Locality-Sensitive Hashing Scheme Based on p-Stable
Distributions

Mayur Datar
Department of Computer Science,
Stanford University

datar@cs.stanford.edu

Piotr Indyk*

Laboratory for Computer Science, MIT
indyk@theory.lcs.mit.edu

ABSTRACT

We present a novel Locality-Sensitive Hashing scheme A
proximate Nearest Neighbor Problem undienorm, based op-
stable distributions.

Our scheme improves the running time of the earlier algorith

for the case of thé, norm. It also yields the first known provably
efficient approximate NN algorithm for the cage< 1. We also
show that the algorithm finds thexactnear neigbhor ir0(log n)
time for data satisfying certain “bounded growth” conditio

Unlike earlier schemes, our LSH scheme works directly ontgoi
in the Euclidean space without embeddings. Consequehdyiet:
sulting query time bound is free of large factors and is savgid
easy to implement. Our experiments (on synthetic data shisy
that the our data structure is up to 40 times faster thairee.

Categories and Subject Descriptors

E.1 [Data]: Data Structures; F.0Theory of Computation]: Gen-
eral

General Terms
Algorithms, Experimentation, Design, Performance, Theor

Keywords

Sublinear Algorithm, Approximate Nearest Neighbor, Loc8en-
sitive Hashingp-Stable Distributions

1. INTRODUCTION

A similarity search problem involves a collection of obg(doc-
uments, images, etc.) that are characterized by a colieofioel-
evant features and represented as points in a high-dinreiisat-
tribute space; given queries in the form of points in thiscepave

Nicole Immorlica

Laboratory for Computer Science, MIT

nickle@theory.lcs.mit.edu

Vahab S. Mirrokni

Laboratory for Computer Science, MIT
mirrokni@theory.lcs.mit.edu

are required to find the nearest (most similar) object to thezy A
particularly interesting and well-studied instancelidimensional
Euclidean space. This problem is of major importance to ewar
of applications; some examples are: data compressionhakxa
and data mining, information retrieval, image and vide@abases,
machine learning, pattern recognition, statistics and daalysis.
Typically, the features of the objects of interest (docutsem-
ages, etc) are represented as point®{rand a distance metric is
used to measure similarity of objects. The basic problem the
to perform indexing or similarity searching for query oligecThe
number of features (i.e., the dimensionality) ranges amya/from
tens to thousands.

The low-dimensional case (say, for the dimensionaliggual to
2 or 3) is well-solved, so the main issue is that of dealinghait
large number of dimensions, the so-called “curse of dinueradi
ity”. Despite decades of intensive effort, the current sohs are
not entirely satisfactory; in fact, for large enoughin theory or in
practice, they often provide little improvement over a éinalgo-
rithm which compares a query to each point from the datalase.
particular, it was shown in [28] (both empirically and thetically)

thatall current indexing techniques (based on space partitioning)

degrade to linear search for sufficiently high dimensions.

In recent years, several researchers proposed to avoidithe r
ning time bottleneck by usingpproximation(e.g., [3, 22, 19, 24,
15], see also [12]). This is due to the fact that, in many cames
proximate nearest neighbor is almost as good as the exactrone
particular, if the distance measure accurately capturesdtion
of user quality, then small differences in the distance khoot
matter. In fact, in situations when the quality of the apjma¢te
nearest neighbor is much worse than the quality of the aceet
est neighbor, then the nearest neighbor probleongable and it
is not clear if solving it is at all meaningful [4, 17].

In[19, 14], the authors introduced an approximate highedisional
similarity search scheme with provably sublinear depeoedem

*This material is based upon work supported by the NSF CAREER the data size. Instead of using tree-like space partitigninre-

grant CCR-0133849.

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

SoCG’04,June 9-11, 2004, NewYork, USA.

Copyright 2004 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

lied on a new method callddcality-sensitive hashing (LSHYhe
key idea is to hash the points using several hash functioas so
ensure that, for each function, the probability of collisis much
higher for objects which are close to each other than fortdsch
are far apart. Then, one can determine near neighbors byngash
the query point and retrieving elements stored in buckeitatning
that point. In [19, 14] the authors provided such localigpsitive
hash functions for the case when the points live in binary hiarg
space{0, 1}%. They showed experimentally that the data structure
achieves large speedup over several tree-based dataistaiathen

the data is stored on disk. In addition, since the LSH is aihgsh
based scheme, it can be naturally extended talyimamicsetting,

i.e., when insertion and deletion operations also need tsulpe

ported. This avoids the complexity of dealing with tree stuues

when the data is dynamic.

