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ABSTRACT
Many program analyses can be reduced to graph reachabil-
ity problems involving a limited form of context-free lan-
guage reachability called Dyck-CFL reachability. We show
a new reduction from Dyck-CFL reachability to set con-
straints that can be used in practice to solve these problems.
Our reduction is much simpler than the general reduction
from context-free language reachability to set constraints.
We have implemented our reduction on top of a set con-
straints toolkit and tested its performance on a substantial
polymorphic flow analysis application.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; F.3.2 [Logics and Meanings of Programs]: Se-
mantics of Programming Languages

General Terms
Algorithms, Design, Experimentation, Languages, Theory

Keywords
Set constraints, context-free language reachability, flow
analysis, type qualifiers

1. INTRODUCTION
Many program analyses have been formulated and imple-

mented using set constraints. Set constraint-based analyses
have been shown to scale to large programs on applications
such as points-to analysis, shape analysis, and receiver class
prediction, though scalability requires highly optimized im-
plementations [4, 8, 19, 21].
Recently, a number of program analyses have been formu-

lated as context-free language (CFL) reachability problems.
These include applications such as type-based polymorphic
flow analysis, field-sensitive points-to analysis, and interpro-
cedural dataflow analysis [15, 17, 18]. Getting CFL-based
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implementations to scale has proved as tricky as implement-
ing set constraints, leading to new algorithms and optimiza-
tion techniques.
Set constraints and CFL reachability were shown to be

closely related in work by Melski and Reps [13]. While their
result is useful for understanding the conceptual similarity
between the two problems, it does not serve as an imple-
mentation strategy; as with many reductions, the cost of
encoding one problem in the other formalism proves to be
prohibitive in practice.
Furthermore, the Melski-Reps reduction does not show

how to relate the state-of-the-art algorithms for set con-
straints to the state-of-the-art algorithms for CFL reachabil-
ity. Optimizations in one formalism are not preserved across
the reduction to the other formalism. Demand-driven algo-
rithms for CFL reachability do not automatically lead to
demand algorithms for set constraints (except by applying
the reduction first).
Our insight is based on the observation that almost all

of the applications of CFL reachability in program analy-
sis are based on Dyck languages, which contain strings of
matched parentheses. For Dyck languages, we show an al-
ternative reduction from CFL reachability to set constraints
that addresses the issues mentioned above. The principal
contributions of this work are as follows:

• We give a novel construction for converting a Dyck-
CFL reachability problem into a set constraint prob-
lem. The construction is simpler than the more gen-
eral reduction described in [13]. In fact, the constraint
graphs produced by our construction are nearly iso-
morphic to the original CFL graph.

• We show that on real polymorphic flow analysis prob-
lems, our implementation of Dyck-CFL reachability
based on set constraints remains competitive with a
highly tuned CFL reachability engine. This is some-
what surprising since that implementation contains
optimizations that exploit the specific structure of the
CFL graphs that arise in flow analysis.

These results have several consequences:

• Our results show that it is possible to use an off-the-
shelf set constraint solver to solve Dyck-CFL reacha-
bility problems without suffering the penalties we nor-
mally expect when using a reduction. Furthermore,
reasonable performance can be expected without hav-
ing to tune the solver for each specific application.
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G ∪ {B 〈u, u′〉 , C 〈u′, v〉} ⇔ add A 〈u, v〉 for each production of the form A → B C
G ∪ {B 〈u, v〉} ⇔ add A 〈u, v〉 for each production of the form A → B

G ⇔ add A 〈u, u〉 for each production of the form A → ε

Figure 1: Closure rules for CFL reachability

• We believe that our reduction bridges the gap be-
tween the various algorithms for Dyck-CFL reachabil-
ity [10] and the algorithms for solving set constraints.
In light of our reduction, it seems that the distinc-
tion between these problems is illusory: the manner in
which a problem is specified (as Dyck-CFL reachability
vs. set constraints) is orthogonal to other algorithmic
issues (e.g. whether the solver is online vs. offline,
demand-driven vs. exhaustive). This has some impor-
tant consequences– for instance, we plan in the future
to investigate an algorithm for incremental set con-
straints. Using our reduction, such an algorithm could
be used immediately to solve Dyck-CFL reachability
problems incrementally.

• Furthermore, our reduction shows how techniques used
to solve set constraints (inductive form and cycle elim-
ination [4]) can be applied to Dyck-CFL reachability
problems.

The remainder of this paper is structured as follows. In
Section 2 we briefly introduce CFL reachability and set con-
straints. In Section 3 we review the reduction from CFL
reachability to set constraints. Section 4 presents our spe-
cialized reduction from Dyck-CFL reachability to set con-
straints. In Section 5 we use polymorphic flow analysis as a
case study for our reduction. Section 6 covers related work,
and Section 7 concludes.

2. PRELIMINARIES
We review basic material on CFL reachability and set con-

straints. Readers familiar with CFL reachability may wish
to skip Section 2.1, which is standard. Section 2.2 is based
on the framework of [21], which uses some nonstandard no-
tation.

2.1 CFL and Dyck-CFL Reachability
In this subsection we define CFL reachability and Dyck-

CFL reachability and describe an approach to solving these
problems.
Let CFG = (T,N, P, S) be a context free grammar with

terminals T , nonterminals N , productions P and start sym-
bol S. Let G be a directed graph with edges labeled by
elements of T . The notation A 〈u, v〉 denotes an edge in G
from node u to node v labeled with symbol A. Each path
in G defines a word over T by concatenating, in order, the
labels of the edges in the path. A path in G is an S-path
if its word is in the language of CFG. The all-pairs CFL
reachability problem determines the pairs of vertices (u, v)
where there exists an S-path from u to v in G.
Now let O = {(1, . . . , (n} and C = {)1, . . . , )n} be two

disjoint sets of terminals (interpreted as opening and closing
symbols, respectively). The subscripts are the terminals’
indices. The Dyck language over O ∪ C ∪ {s} is generated
by a context free grammar with productions of the following
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Figure 2: Example Dyck-CFL reachability problem

form:

