as follows.   B
Loop Nested Optimization (LNO) phase, based on the loop body 
size and the minimum SPT loop body size requirement, the SPT 
compilation module decides if a loop should be unrolled and what 
the unroll factor will be.  A loop-unrolling pragma is inserted into 
the loop’s header.   We modified LNO to recognize this pragma 
and perform the required loop unrolling (including outer loop 
unrolling).  

Loop unrolli

Since ORC can only unroll DO loops in LNO, many l
still not unrolled automatically in the current compiler. 

 
We have developed a software value predic
to predict critical values purely in software without any hardware 
support.   Based on our misspeculation cost model, the compiler 
identifies critical dependences that cause unacceptably high 
misspeculation cost.  The compiler then instruments the program 
to profile the value patterns of the corresponding variables.  If the 
values are found to be predictable, and both the corresponding 
value-prediction overhead and the mis-prediction cost are 
acceptably low, the compiler inserts the appropriate software 
value prediction code to generate the predicted values.   It also 
generates the software check and recovery code to detect and 
correct potential value mis-prediction [6]. 

 

 

 

 

prediction 
are value p

compiler profiles the values for x.  We assume that a pattern is 
identified whereby x is often incremented by 2 by bar(x).  A 
check-and-recovery code is also inserted at the end of the loop 
iteration.   If the actual value of x is different from the predicted 

value during execution time, pred_x is corrected with the right 
value.  

In our cost-model, x=bar(x) is a violation candidate which cannot 
be moved to the pre-fork region because of the legality constraints 
imposed by code reordering.  SVP provides a way to overcome 
this limitation so the loop can become an SPT loop. 

7.3 Data-dependence profiling 
As described in Section 4, data dependence probability is an 
essential basis for speculation. Data dependence profiling is one 
important means to obtain reliable dependence probability 
information.      

Our current SPT compilation includes a data-dependence 
profiling tool to complement the static type-based memory 
disambiguation analysis in ORC.   The profiling is done offline.  
The results are used during pass 1 compilation (together with the 
reaching probability information of the control-flow graph) to 
annotate both intra-iteration and cross-iteration true data 
dependence edges.   These edge probabilities are in turn used to 
annotate the edges in the cost graph (Section 4.2.2).    The goal is 
to better estimate the re-execution probabilities that reflect the 
runtime behavior, and in the process, be able to parallelize more 
loops with more accurate and hopefully lower misspeculation 
costs.   

In order to use the data-dependence instrumentation and profile 
feedback results, we only need to modify the annotation of data-
dependence probabilities of the dependence graph to take the 
profiling input.  There was no change to the underlying cost 
computation module. 

8. RESULTS AND LESSONS 
We evaluated our framework by generating SPT code for an SPT 
architecture [15] and running the generated code on a simulator. 
The simulated machine is a tightly-coupled multiprocessor with 
one main core and one speculative core. Each processor core is an 
in-order Itanium2-like core. The cores have their own register 
files but share the memory/cache hierarchy. The main core always 
executes the main thread. Speculative threads must run on the 
speculative core. Both processor pipelines, branch predictors and 
the cache hierarchy are simulated. The memory/cache hierarchy 
has the same configuration and latencies as the Intel’s Itanium2 
systems.   Branch misprediction penalty is 5 cycles. The 
minimum overheads to fork and commit a speculative thread are 6 
and 5 cycles respectively.  

while (x) { 

; 

) Original loop  

pred_x = x; 

x; 
 2; 

id); 

x); 
_x) { 

 Speculative parallel loop  

    foo(x); 
    x=bar(x)
} 
 
(a

while (x) { 
    x = pred_
    pred_x = x +
    SPT_FORK(loop
    foo(x) 
    x = bar(
    if (x != pred
        pred_x = x; 
    } 
} 
(b)

To evaluate our speculative parallelization framework, we 
compiled 10 Spec2000Int benchmarks4 using our SPT compiler, 
ran the generated code on the simulator and collected 
performance data.  All compilation, both for the non-SPT base 
reference code and for the different versions of SPT code, used 
O3 level optimization, profiled guided optimization and type-
based alias analysis.  The generated code was simulated using an 
in-house trimmed down input set that is derived from the SPEC 

 
4 The remaining two Spec2000Int benchmarks (eon and perlbmk) 

were not evaluated because they failed to run on our simulator.   
Eon requires C++ library supports and perlbmk requires  
additional system call supports. 