The LSH algorithm has been since used in numerous applied
settings, e.g., see [14, 10, 16, 27, 5, 7, 29, 6, 26, 13]. Hewev
it suffers from a fundamental drawback: it is fast and simpiéy
when the input points live in the Hamming space (indeed, atmo
all of the above applications involved binary data). As ramed
in [19, 14], itis possible to extend the algorithm to thenorm, by
embedding, space intd, space, and theh space into Hamming
space. However, it increases the query time and/or erroriésga
factor and complicates the algorithm.

In this paper we present a novel version of the LSH algorithm.
As with the previous schemes, it works for th®, ¢)-Near Neigh-
bor (NN) problem, where the goal is to report a point withis-di
tancecR from a queryg, if there is a point in the data s& within
distanceR from ¢. Unlike the earlier algorithm, our algorithm
works directly on points in Euclidean space without embegsli
As a consequence, it has the following advantages over évéopis
algorithm:

e For thel, norm, its query time ig)(dn”(®) log n), where
p(c) < 1/cfor ¢ € (1,10] (the inequality is strict, see Fig-
ure 1(b)). Thus, for large range of valuescothe query time
exponent is better than the one in [19, 14].

Itis simple and quite easy to implement.

It works for anyl, norm, as long ap € (0, 2]. Specifically,
we show that for any € (0,2] andy > 0 there exists an
algorithm for(R, ¢)-NN under?’ which use<)(dn + n'*?)
space, with query timé)(n” log,,, n), where wherep <
(14~) - max (%, 2). To our knowledge, this is the only
known provablealgorithm for the high-dimensional nearest
neighbor problem for the cage< 1. Similarity search under
suchfractionalnorms have recently attracted interest [1, 11].

Our algorithm also inherits two very convenient properids
LSH schemes. The first one is that it works well on data that is
extremely high-dimensional but sparse. Specifically, tining
time bound remains unchangediifienotes the maximum number
of non-zero elements in vectors. To our knowledge, this @rtyp
is not shared by other known spatial data structures. Thamks
this property, we were able to use our new LSH scheme (specif-
ically, the l; norm version) for fast color-based image similarity
search [20]. In that context, each image was representegbing
in roughly100®-dimensional space, but only about 100 dimensions
were non-zero per point. The use of our LSH scheme enabled
achieving order(s) of magnitude speed-up over the linean.sc

The second property is that our algorithm provably repdrés t
exactnear neighbor very quickly, if the data satisfies certainnded
growth property. Specifically, for a query poigt andc > 1, let
N(q, c¢) be the number of-approximate nearest neighborsqoin
P. If N(q,c) grows “sub-exponentially” as a function of then
the LSH algorithm reportg, the nearest neighbor, with constant
probability within timeO(d log), assuming it is given a constant
factor approximation to the distance franto its nearest neighbor.

In particular, we show that iV (q,c) = O(c"), then the running
time isO(log n +2°®). Efficient nearest neighbor algorithms for
data sets with polynomial growth properties in general ioetrave
been recently a focus of several papers [9, 21, 23]. LSH save
easier problem (near neighbor undenorm), while working under

weaker assumptions about the growth function. It is alscesamat
faster, due to the fact that theg n factor in the query time of the
earlier schemes iswltiplied by a function ofb, while in our case
this factor is additive.

We complement our theoretical analysis with experimental-e
uation of the algorithm on data with wide range of paramethrs
particular, we compare our algorithm to an approximateivarsf
the kd-tree algorithm [2]. We performed the experiments on syn-
thetic data sets containing “planted” near neighbor (seté@e5
for more details); similar model was earlier used in [30].r @x-
periments indicate that the new LSH scheme achieves qumeeydi
up to 40 times better than the query time of thktree algorithm.

1.1 Notations and problem definitions

We usel? to denote the spack’ under thel, norm. For any
pointy € R?, we denote by|#||, thel, norm of the vectoss. Let
M = (X, d) be any metric space, ande X. Theball of radiusr
centered at is defined aBB(v,r) = {g € X | d(v,q) < r}.