S → S S | (1 S )1 | · · · | (n S )n | ε | s
(where s is a distinguished terminal not in O or C). The
all-pairs Dyck-CFL reachability problem is the restriction of
the all-pairs CFL reachability problem to Dyck languages.
Figure 1 shows the closure rules for the CFL and Dyck-

CFL reachability algorithms. The rules assume that the
CFL grammar has been normalized such that no right-hand
side of any production contains more than two symbols1. A
naive CFL reachability algorithm might apply the rules as
follows: whenever the CFL graph matches the form on the
left-hand side of the rule, add the edges indicated by the
right-hand side of the rule; iterate this process until no rule
induces a new edge addition. The application of these rules
produces a graph closure(G) that contains all possible edges
labeled by nonterminals in the grammar. To check whether
there is an S-path from nodes u to v in G, we simply check
for the existence of an edge S 〈u, v〉 in closure(G).
In general, the all-pairs CFL-reachability problem can be

solved in time O(|T ∪N |3n3) for a graph with n nodes.
Figure 2 shows an example of a Dyck-CFL reachability

problem. The dashed lines show the edges added by the
computation of closure(G). The edges show that there are
S-paths between nodes x1 and z1, and x2 and z2. Self-loop
S-paths derived from the production S → ε are not shown.

2.2 Set Constraints
In this subsection, we review the set constraints frame-

work introduced in [21]. We define a language of set con-
straints (essentially a subset of the full language defined in
[1, 6]) and discuss inductive form, a graph-based represen-
tation of set constraints.

2.2.1 A Language of Set Constraints
A constraint system is a finite collection of set constraints.

A set constraint is a relation of the form L ⊆ R, where L
and R are set expressions. Set expressions consist of set

1For instance, by converting the grammar to Chomsky nor-
mal form.
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C ∪ {X ⊆ X} ⇔ C
C ∪ {c(se1, . . . , sea(c)) ⊆ c(se′1, . . . , se

′
a(c))} ⇔ C ∪ S

i{sei ⊆ se′i}
C ∪ {c(se1, . . . , sea(c)) ⊆ proj(c, i, se)} ⇔ C ∪ {sei ⊆ se}
C ∪ {d(se1, . . . , sea(d)) ⊆ proj(c, i, se)} ⇔ C

if c 
= d
C ∪ {c(. . .) ⊆ d(. . .)} ⇔ no solution

if c 
= d

Figure 3: Resolution rules for set constraints

variables X ,Y, . . ., terms constructed from n-ary construc-
tors c, d, . . .2, and projection patterns:

L,R ∈ se ::= X | c(se1, . . . , sea(c)) | proj(c, i, se)
Each constructor c has an arity a(c).
Given a constraint of the form c(se1, . . . , sea(c)) ⊆

proj(c, i, se), the projection pattern proj(c, i, se) has the ef-
fect of selecting sei, the ith component of the term on the
left-hand side, and adding the constraint sei ⊆ se. Pro-
jection patterns are closely related to the more standard
projection notation c−i(se). We can express c−i(se) using
the following equivalence:

c−i(se) ≡ V
where V is fresh and
se ⊆ proj(c, i,V)

The equivalence preserves least solutions under a compati-
bility restriction: the variable V used to represent c−i(se)
can only occur on the left-hand side of any other inclusion
constraint. We use the proj notation because it simplifies
the presentation of the constraint re-write rules and eluci-
dates the connection between Dyck-CFL reachability and
set constraints. However, we also use c−i(se) wherever that
notation is more natural. Our uses of c−i(se) always ad-
here to the compatibility restriction; therefore in this work
it is always safe to replace that notation with the equivalent
using proj.

2.2.2 Constraint Graphs
Algorithms for solving set constraints operate by apply-

ing a set of resolution rules to the constraint system until no
rules apply; this is the solved form. The solved form makes
the process of reading off a particular solution (or all solu-
tions) simple. For our language of set constraints, we apply
the resolution rules in Figure 3 as left-to-right re-write rules
to reduce the constraint system to solved form.
Algorithmically, a system of set constraints C can be rep-

resented as a directed graph G(C) where the nodes of the
graph are set expressions and the edges denote atomic con-
straints. A constraint is atomic if either the left-hand side or
the right-hand side is a set variable. Computing the solved
form involves closing G(C) under the resolution rules, which
are descriptions of how to add new edges to the graph.
In general, a system of set constraints C with v variables

can be reduced to solved form in time O(v2|C|).
Inductive form is a particular graph representation that

exploits the fact that variable-variable constraints X ⊆ Y
can be represented as either a successor edge (Y ∈ succ(X ))
or a predecessor edge (X ∈ pred(Y)). The choice is made
2We assume throughout that constructors are non-strict.

based on a fixed total order o (generated randomly) on the
variables. For a constraint X ⊆ Y, the edge is stored as a
successor edge on X if o(X ) > o(Y), otherwise, it is stored as
a predecessor edge on Y. Constraints of the form c(. . .) ⊆ X
are always stored as predecessor edges on X , and constraints
of the form X ⊆ proj(c, i, se) are always stored as successor
edges on X .
Given these representations, the transitive closure rule for

inductive form is as follows:

L ∈ pred(X )∧ R ∈ succ(X )⇒ L ⊆ R

This rule, in conjunction with the resolution rules in Fig-
ure 3, produce a solved graph in inductive form. The ad-
vantage of inductive form is that many fewer transitive edges
are added in comparison to other graph representations [4].
Inductive form does not explicitly compute the least so-
lution, but the least solution is easily calculated by doing
backwards-reachability on the constraint graph:

LS(Y) = {c(. . .)|c(. . .) ∈ pred(Y)} ∪ S

X∈pred(Y )

LS(X )