78



reference input set but runs about 5% as long while exhibiting 
similar program behavior. All simulation runs ran until program 
completion.  Table 1 shows the performance of the non-SPT base 
reference code on a single core.  The IPC (instruction per cycle) 
numbers shown exclude nop instructions. All speedup numbers 
reported in this section are based on comparing the execution time 
of the generated SPT code against the execution time of the non-
SPT base reference code. 

 

Table 1: IPC (excluding nops) of the non-SPT base reference  

Program IPC Program IPC  

bzip2 1.69 mcf 0.44 

crafty 1.49 parser 1.30 

gap 1.30 twolf 1.05 

gcc 1.33 vortex 0.56 

gzip 1.77 vpr 1.22 

 

Three sets of SPT code were evaluated.  The first set of SPT code 
was generated by the basic compilation which used our cost 
model and all basic SPT optimizations (such as code reordering 
and loop unrolling). This basic compilation used only control 
flow edge profiling.  The second set of SPT code was generated 
by the current best compilation which in addition to the basic 
compilation applied software value prediction (SVP) and data 
dependence profiling feedback.  The third set of SPT code was 
generated by the current best compilation plus manual application 
of a few additional enabling techniques which were not yet 
implemented.  These enabling techniques include while-loop 
unrolling, privatization and the export of global variables beyond 
their visible scopes.  We anticipate that the last set of SPT code is 
what our compiler can achieve when those enabling techniques 
are in place.  We refer to this last set of code as the result of the 
anticipated best compilation.  Their performance results are 
reliable indicators of what can be practically achieved.  

 

Figure 14: Performance gains from speculative parallelization 

Figure 14 summarizes our evaluation results.  It shows that simple 
techniques such as loop unrolling and code reordering are not 
enough to achieve good performance.  The basic compilation 
achieves only 1% average speedup as compared to 8% in the best 
compilation and 15.6% in the anticipated best compilation.  This 
also shows that only control profiling and type-based alias 
analysis are not enough to identify speculative parallelism.  
Software value prediction is an important SPT-enabler because it 
both helps to reduce misspeculation cost and enables more code 
reordering.  The anticipated compilation results are encouraging.  
It shows that our framework is able to perform aggressive 
speculative parallelization when more speculative parallelism gets 
exposed.  Note that in this work, the current compiler does not 
introduce intra-thread speculation to exploit more inter-thread 
speculative parallelism.  
 
We now discuss the results of the current best compilation in 
detail.   
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Figure 15: Breakdown of loops with respect to whether they 
can be SPT-transformed and why if not 

 
Figure 15 shows the breakdown of loops with respect to whether 
the loops can be SPT transformed and the reasons why they 
cannot be transformed under our framework. The fraction labelled 
as ‘Valid Partition’ are the percentage of loops that satisfies the 
SPT loop selection criteria. For those that cannot be transformed, 
only a few loops failed because of too many violation candidates.  
35% of the loops cannot be transformed because they have either 
too small iteration count or too large body size. We note that 34% 
of the loops are not transformed because their loop bodies are too 
small.  These loops are while loops.  Our current compiler can 
only unroll DO loops to increase their body sizes.  As indicated in 
our anticipated best compilation result, while-loop unrolling is 
one important enabling technique.  
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SPT loop number and coverage
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Figure 16: Runtime coverage of the generated SPT loops  

 
Figure 16 shows the runtime coverage of the loops and the 
number of speculative parallel loops. Runtime coverage refers to 
the percentage of total program execution cycles being spent in 
the SPT loops.  Our current best compilation is able to generate 
SPT loops to cover 30% of the total program execution cycles. 
Compared to the 68% maximum coverage of all loops with the 
same maximum loop size limit5, our compiler does a decent job, 
successfully realizing 40% of the potential opportunity. On 
average, only 30 SPT loops were generated per benchmark. This 
indicates that a few hot loops were selected and transformed.  
There are still ample opportunities – this is not surprising with the 
anticipated best compilation results. 
 