Letc = 1 + €. In this paper we focus on the&, ¢)-NN prob-
lem. Observe thatR, ¢)-NN is simply a decision version of the
Approximate Nearest Neighbor problem. Although in many ap-
plications solving the decision version is good enough, cae
also reduce the approximate NN problem to approximate NN via
binary-search-like approach. In particular, it is know8,[15] that
the c-approximate NN problem reduces @{(log(n/¢€)) instances
of (R,c¢)-NN. Then, the complexity of-approximate NN is the
same (within log factor) as that of té&, ¢)-NN problem.

2. LOCALITY-SENSITIVE HASHING

An important technique from [19], to solve tli&, ¢)-NN prob-
lem is locality sensitive hashing or LSH. For a dom&irof the
points set with distance measufe an LSH family is defined as:

DEFINITION 1. Afamily® = {h : S — U}iscalled(ry,rz, p1, p2)-
sensitivefor D if foranyv,q € S
o if v € B(g,r1) thenPry[h(q) = h(v)] > p1,

e if v ¢ B(q,r2) thenPry[h(q) = h(v)] < pa.

In order for a locality-sensitive hash (LSH) family to be fudeit
has to satisfy inequalitigs; > p» andr: < rs.

We will briefly describe, from [19], how a LSH family can be
used to solve théR, c)-NN problem: We choose; = R and
ry = ¢+ R. Given a family#H of hash functions with parame-
ters(ri, 72, p1, p2) as in Definition 1, we amplify the gap between
the “high” probability p, and “low” probability p» by concate-
nating several functions. In particular, férspecified later, de-
fine a function familyG = {g : S — U*} such thatg(v) =
(h1(v),...,hx(v)), whereh; € H. For an integell we choose
L functions g, ... ,gr from G, independently and uniformly at
random. During preprocessing, we store each P (input point
set) in the buckey; (v), for j = 1,..., L. Since the total num-
ber of buckets may be large, we retain only the non-empty buck
ets by resorting to hashing. To process a qugrwe search all
bucketsg:(q), ... ,gz(q); as it is possible (though unlikely) that
the total number of points stored in those buckets is largeinw
terrupt search after finding firStZ points (including duplicates).
Letv1,..., v be the points encountered therein. For eaghif
v; € B(q,r2) then we returrves andv;, else we returmo.

The parameterg and L are chosen so as to ensure that with a
constant probability the following two properties hold:

1. If there existe,* € B(q,r1) theng;(v*) = g;(g) for some
j=1...L,and

2. The total number of collisions af with points fromP —
B(q,r2) islessthaBL, i.e.

Z (P - B(q,m2)) Ng; '(9i(q))| <3L.

Observe that if (1) and (2) hold, then the algorithm is cdrrec
It follows (see [19] Theorem 5 for details) that if we det=
10g1/,, n, andL = n” wherep = {=/EL then (1) and (2) hold
with a constant probability. Thus, we get foIIowmg theorgtightly
different version of Theorem 5 in [19]), which relates thfioééncy
of solving (R, ¢)-NN problem to the sensitivity parameters of the

LSH.

THEOREM 1. Suppose there is@, cR, p1, p2)-sensitive fam-
ily H for a distance measur®. Then there exists an algorithm
for (R, ¢)-NN under measur® which uses)(dn + n' ™) space,
with query time dominated b§(n”) distance computations, and
O(n” log, ,,,, n) evaluations of hash functions frof, wherep =

Inl/p;
Inl/psy*

3. OURLSH SCHEME

In this section, we present a LSH family basedyestable dis-
tributions, that works for alb € (0, 2].

Since we consider points lﬁ, without loss of generality we can
considerR = 1, which we assume from now on.

3.1 p-stable distributions

Stable distributions [31] are defined as limits of normalizems
of independent identically distributed variables (anralt¢e defini-
tion follows). The most well-known example of a stable disir
tion is Gaussian (or normal) distribution. However, thesslds
much wider; for example, it includes heavy-tailed disttibns.
Stable Distribution: A distributionD overR is calledp-stable if
there existp > 0 such that for any: real numbers ... v, and
i.i.d. variablesX ... X,, with distributionD, the random variable
3", viX; has the same distribution as the varial¥e, |v;:|?)'/? X,
whereX is a random variable with distributioB.