2.2.3 Solutions of Constraint Systems
We interpret set constraints under the term-set model [6].

In this model, the solution to a system of set constraints
maps each set variable to a (possibly infinite) set of ground
terms such that all inclusion relations are satisfied. It turns
out that each set variable describes a regular tree language
and the solved form of the constraint graph can be viewed
as a collection of regular tree grammars. Each atomic con-
straint c(. . .) ⊆ X in the solved form of the constraint sys-
tem can be interpreted as a production in a tree grammar
by treating it as a production X ⇒ c(. . .). For example,
consider the solved constraint system

cons(zero,X ) ⊆ X
nil ⊆ X

where zero and nil are nullary constructors, and cons is a
binary constructor. We see that X describes the set of all
lists where every element is zero. The least solution for X
can be viewed as a tree language L(X ) whose grammar is

X ⇒ cons(zero,X)
X ⇒ nil

3. THE MELSKI-REPS REDUCTION
In this section we review the reduction from CFL reacha-

bility to set constraints [12, 13]. Readers familiar with this
reduction may wish to skip this section. Again, we assume
that the CFL grammar is normalized so that the right-hand
side of every production contains at most two symbols.
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The construction encodes each node u in the initial CFL
graph G with one set variable U , one nullary constructor nu

and the constraint

nu ⊆ U
In encoding the graph, the goal is to represent an edge
A 〈u, v〉 in the closed graph by the presence of a term cA(V),
where cA is a unary constructor corresponding to symbol A,
in the least solution of U . Accordingly, an initial edge of the
form a 〈u, v〉 in G is captured by a constraint

ca(V) ⊆ U
This completes the representation of the initial graph. The
next step of the reduction is to encode the productions of
the CFL grammar. Since edges are encoded as constructed
terms, the notion of “following an edge” is captured by pro-
jection. The left-hand side of each production tells us which
edge we should add if we follow edges labeled by the right-
hand side. For instance, a binary production of the form
A → B C says that we should add an A edge from node
u to any nodes reached by following a B edge from u and
then following a C edge. The set constraint that encodes
this rule is

cA(c
−1
C (c−1

B (U))) ⊆ U
For example, the CFL graph

u
B �� u′ C �� v

and the production A → B C result in a system of set
constraints containing the following inclusion relations:

nu ⊆ U
cC(V) ⊆ U ′

cB(U ′) ⊆ U
cA(c

−1
C (c−1

B (U))) ⊆ U
These constraints imply the desired relationship cA(nv) ⊆
U , which represents the edge A 〈u, v〉. Note these constraints
only encode each production locally: similar constraints
must be generated for every node in the graph.
Besides binary productions, productions of the form A →

B and A → ε may occur in the grammar. Productions of
the first form are encoded locally for each node u by the
constraint

cA(c
−1
B (U)) ⊆ U

representing the fact that any B edge from node u is also an
A edge. Finally, productions of the form A → ε are encoded
locally for each node u by the constraint

cA(U) ⊆ U
Correctness of the reduction is proved by showing there is
an S-path from node u to node v in closure(G) if and only if
cS(nv) ⊆ U is in the least solution of the constructed system
of constraints.

4. A SPECIALIZED DYCK REDUCTION
This section presents our reduction, which is specialized

to Dyck-CFL reachability problems. We first explain the in-
tuition behind our approach. We then describe the specifics
of the encoding, sketch a proof of correctness, and provide
a complexity argument. Finally, we provide experimental

O1(X1)

��















proj(O1, 1,Z1)

Y1
�� Y2

		�����������



��
���

���
���

O2(X2)

��









proj(O2, 1,Z2)

Figure 4: The constraint graph corresponding to the
Dyck-CFL graph from Figure 2 using the reduction
from Section 4

results suggesting that the specialized reduction is more ef-
ficient in practice than the Melski-Reps reduction applied to
Dyck-CFL grammars.
The idea behind our reduction is that the set constraint

closure rules can encode Dyck language productions. The
intuition is straightforward: the rule S → S S corresponds
to the transitive closure rule, and the rules S → (i S )i
correspond to matching constructed terms with projection
patterns. By encoding the original Dyck-CFL graph as a
system of set constraints in a way that exploits this corre-
spondence, we can avoid encoding the productions of the
grammar at each node. This leads to a more natural and
compact encoding of the input graph, and better perfor-
mance in applications where the number of parenthesis kinds
(hence, the number of productions) is not a constant.
The first step of the encoding is unchanged. We represent

each node u with a variable U and a nullary constructor nu.
We connect these with constraints of the form

nu ⊆ U
Edges are encoded so that subset relationships U ⊆ V

between variables in the constraint system represent discov-
ered S 〈u, v〉 edges in the input graph. Since we are only
considering Dyck languages, there are only three kinds of
labeled edges to consider:

1. For each s 〈u, v〉 edge in the input graph, we add the
constraint U ⊆ V (where U and V are the variables
corresponding to nodes u and v).

2. For each (i〈u, v〉 edge in the input graph, we create a
unary constructor Oi and add the constraint Oi(U) ⊆
V.

3. For each )i 〈u, v〉 edge in the input graph, we add the
constraint U ⊆ proj(Oi, 1,V).

Notice that there appears to be a slight asymmetry in
the reduction: edges labeled with (i symbols are encoded
using constructed terms, while edges labeled with )i sym-
bols are encoded using projections. Naively, one might at-
tempt to devise a “symmetric” reduction by encoding an
edge )i 〈u, v〉 with a constraint U ⊆ Oi(V), making a corre-
spondence between the production S → (i S )i and the
second rule (not the third) in Figure 3. However, this
approach would yield an inconsistent system of set con-
straints for any interesting graph. For example, the graph
in Figure 2 would result in a constraint system contain-
ing the constraints O1(X1) ⊆ Y1 ⊆ Y2 ⊆ O2(Z2), which
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Constraints New Constraint Production Edges New Edge
X ⊆ Y ∧ Y ⊆ Z X ⊆ Z S → S S S 〈x, y〉 ∧ S 〈y, z〉 S 〈x, z〉
Oi(X ) ⊆ Y ∧ Y ⊆ Z Oi(X ) ⊆ Z Li → Li S Li 〈x, y〉 ∧ S 〈y, z〉 Li 〈x, z〉
X ⊆ Y ∧ Y ⊆ proj(Oi, 1,Z) X ⊆ proj(Oi, 1,Z) Ri → S Ri S 〈x, y〉 ∧Ri 〈y, z〉 Ri 〈x, z〉
Oi(X ) ⊆ Y ∧ Y ⊆ proj(Oi, 1,Z) Oi(X ) ⊆ proj(Oi, 1,Z) ∧ X ⊆ Z S → Li Ri Li 〈x, y〉 ∧ Ri 〈y, z〉 S 〈x, z〉