SPT loop sizes

1

10

100

1000

10000

bz
ip2

cra
fty ga

p
gc

c
gz

ip mcf

pa
rse

r
tw

olf

vo
rte

x vp
r

Ave
rag

e

lo
op

/re
gi

on
 s

iz
e 

(#
 in

st
ru

ct
io

ns
)

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

w
.r.

t. 
lo

op
 b

od
y 

si
ze

Loop body size Pre-fork region size Pre-fork region ratio

 
Figure 17: General characteristics of the SPT loop partitions 

 
Figure 17 shows the average loop body size and the general 
characteristic of the partitions of the SPT loops.  On average, a 
speculative parallel loop executes about 400 instructions per 
iteration (i.e., the loop body size).   The pre-fork region has about 
                                                                 
5 The maximum loop size limit used in the experiments is 1000 

instructions.  

9 instructions (i.e., the pre-fork region size).  About 5% of the 
loop body computations occur in the pre-fork region (i.e., the pre-
fork region ratio).  In other words, there was a significant amount 
of overlap in the execution of the main and speculative threads. 
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Figure 18: Actual performance of the generated SPT loops 

 
One main goal of our compiler framework is to be able to 
speculatively parallelize only loops with low misspeculation 
costs.  Figure 18 shows the actual performance characteristic of 
the SPT loops generated by the current best compilation. On 
average, the misspeculation ratio is only 3% while the speedup 
over the original loop is about 26%.  
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Figure 19: Correlation of compiler estimated misspeculation 

costs vs. actual simulation re-execution ratio 
 
Our framework is built on the premise that the cost-driven 
approach can help to guide the selection of loops for the best 
speculative parallelization.  Figure 19 shows a scatter plot that 
plots, for each loop, the compiler-estimated misspeculation cost 
against its actual re-execution ratio.  The re-execution ratio of a 
loop is the fraction of computation of a loop iteration that is re-
executed due to misspeculation.  Figure 19 shows that the costs 
and re-execution ratios are generally well-correlated, except that 
the estimated costs tend to be conservative and over-estimate the 
re-execution ratio (as the data is more clustered near the y-axis.) 
Figure 19 also shows some loops near to the x-axis.  Our analysis 
shows that the discrepancies come from function-calls inside 
these loops, which will modify and use some global variables 
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unknown to the caller loops. This points an area for improvement 
in the cost estimation. 

9. FUTURE WORK AND CONCLUSIONS 
The emerging hardware support for thread-level speculation 
opens new opportunities to parallelize sequential programs 
beyond the traditional limits.  To take full advantage of this new 
execution model, a program needs to be programmed or compiled 
in such a way that it exhibits a high degree of speculative thread-
level parallelism.  We propose a comprehensive cost-driven 
compilation framework to perform speculative parallelization. 
Based on a misspeculation cost model, the compiler aggressively 
transforms loops into optimal speculative parallel loops and 
selects only those loops whose speculative parallel execution is 
likely to improve program performance.  The framework also 
supports and uses enabling techniques such as loop unrolling, 
software value prediction and dependence profiling to expose 
more speculative parallelism.  The proposed framework was 
implemented on ORC compiler.  Our evaluation showed that the 
cost-driven speculative parallelization was effective.  Our 
compiler was able to generate good speculative parallel loops in 
ten Spec2000Int benchmarks, which currently achieve an average 
8% speedup.  We anticipate an average 15.6% speedup when all 
enabling techniques are in place. 
We noted in Figure 15 that there are loops which are not 
transformed because either their body size is too large, or their 
iteration count is too small.  Such cases can be handled if we 
generalize our work to perform speculative parallelization for 
general code regions.  For example, a speculative thread may be 
forked for a section of the loop body within the same iteration, or 
for a section of code after the loop body.   
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