It is known [31] that stable distributions exist for apye (0, 2].
In particular:

e a Cauchy distributiorpo, defined by the density function

¢(zr) = + 7=, is 1-stable

e aGaussian (normal) distributio®, defined by the density
functiong(z) = \/%e*ﬁ“, is 2-stable

We note from a practical point of view, despite the lack ofeld
form density and distribution functions, it is known [8] thane
can generat@-stable random variables essentially from two inde-
pendent variables distributed uniformly oér1].

Stable distribution have found numerous applications hous
fields (see the survey [25] for more details). In computeersog,
stable distributions were used for “sketching” of high dimsi@nal
vectors by Indyk ([18]) and since have found use in various ap
plications. The main property gf-stable distributions mentioned
in the definition above directly translates into a sketchiegh-
nique for high dimensional vectors. The idea is to generatmna
dom vectora of dimensiond whose each entry is chosen indepen-
dently from ap-stable distribution. Given a vecterof dimension
d, the dot producta.v is a random variable which is distributed
as(Y, [vi")'/? X (i.e., |[v||,X), whereX is a random variable
with p-stable distribution. A small collection of such dot protiic

(a.v), corresponding to different’s, is termed as the sketch of
the vectorv and can be used to estimdte||, (see [18] for de-
tails). Itis easy to see that such a sketch is linearly cowipesi.e.
a.(v1 —v2) = a.v1 — a.v2.

3.2 Hash family

In this paper we usg-stable distributions in a slightly different
manner. Instead of using the dot produaist) to estimate thé,
norm we use them to assign a hash value to each vectdmntu-
itively, the hash function family should be locality senat i.e. if
two vectors ¢, v2) are close (smallv1 — v2||p) then they should
collide (hash to the same value) with high probability anthdy
are far they should collide with small probability. The dobguct
a.v projects each vector to the real line; It follows frorstability
that for two vectors+: , v2) the distance between their projections
(a.v1 —a.v2) is distributed ag|v1 —v2||, X whereX is ap-stable
distribution. If we “chop” the real line into equi-width segnts of
appropriate size and assign hash values to vectors based on which
segment they project onto, then it is intuitively clear tthas hash
function will be locality preserving in the sense describbdve.

Formally, each hash functiohg »(v) : R? — N maps ad
dimensional vectow onto the set of integers. Each hash function
in the family is indexed by a choice of randamandb wherea is,
as before, @ dimensional vector with entries chosen independently
from ap-stable distribution antlis a real number chosen uniformly
from the rangd0, r]. For a fixeda, b the hash functiorhq ; is
given byhq,(v) = | &Y+L

Next, we compute the probability that two vecters v collide
under a hash function drawn uniformly at random from thisifam
Let f,(t) denote the probability density function of thésolute
value of the p-stable distribution. We may drop the subschipt
whenever it is clear from the context. For the two vectorsva,
letc = ||v1—wa2||p. Forarandom vectar whose entries are drawn
from ap-stable distributiong.v1 —a.v2 is distributed ag X where
X is arandom variable drawn frompastable distribution. Sinck
is drawn uniformly from[0,] it is easy to see that

ple) = / Lba - Dy

For a fixed parameter the probability of collision decreases
monotonically withc = ||v1 — v2||,. Thus, as per Definition 1
the family of hash functions above (81, r2, p1, p2)-sensitive for
p1 = p(1) andps = p(c) for ra/r1 = c.

In what follows we will bound the ratip = }“if“ which as
discussed earlier is critical to the performance when thghtfam-
ily is used to solve théR, c)-NN problem.

Note that we have not specified the parametdor it depends
on the value ot andp. For everyc we would like to choose a finite
r that makeg as small as possible.

Praslhas(v1) = ha,p(v2)]

4. COMPUTATIONAL ANALYSIS OF THE
RATIO = 2im

Inl/Py

In this section we focus on the casegof 1,2. In these cases
the ratiop can be explicitly evaluated. We compute and plot this
ratio and compare it with /c. Note, 1/c is the best (smallest)
known exponent fon in the space requirement and query time that
is achieved in [19] for these cases.

4.1 Computing the ratio , for special cases

For the special casgs = 1,2 we can compute the probabili-
tiesp1, p2, using the density functions mentioned before. A simple

calculation shows that, = 22— /) — 1 1n(1 + (r/c)?)
for p = 1 (Cauchy) angys = 1 — 2norm(—r/c) — \/2_+T/C(1 -

e~ (122%)) for p = 2 (Gaussian), whereorm(-) is the cumu-
lative distribution function (cdf) for a random variableaths dis-
tributed asV (0, 1). The value op, can be obtained by substituting
¢ = 1in the formulas above.