Table 1: Constraints added to C′ and the corresponding edges in closure(G)

are clearly inconsistent. We avoid this problem by us-
ing projection patterns to represent )i edges. Thus, the
graph in Figure 2 results in a constraint system containing
O1(X1) ⊆ Y1 ⊆ Y2 ⊆ proj(O2, 1,Z2), which is consistent.
This construction only introduces one constraint per node

and one constraint per edge of the original CFL graph. In
contrast, the reduction described in Section 3 introduces
O(k) constraints per node (where k is the number of paren-
thesis kinds in the Dyck grammar) to encode the grammar
productions locally, in addition to the cost of encoding the
graph edges.
To solve the all-pairs Dyck-CFL reachability problem, we

apply the rewrite rules in Section 2.2 to the resulting con-
straint system. As we will show, there is an S-path from
nodes u to v in the initial graph if and only if nu ⊆ V in the
least solution of the constructed constraint system.
Figure 4 shows the constraint graph corresponding to the

Dyck-CFL reachability problem shown in Figure 2 using this
reduction. The nullary constructors are omitted for clarity.

4.1 Correctness
We sketch a proof of correctness for the specialized re-

duction. The reduction is correct if the solution to the
constructed set constraint problem gives a solution to the
original Dyck-CFL reachability problem.

Theorem 1. Let G be an instance of the Dyck-CFL
reachability problem, and C be the collection of set con-
straints constructed as above to represent G. Then there
is an edge S 〈u, v〉 in closure(G) if and only if nu ⊆ V is
present in LS(C).

The theorem follows immediately from the following lem-
mas:

Lemma 1. Given C and G as in Theorem 1, let C′ de-
note the conjunction of C with the system of constraints in-
troduced by applying the resolution rules shown in Figure 3
along with the transitive closure rule se ⊆ X ∧ X ⊆ se′ ⇒
se ⊆ se′. Then there is an edge S 〈u, v〉 in closure(G) if and
only if U ⊆ V is present in C′.

Proof. We apply the set constraint resolution rules in
lock-step with the CFL closure rules, and show that for ev-
ery S-edge added to closure(G), there is a corresponding
variable-variable constraint that can be added to C′. This
approach requires us to normalize the Dyck-CFL grammar
in a very specific way:

S → S S
S → Li Ri

Li → (i
Li → Li S
Ri → )i
Ri → S Ri

S → s
S → ε

It is easy to see that the above grammar derives the same set
of strings as the original Dyck-CFL grammar. The intuition
here is that normalizing the Dyck-CFL grammar this way
causes the CFL closure rules to add edges in exactly the
same way as the set constraint resolution rules.
We now formalize this intuition. Consider the following

order for adding edges to closure(G) and constraints to C′:

1. Add all edges implied by the productions S → s, S →
ε, Ri → )i, and Li → (i. Note that there are only
finitely many edges that can be added, and that they
are all added in this step.

2. Add all edges implied by the productions S → S S,
S → Li Ri, Li → Li S, and Ri → S Ri, and add the
corresponding constraints to C′ according to Table 1.

In the first step, notice that the added S edges correspond
to variable-variable edges that already exist in the initial
system of constraints C (refer to the first rule of the reduc-
tion in Section 4). In the second step, notice that for every
S edge added to closure(G), there are corresponding con-
straints that must exist in C′ that lead to the appropriate
variable-variable constraint.

Lemma 2. Given C and G as in Theorem 1, let C′ de-
note the conjunction of C with the system of constraints in-
troduced by applying the resolution rules shown in Figure 3
along with the transitive closure rule se ⊆ X ∧ X ⊆ se′ ⇒
se ⊆ se′. Then the constraint nu ⊆ V implies the existence
of a constraint U ⊆ V in C′.

Proof. Clearly, the rules in Figure 3 cannot add a con-
straint of the form nu ⊆ V, so such a constraint is either
present initially in C or it was added to C′ by transitive
closure. In the former case, U = V and the lemma holds
trivially. In the latter case, we can show (by induction on
the number of applications of the transitive closure rule)
that there are variables X1, . . . ,Xn with nu ⊆ U ⊆ X1 ⊆
. . . ⊆ Xn ⊆ V present in C′. Then by the transitive closure
rule, U ⊆ V must be present in C′.

We now prove Theorem 1 using the two lemmas. To show
that S 〈u, v〉 ∈ closure(G) implies nu ⊆ V is present in
C′, we note that Lemma 1 guarantees the existence of a
constraint U ⊆ V in C′. Our construction guarantees an
initial constraint nu ⊆ U , so by the transitive closure rule,
nu ⊆ V exists in C′. To show that a constraint nu ⊆ V
in C′ implies S 〈u, v〉 ∈ closure(G), we appeal to Lemma 2,
which guarantees the existence of a constraint U ⊆ V in C′.
Appealing once again to Lemma 1, we have that S 〈u, v〉 ∈
closure(G).
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4.2 Complexity
We first discuss the running time to solve the all-pairs