Forc values in the rangg, 10] (in increments of).05) we com-
pute the minimum value ¢f, p(c) = min. log(1/p1)/log(1/p2),
usingMatlab. The plot ofc versusp(c) is shown in Figure 1. The
crucial observation for the cage= 2 is that the curve correspond-
ing to optimal ratiop (p(c)) lies strictly below the curvé /c. As
mentioned earlier, this is a strict improvement over thevipres
best known exponerit/c from [19]. While we have computed here
p(c) for c in the rang€[1, 10], we believe thap(c) is strictly less
than1/c for all values ofc.

For the cas@ = 1, we observe thap(c) curve is very close
to 1/¢, although it lies above it. The optimalc) was computed
usingMatlab as mentioned before. Tidatlab program has a limit
on the number of iterations it performs to compute the mimmud
a function. We reached this limit during the computatiorfswe
compute the true minimum, then we suspect that it will be very
close tol/c, possibly equal td /¢, and that this minimum might
be reached at = co.

If one were to implement our LSH scheme, ideally they would
want to know the optimal value of for everyc. Forp = 2, for a
given value ofc, we can compute the value pfthat gives the op-
timal value ofp(c). This can be done using programs lidatlab.
However, we observe that for a fixedhe value ofp as a function
of r is more or less stable after a certain point (see Figure 2)s,Th
we observe thap is not very sensitive te beyond a certain point
and as long we choose“sufficiently” away fromo0, the p value
will be close to optimal. Note, however that we should notage
anr value that is too large. Asincreases, both, andp- get closer
to 1. This increases the query time, sirigavhich is the “width” of
each hash function (refer to Subsection 2), increasésgs,, n.

We mention that for thé, norm, the optimal value of appears
to be a (finite) function of.

We also plotp as a function of for a few fixedr values(See
Figure 3). Forp = 2, we observe that for moderatevalues the
p curve “beats” thel/c curve over a large range efthat is of
practical interest. Fop = 1, we observe that asincreases the
curve drops lower and gets closer and closer talfhecurve.

5. EMPIRICAL EVALUATION OF OUR TECH-
NIQUE

In this section we present an experimental evaluation ohouel
LSH scheme. We focus on the Euclidean norm case, since this oc
curs most frequently in practice. Our data structure is @nmnted
for main memory.

In what follows, we briefly discuss some of the issues peirigin
to the implementation of our technique. We then report soree p
liminary performance results based on an empirical coraparof
our technique to théd-tree data structure.

Parameters and Performance TradeoffsThe three main param-
eters that affect the performance of our algorithm are: remaih
projections per hash valug), number of hash tables)(and the
width of the projection«). In general, one could also introduce an-
other parameter (sd¥), such that the query procedure stops after
retrievingT’ points. In our analysisI” was set t®3[. In our exper-
iments, however, the query procedure retrieattgoints colliding
with the query (i.e., we usefl = o). This reduces the number of
parameters and simplifies the choice of the optimal.

For a given value ok, it is easy to find the optimal value &f
which will guarantee that the fraction of false negativesrar more
than a user specified threshold. This process is exactlyatine sis
in an earlier paper by Cohen et al. ([10]) that uses locaétsgive
hashing to find similar column pairs in market-basket datih w
the similarity exceeding a certain user specified threshisicbur
experiments we tried a few values bf(betweenl and 10) and
below we report thé that gives the best tradeoff for our scenario.
The parametek represents a tradeoff between the time spent in
computing hash values and time spent in pruning false pesiti.e.
computing distances between the query and candidatesgarliig
value increases the number of hash computations. In geweral
could do a binary search over a large range to find the optimal
value. This binary search can be avoided if we have a good Imode
of the relative times of hash computations to distance caations
for the application at hand.

Decreasing the width of the projection)(decreases the proba-
bility of collision for any two points. Thus, it has the sanffeet as
increasingk. As a result, we would like to setas small as possi-
ble and in this way decrease the number of projections we teed
make. However, decreasingbelow a certain threshold increases
the quantityp, thereby requiring us to increageThus we cannot
decrease’ by too much. For thé, norm we found the optimal
value ofr using Matlab which we used in our experiments.

Before we report our performance numbers we will next descri
the data set and query set that we used for testing.

Data Set: We used synthetically generated data sets and query
points to test our algorithm. The dimensionality of the uhdeg

I, space was varied betwe2f and500. We considered generating
all the data and query points independently at random. Tbus,
data point (or query point) its coordinate along every digiem
would be chosen independently and uniformly at random from a
certain rangg—a, a]. However, if we did that, given a query point
all the data points would be sharply concentrated at the shisae
tance from the query point as we are operating in high dinomssi
Therefore, approximate nearest neighbor search would aéem
sense on such a data set. Testing approximate nearest oieighb
quires that for every query poigt there are few data points within
distanceR from ¢ and most of the points are at a distance no less
than(1 + €) R. We call this a “planted nearest neighbor model”.

In order to ensure this property we generate our points &s\vsl
(a similar approach was used in [30]). We first generate tleeyqu
points at random, as above. We then generate the data points i
such a way that for every query point, we guarantee at ledsgkes
point within distancek and all other points are distance no less than
(1 + €)R. This novel way of generating data sets ensures every
query point has a few (in our case, just one) approximateesear
neighbors, while most points are far from the query.

The resulting data set has several interesting propeirfiestly,
it constitutes the worst-case input to LSH (since there Ig one
correct nearest neighbor, and all other points are “almostfect
nearest neighbors). Moreover, it captures the typicahsitn oc-
curring in real life similarity search applications, in whithere are
few points that are relatively close to the query point, aro$nof
the database points lie quite far from the query point.

For our experiments the ranfiea, a] was set td—>50, 50]. The
total number of data points was varied betwéef and10°. Both
our algorithm and théd-tree take as input the approximation factor
¢ = (1 + €). However, in addition te our algorithm also requires
as input the value of the distande (upper bound) to the nearest
neighbor. This can be avoided by guessing the valu& aind
doing a binary search. We feel that for most real life appiices it
is easy to guess a range fBrthat is not too large. As a result the

5
Approximation factor ¢

(a) Optimalp for I,

5 6 10
Approximation factor ¢

(b) Optimalp for I,

Figure 1: Optimal p vsc

additional multiplicative overhead of doing a binary séasbould
not be much and will not cancel the gains that we report.

Experimental Results: We did three sets of experiments to eval-
uate the performance of our algorithm versus thatdtree: we
increased the number of data points, the dimensionalityof the
data set, and the approximation factoe (1 + ¢€). In each set of
experiments we report the average query processing timmesifo
algorithm and thé:d-tree algorithm, and also the ratio of the two
((average query time fakd-tree)/(average query time for our al-
gorithm)), i.e. the speedup achieved by our algorithm. Weotar
experiments on a Sun workstation with 650 MHz UltraSPARIC-II
512KB L2 cache processor, having no special support forovect
computations, with 512 MB of main memory.

For all our experiments we set the paramefers 10 and/ =
30. Moreover, we set the percentage of false negatives thaawe c
tolerate up td 0% and indeed for all the experiments that we report
below we did not get the more tharb % false negatives, in fact less
in most cases.

For all the query time graphs that we present, the curve igst |
above is that okd-tree and the one below is for our algorithm.

For the first experiment we fixed= 1, d = 100 andr = 4 (the
width of projection). We varied the number of data pointsifro
10* to 10°. Figures 4(a) and 4(b) show the processing times and
speedup respectively asis varied. As we see from the Figures,
the speedup seems to increase linearly with

For the second experiment we fixed= 1, n = 10° andr = 4.

We varied the dimensionality of the data set fratto 500. Fig-

ures 5(a) and 5(b) show the processing times and speedugrresp
tively asd is varied. As we see from the Figures, the speedup seems
to increase with the dimension.

For the third experiment we fixed = 10° andd = 100. The
approximation factof1 + ¢) was varied from .5 to 4. The widthr
was set appropriately as a functioneofrigures 6(a) and 6(b) show
the processing times and speedup respectivelyisgaried.

Memory Requirement: The memory requirement for our algo-
rithm equals the memory to store the data points themsehgs a
the memory required to store the hash tables. From our experi
ments, typical values df and/ are10 and30 respectively. If we
insert each point in the hash tables along with their hasliegahnd

a pointer to the data point itself, it will requide (k + 1) words
(int) of memory, which for our typicak, I values evaluates 30
words. We can reduce the memory requirement by not storiag th
hash value explicitly as concatenationkoprojections, but instead
hash thesé& values in turn to get a single word for the hash. This
would reduce the memory requirement 1, i.e. 60 words per data
point. If the data points belong to a high dimensional spacg. (
with 500 dimension or more), then the overhead of maintaining the
hash table is not much (around@% with the optimization above)
as compared to storing the points themselves. Thus, the pemo
overhead of our algorithm is small.