Dyck-CFL reachability problem using the generic CFL
reachability algorithm outlined in Section 2.1. In general,
the generic algorithm has complexity O(|T ∪ N |3n3). Ap-
plying this result directly to an instance of the Dyck-CFL
problem with k parenthesis kinds and n graph nodes yields
an O(k3n3) running time.
However, we can sharpen this result by specializing the

complexity argument to the Dyck-CFL grammar. The run-
ning time of the generic CFL reachability algorithm is dom-
inated by the first rule in Figure 1. In this step, each edge in
the graph might pair with each of its neighboring edges. In
other words, for a given node j, each of j’s incoming edges
might pair with each of j’s outgoing edges. Each node in the
graph might have O(kn) edges labeled with (i or )i (there
are k different kinds, and n potential target nodes), as well
as O(n) edges labeled with S. For node j, each of the O(kn)
incoming edges may pair with O(n) outgoing edges, by a sin-
gle production. Similarly, each of the O(n) incoming S edges
can match with O(n) outgoing edges by the single S → S S
production. Thus, the work for each node j is bounded by
O(kn2). Since there are n nodes in the graph, the total work
is O(kn3).
An analogous argument holds for our reduction. For the

fragment of set constraints used in this paper, a constraint
system C can be solved in time O(v2|C|) where v is the num-
ber of variables in C and |C| is the number of constraints
in C. Given an instance of the Dyck-CFL problem with k
parenthesis kinds and n nodes, our reduction yields a con-
straint system with O(n) variables and O(kn2) constraints,
yielding an O(kn4) running time. Again, a more precise
running time can be achieved by noting that for a given
variable node i in the constraint graph, the rules in Figure 3
can apply only O(kn2) times to pairs of i’s upper and lower
bounds. In an n node graph, then, the total work is O(kn3).

4.3 Empirical Comparison
We have implemented both the Melski-Reps reduction and

our reduction in order to compare the two approaches. Both
implementations used the banshee toolkit as the underlying
set constraint solver [11]. Our implementation of the Melski-
Reps reduction uses the following normalized form of the
Dyck-CFL grammar:

S → S S
S → Li )i
Li → (i S
S → s
S → ε

We ran both implementations on randomly generated
graphs. To test correctness, we checked that both imple-
mentations gave consistent answers to random reachability
queries. We found that our implementation of the Melski-
Reps reduction did not scale to large graphs, even when the
number of parenthesis kinds was kept small. For example,
on a 500 node graph with 7500 edges and 20 parenthesis
kinds, the Melski-Reps implementation computed the graph
closure in 45 seconds, while our reduction completed in less
than 1 second. This prevented us from testing the Melski-
Reps approach on real applications: we tried the implemen-
tation on the benchmarks in our case study (see Section 5)
but found that none finished within 10 minutes.

5. CASE STUDY: POLYMORPHIC FLOW
ANALYSIS

Flow analysis statically estimates creation, use, and flow
of values in a program [14]. Problems such as computing
may-alias relationships, determining receiver class informa-
tion, and resolving control flow in the presence of indirect
function calls can be solved using flow analysis. As with
most static analyses, flow analysis can be made more precise
by treating functions polymorphically. Polymorphic flow
analysis eliminates spurious flow paths that arise from con-
flating all call sites of a function.
Recent work has established a connection between type-

based polymorphic flow analysis and CFL reachability [15].
As an alternative to constraint copying, systems of instan-
tiation constraints are reduced to a CFL graph. The flow
relation is described by a Dyck-CFL grammar, hence, the
problem of finding the flow of values in the input program
reduces to an all-pairs Dyck-CFL reachability problem.
In this section, we apply our technique to the problem

of polymorphic flow analysis. For concreteness, we consider
the specific problem of polymorphic tainting analysis [20].
In tainting analysis, we are interested in checking whether
any values possibly under adversarial control can flow to
functions that expect trusted data. As a trivial example,
consider the following code:

int main(void)

{
char *buf;

buf = read from network();

exec(buf);

}

The call exec(buf) is probably not safe, since the buffer may
come from a malicious or untrusted source. The particular
tainting analysis we use employs type qualifiers to solve this
problem [5]. Briefly, we can detect errors like the example
shown above by introducing two type qualifiers tainted and
untainted . Data that may come from an untrusted source
is given the type qualifier tainted , and data that must be
trusted is given the type qualifier untainted . A type error
is produced whenever a tainted value flows to a place that
must be untainted .
Figure 5 illustrates the connection between polymorphic

tainting analysis and CFL reachability with another small
program. There are two calls to the identity function id. At
the first call site, id is passed tainted data. At the second call
site, id is passed untainted data. The variable z2 is required
to be untainted . Monomorphic flow analysis would conflate
the two call sites, leading to a spurious error (namely, that
tainted data from variable x1 reaches the untainted variable
z2). Polymorphic flow analysis can distinguish these two
call sites, eliminating the spurious error. The flow graph
in Figure 5 shows the connection to Dyck-CFL reachability:
each function call site is labeled with a distinct index. The
flow from an actual parameter to a formal at call site i is
denoted by an edge labeled (i. The flow corresponding to
the return value of the function is denoted by an edge la-
beled )i. Intraprocedural assignment is denoted by s edges.
In this example, the spurious flow path between x1 and z2
corresponds to a path whose word is (1 s )2, which is not in
the Dyck language.
In the remainder of this section, we discuss how to extend
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int id(int y1) { int y2 = y1; return y2; }

int main(void)

{
tainted int x1;

int z1,x2;

untainted int z2;

z1 = id(x1); // call site 1

z2 = id(x2); // call site 2

}

tainted
s �� x1

(1

���
��

��
��

� z1

y1
s �� y2

)1

����������

)2 ���
��

��
��

�

x2

(2

��								
z2

s �� untainted

Figure 5: Example C program and the corresponding Dyck-CFL reachability problem

our technique to solve polymorphic flow analysis problems.
We also discuss some optimizations that improve the per-
formance of our reduction on polymorphic flow graphs. We
conclude with an experimental assessment of our approach
on a set of C benchmarks.

5.1 Extensions
It turns out that simple Dyck-CFL reachability isn’t quite

sufficient for most polymorphic flow analysis applications.
In this section, we discuss two additional aspects of the prob-
lem that required us to extend our technique.

5.1.1 PN Reachability
The first problem is that Dyck-CFL reachability fails to

capture many of the valid flow paths. Besides the matched
reachability paths represented by Dyck languages, certain
kinds of partially matched reachability also represent valid
flow. For example, in the graph shown in Figure 5, there
should be a valid flow path from the tainted qualifier to
the node y2, since it is possible for y2 to contain a tainted
integer at runtime. However, there is no S path between
tainted and y2. This issue also arises in other applications
such as interprocedural dataflow analysis.
The conceptual solution to this problem is to add pro-

ductions to the Dyck grammar that admit these additional
partially matched paths. For our application, it turns out
that we should admit all paths generated by the following
grammar (see [15]):

Start → P N
P → S P

| )i P
| ε

N → S N
| (i N
| ε

S → (i S )i
| S S
| s
| ε

Intuitively, this grammar accepts any substring of a string
in a Dyck language: P paths correspond to prefixes of Dyck
strings, and N paths correspond to suffixes of Dyck strings.
Since our reduction (unlike the Melski-Reps reduction) is

specialized to Dyck languages, it is not immediately obvi-
ous that we can modify our approach to accept exactly the
strings in the above language. Fortunately, it turns out that

we can handle these additional flow paths without funda-
mentally changing our reduction. We separate the problem
into three subproblems. First, we tackle the problem of ad-
mitting N paths (open-paren suffixes) within our reduction.
Second, we tackle the problem of admitting P paths (close-
paren prefixes) within our reduction. Finally, we combine
the two solutions and handle the above language in its full
generality.
We first consider the problem of finding N paths in the

system of constraints produced by our reduction. Suppose
we ask whether there is an N path between nodes u and v.
To answer this query, we first recall that the least solution
of a set variable is a regular tree language. Let L(V) denote
the language corresponding to the least solution of V. Now
consider the following tree language LNu:

N ⇒ nu

| Oi(N)

We claim (without proof) that there is an N path in the
closed graph between nodes u and v if and only if the inter-
section of LNu and L(V) is non-empty. To see why, recall
that edges of the form (i〈u, v〉 are represented by constraints
Oi(U) ⊆ V in our reduction while edges of the form S 〈u, v〉
are represented by constraints U ⊆ V. Then an N path be-
tween nodes u and v is indicated by the presence of a term
of the form Oi(. . . Oj(nu)) in the least solution of V. The
language LNu generates exactly the terms of this form, so if
L(V)∩LNu is non-empty, there is at least one such term in
the least solution of V, hence, there is an N path from u to
v. As a simple example, consider the following CFL graph:

u
(i �� x s �� y

(j �� v

and suppose we ask whether there is an N path from node
u to node v. Our reduction yields a constraint system which
includes the following constraints:

nu ⊆ U
Oi(U) ⊆ X
X ⊆ Y

Oj(Y) ⊆ V
Note that L(V) contains the term Oj(Oi(nu)), which is also
an element of LNu, indicating that there is an N path from
u to v.
We now consider the problem of finding P paths in the

system of constraints produced by our reduction. The tech-
nique is essentially the same as with finding N paths. There
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is one wrinkle, however: the )i edges that form P paths are
represented as projections in the constraint system. There
is no term representation of a )i edge as there is with a (i
edge. The solution is straightforward: we simply add a term
representation for these edges. We modify the reduction so
that for each edge of the form )i 〈u, v〉, we also add the con-
straint p(U) ⊆ V (where p is a new unary constructor) to
the system. Note that there is only one p constructor used
for all indexed )i symbols. This is because the indices of
the )i symbols are irrelevant to the P paths. Now, to check
for P paths between nodes u and v, we simply check the
non-emptiness of the intersection of L(V) with the following
language LPu:

P ⇒ nu

| p(P )

Finally, to check for PN paths from u to v, we combine
the above two solutions, and check the non-emptiness of
L(V) ∩ LPNu, where LPNu is defined as follows:

N ⇒ P
| Oi(N)

P ⇒ nu

| p(P )

Note that this language consists of terms of the form

Oi(. . . Oj(p(. . . p(nu))))

which precisely characterize the PN paths.
In practice, we do not actually build a tree automata rec-

ognizing the language LPNu to compute the intersection.
Instead, to check for a PN path from node u to node v,
we traverse the terms in the least solution of V, searching
for nu. We prune the search when the expanded term is no
longer in the language LPNu or when a cycle is found. Since
our implementation applies the rules in Figure 3 online, this
divides our algorithm into two phases: an exhaustive phase
where all S paths are discovered, and a demand-driven phase
where PN paths are discovered as reachability queries are
asked3.
The approach outlined in this section can be generalized.

The ideas apply to any regular language reachability prob-
lem composed with a Dyck language reachability problem.
In general, let G be an instance of the Dyck-language reach-
ability problem with alphabet O ∪ C, and R be a regular
language with alphabet A ∪ ε. Alphabet A need not be dis-
joint from O ∪ C, but the symbols s and S in the Dyck
language must be interpreted as ε in the regular language.
The all-pairs composed reachability problem over D and G
determines the set of vertices (u, v) such that there is a path
in the language R from u to v in closure(G). Viewing the
PN grammar in this setting, the P productions correspond
to the regular language )∗i , the N productions correspond to
the regular language (∗i , and the regular language R is )

∗
i (

∗
i .

The approach outlined previously solves the all-pairs com-
posed reachability problem: the constraint solver elimi-
nates the Dyck language problem, leaving a regular lan-
guage reachability problem that can be solved on demand by
exploring the least solution of the constraints as described
above.

3A completely demand-driven algorithm could be imple-
mented using the approach of [7].
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Figure 6: The summary edge optimization

5.1.2 Global Nodes
Another problem we face is that global variables in lan-

guages such as C must be treated specially to discover all the
valid flow paths. The problem is that assignments to global
variables can flow to any context, since global storage can
be accessed at any program point. Conceptually, nodes cor-
responding to global variables should have self-loops labeled
)i for every index i that may appear elsewhere in the graph.
This solution essentially treats globals monomorphically (see
[3] for a more complete discussion). While this solution is
simple and easy to implement, in practice it is too expen-
sive to represent these edges explicitly. With an explicit
representation, each global variable’s upper bounds may be
proportional to the size of the input program. Explicitly
constructing this list is prohibitively expensive: with an ex-
plicit representation of self-edges, our implementation did
not finish after 10 minutes on even the smallest benchmark.
We solved this problem by adding a new feature to the

constraint solver. The added feature has a simple inter-
pretation, and may prove useful in other contexts. We in-
troduce constructor groups, which are simply user-specified
sets of constructors. The elements of a constructor group
must all have the same arity. Once a constructor group g is
defined, a special kind of projection pattern called a group
projection pattern can be created. A group projection pat-
tern gproj(g, i, e) has essentially the same semantics as a
projection pattern, except that instead of specifying a sin-
gle constructor, an entire group is specified. The new rules
for handling group projections are as follows:

C ∪ {c(se1, . . . , sea(c)) ⊆ gproj(g, i, se)} ⇔ C ∪ {sei ⊆ se}
if c ∈ g

C ∪ {c(se1, . . . , sea(c)) ⊆ gproj(g, i, se)} ⇔ C
if c /∈ g

Constructor groups provide us with a way to concisely rep-
resent collections of similar projection patterns. To handle
global nodes, we add each Oi constructor to a new group
gO. For each global node u, we add the constraint

U ⊆ gproj(gO, 1,U)
which simulates the addition of self loops )i for each index
i in the graph.

5.2 Optimizations
In this subsection, we discuss some optimizations for poly-

morphic flow analysis applications.

5.2.1 Summary Edges
The CFL graphs that arise in this application have a par-

ticular structure that can be exploited to eliminate redun-
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Figure 7: Edges added by the set constraint solver for the graph in Figure 6 using (a) the standard reduction
and (b) the reduction with the clustering optimization

dant work during the computation of the graph closure. An
exemplar of this structure is shown in Figure 6. There are
two important features of this graph that we exploit. First,
there is a long chain of nodes y2, . . . , yk−1, none of which
contain edges other than s-edges. Second, the nodes y1 and
yk have a large number of predecessor (i edges and succes-
sor )i edges, respectively. This situation arises frequently in
polymorphic flow analysis applications: the xi nodes repre-
sent the inflow of actual arguments to the formal argument
y1 at call sites, and the zi nodes represent the outflow of
return values back to call sites from the returned value yk.
The trick is to discover all the S 〈xi, zi〉 paths with as

little redundant work as possible. To find these edges, the
generic CFL algorithm discussed in Section 2.1 would add
a total of nk new edges from each of the xi’s to each of
the yj ’s. Conceptually, this corresponds to analyzing the
function body once per static call site.
One way to avoid this redundant work is to construct a

so-called summary edge after analyzing the chain of y nodes
once [10]. This optimization works as follows: the first path
explored from an xi node triggers a new search forward from
node y1. Analyzing the chain of y nodes causes k − 1 edge
additions from y1 to each of the remaining yi’s. When the
edge S 〈y1, yk〉 is finally discovered, it is marked as a sum-
mary edge, and y1 is marked as having a summary edge.
When searching forward for new paths from the other xi

nodes, the summary edge S 〈y1, yk〉 is used, avoiding re-
peated analysis of the y chain. In total, the summary edge
approach adds a total of n+ k− 1 new edges to discover the
S 〈xi, zi〉 edges. Conceptually, the summary edge approach
corresponds to analyzing a function body once, and copying
the summarized flow to each call site. The dashed edges in
Figure 6 show the edges added by a closure algorithm with
the summary edge optimization.
Our reduction as described may perform the same work

as the naive CFL closure algorithm on this example. Fig-
ure 7(a) shows the worst-case edge additions performed on
this example in inductive form. In inductive form, the num-
ber of edge additions depends on the ordering of the Yi

variables. In the worst case, the variable ordering might
cause inductive form to represent all variable-variable edges
as as successor edges (i.e. if o(Yi) > o(Yi+1) for every i
in the chain). On the other hand, if the ordering is such
that some of the variable-variable edges are represented as
predecessor edges, inductive form can reduce the number of
edge additions. Under the best variable ordering, inductive
form adds the same number of edges as the summary edge
optimization.
It is also possible to modify the reduction so that the num-

ber of edge additions is minimized regardless of the variable
ordering. The key is to “cluster” the variables corresponding
to the xi nodes into a single n-ary constructed term instead
of n unary constructed terms. The indices can be encoded
by the position within the constructed term: for instance,
the ith subterm represents the source end of an edge la-
beled (i. Our representation of )i edges is modified as well,
so that, e.g., the constraint U ⊆ proj(O, i,V) represents an
edge )i 〈u, v〉. Figure 7(b) shows the effect of the clustering
optimization on the same example graph. The net effect of
this optimization is the same as with summary edges: the
edges S 〈xi, zi〉 are discovered with the addition of at most
n + k − 1 edges instead of nk edges. With some work, this
reduction can be extended to handle PN-reachability and
global nodes, though we omit the details here.

5.2.2 Cycle Elimination
One advantage of our reduction is that it preserves the

structure of the input graph in a way that the Melski-Reps
reduction does not. The constraint graphs produced by
our reduction are isomorphic (modulo the representation of
edges) to the original CFL graph. In fact, the connection
is so close that cycle elimination, one of the key optimiza-
tions used in set constraint algorithms, is revealed to have
an interpretation in the Dyck-CFL reachability problem.
Cycle elimination exploits the fact that variables involved

in cyclic constraints (constraints of the form X1 ⊆ X2 ⊆
X3 . . . ⊆ Xn ⊆ X1) are equal in all solutions, and thus can be
collapsed into a single variable. By reversing our reduction,
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we see that cyclic constraints correspond to cycles of the
form:

x1
s �� x2

s �� . . . s �� xn
s �� x1

in the Dyck-CFL graph. The corresponding set variables are
equivalent in all solutions; the CFL notion is that any node
reaching one of the xi nodes reaches every xi node because
we can always concatenate additional s terminals onto any
word in the language and still derive a valid S-path. Hence,
all the xi’s in the CFL graph can be collapsed and treated
as a single node.
Note that the Melski-Reps reduction does not preserve

such cycles: their reduction applied to CFL graph shown
above produces constraints of the form s(Xi) ⊆ Xi−1 which
do not expose a cyclic constraint for cycle elimination to
simplify.
We validate these observations experimentally in Sec-

tion 5.3 by showing the effect of partial online cycle elimi-
nation [4] on our implementation.

5.3 Experimental Results
In this section we compare an implementation of the re-

duction in Section 4 to a hand-written Dyck-CFL reachabil-
ity implementation by Robert Johnson, which is based on
an algorithm described in [10]. Johnson’s implementation is
customized to the polymorphic qualifier inference problem,
and contains optimizations (including summary edges) that
exploit the particular structure of the graphs that arise in
this application.
Our implementation uses the banshee analysis toolkit as

the underlying set constraint solver [11]. We implemented
the extensions for PN-reachability and global nodes as de-
scribed in Section 5.1. In addition, all of the optimizations
described in Section 5.2 are part of our implementation: we
support clustering, and the banshee toolkit uses inductive
form and enables cycle elimination by default.
We used the C benchmark programs shown in Table 2 for

our experiments. For each benchmark, the table lists the
number of lines of code in the original source, the number
of pre-processed lines of code, the number of distinct nodes
in the CFL graph, the number of edges in the CFL graph,
and the number of distinct indices (recall that this num-
ber corresponds to the number of function call sites). All
experiments were performed on a dual-processor 550 MHz
Pentium III with 2GB of memory running RedHat 9.04.
We ran CQual to generate a Dyck-CFL graph, and com-

puted the closure of that graph using Johnson’s Dyck-CFL
reachability implementation and our own. We also ran our
implementation with the clustering optimization enabled.
Table 2 shows the analysis times (in seconds) for each exper-
iment. The analysis times also include the time for CQual
to parse the code and build the initial graph. Column 7
shows the time required for our implementation without cy-
cle elimination. Column 8 shows times for the same im-
plementation with partial online cycle elimination enabled.
Column 9 shows times with cycle elimination and the clus-
tering optimization. Finally, column 10 shows the times for
Johnson’s implementation, which acts as the gold standard.
Figure 8 plots the analysis times for our implementation,
normalized to Johnson’s implementation. The results show
that our implementation exhibits the same scaling behavior

4Though only one processor was actually used.
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Figure 9: Speedup due to cycle elimination

as Johnson’s. In all the benchmarks except one, the analysis
time for our implementation remains within a factor of two
of Johnson’s implementation. Because parse time is a con-
stant for all the implementations, factoring it out does have
an affect on these ratios; however, we found that parse time
accounts for a small fraction of the total analysis time. The
clustering optimization improved a few benchmarks signifi-
cantly, but did not seem to improve scalability overall.
Figure 9 compares the performance of our implementa-

tion (no clustering) with and without cycle elimination. We
found that our benchmarks ran up to 40 times faster with
cycle elimination enabled. These results suggest that online
cycle elimination could be incorporated into the “standard”
algorithms for Dyck-CFL reachability, an idea that has been
implicitly suggested before [8].

6. RELATED WORK
We view our work as a practical follow-up to Melski and

Reps’ work, which shows that set constraints and CFL
reachability are interconvertible [12, 13]. Our approach
expands on the connection between Dyck-CFL reachabil-
ity and set constraints, and illustrates the practical conse-
quences of that connection.
Many researchers have formulated program analyses as

CFL reachability problems. The authors first became aware
of the connection from work by Reps et al., who formulated
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Benchmark LOC Preproc Nodes Edges Indices banshee(s) + cycle elim(s) + clusters(s) johnson(s)
identd-1.0.0 385 1224 3281 1440 74 .25 .25 .25 .25
mingetty-0.9.4 441 1599 5421 1469 111 .25 .25 .25 .25
bftpd-1.0.11 964 6032 9088 37558 380 1 .75 .75 .5
woman-3.0a 2282 8611 10638 69171 450 1 1 1.25 .75
patch-2.5 7561 11862 20587 76121 899 5 1.75 1.5 1
m4-1.4 13881 18830 30460 268313 1187 11 3 3 2
muh-2.05d 4963 19083 19483 141550 684 9 2 2 1.5
diffutils-2.7 15135 23237 33462 281736 1191 10 4 3 2
uucp-1.04 32673 69238 91575 2007054 4725 43 14 12 8
mars nwe-0.99 25789 72954 115876 1432531 4312 117 14 12 8
imapd-4.7c 31655 78049 388794 2402204 7714 1782 45 25 23
ipopd-4.7c 29762 78056 378085 2480718 7037 877 38 25 21
sendmail-8.8.7 44004 93383 126842 4173247 6076 454 28 20 13
proftpd-1.20pre10 23733 99604 184195 4048202 7206 561 33 24 18
backup-cffixed 39572 125350 139189 3657071 6339 139 21 20 12
apache-1.3.12 51057 135702 152937 6509818 5627 75 32 29 18
cfengine-1.5.4 39909 141863 146274 7008837 6339 597 33 29 17

Table 2: Benchmark data for all experiments

interprocedural dataflow analysis as a Dyck-CFL graph, and
introduced an algorithm to answer the all-pairs reachability
problem for these graphs [18]. Follow-up work introduced
a demand-driven algorithm for solving this problem [10].
Many implementations of Dyck-CFL reachability are based
on this algorithm. Rehof et al. show how to use CFL reach-
ability as an implementation technique for polymorphic flow
analysis [15]. CFL reachability is used as an alternative to
repeated copying and simplification of systems of instan-
tiation constraints. The first application of Rehof et al.’s
work was to polymorphic points-to analysis [3]. Other ap-
plications of Dyck-CFL reachability include field-sensitive
points-to analysis, shape analysis [16], interprocedural slic-
ing [9], and debugging systems of unification constraints [2].

7. CONCLUSION
We have shown a reduction from Dyck-CFL reachability

to set constraints, and shown that our technique can be
applied in practice to the CFL reachability problems that
arise in program analyses.
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