6. CONCLUSIONS

In this paper we present a new LSH scheme for the similarity
search in high-dimensional spaces. The algorithm is eagyto
plement, and generalizes to arbitrdgynorm, forp € [0,2]. We
provide theoretical, computational and experimental@tidns of
the algorithm.

Although the experimental comparison of LSH and kd-tregela
algorithm suggests that the former outperforms the lattere are
several caveats that one needs to keep in mind:

e We used the kd-tree structure “as is”. Tweaking its parame-
ters would likely improve its performance.

e LSH solves the decision version of the nearest neighbor-prob
lem, while kd-tree solves the optimization version. Altgbu
the latter reduces to the former, the reduction overhead in-
creases the running time.

e One could run the approximate kd-tree algorithm with ap-
proximation parameterthat is much larger than the intended
approximation. Although the resulting algorithm would pro
vide very weak guarantee on the quality of the returned Reigh
bor, typically the actual error is much smaller than the guar

antee.

.. REFERENCES . . .
[1] C. Aggarwal and D. Keim A. Hinneburg. On the surprising

behavior of distance metrics in high dimensional spaces.

09

08]

07 b 1

06 [i

pxe

\ -
05]
04 N
03 .l]

02 R) ,

01 L L L

(&) p vsr for

pxe
o
o
T
L

(b) p vsrfor I»

Figure 2: pvsr

Proceedings of the International Conference on Database
Theory pages 420-434, 2001.

[2] S. Arya and D. Mount. Ann: Library for approximate neares
neighbor searchingvailable at
http://www.cs.umd.edu/"mount/ANN/ .

[3] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and
A. Wu. An optimal algorithm for approximate nearest
neighbor searchindg?roceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithrpages
573-582, 1994.

[4] K. S. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft.
When is nearest neighbor meaningfifoceedings of the
International Conference on Database Theggges
217-235, 1999.

[5] J. Buhler. Efficient large-scale sequence comparison by
locality-sensitive hashindioinformatics 17:419-428,

2001.

[6] J. Buhler. Provably sensitive indexing strategies for
biosequence similarity seardAroceedings of the Annual
International Conference on Computational Molecular
Biology (RECOMB02)2002.

[7] J. Buhler and M. Tompa. Finding motifs using random
projections Proceedings of the Annual International
Conference on Computational Molecular Biology
(RECOMBO01)2001.

[8] J. M. Chambers, C. L. Mallows, and B. W. Stuck. A method
for simulating stable random variablels. Amer. Statist.
Assoc, 71:340-344, 1976.

[9] K. Clarkson. Nearest neighbor queries in metric spaces.

Proceedings of the Twenty-Ninth Annual ACM Symposium

on Theory of Computingpages 609—617, 1997.

E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk,

R. Motwani, J. Ullman, and C. Yang. Finding interesting

associations without support prunnirRyoceedings of the

16th International Conference on Data Engineering (ICDE)

2000.

G. Cormode, P. Indyk, N. Koudas, and S. Muthukrishnan.

Fast mining of massive tabular data via approximate distanc

computationsProc. 18th International Conference on Data

Engineering (ICDE)2002.

T. Darrell, P. Indyk, G. Shakhnarovich, and P. Viola.

Approximate nearest

neighbors methods for learning and visibHPS Workshop at

http://www.ai.mit.edu/projects/vip/nips03ann

2003.

[10]

[11]

[12]

[13] B. Georgescu, |. Shimshoni, and P. Meer. Mean shiftthase
clustering in high dimensions: A texture classificatio n
example Proceedings of the 9th International Conference on
Computer Vision2003.

[14] A. Gionis, P. Indyk, and R. Motwani. Similarity searah i

high dimensions via hashinBroceedings of the 25th

International Conference on Very Large Data Bases (VLDB)

1999.

S. Har-Peled. A replacement for voronoi diagrams ofrnea

linear size Proceedings of the Symposium on Foundations of

Computer Science001.

[16] T. Haveliwala, A. Gionis, and P. Indyk. Scalable teciugs
for clustering the webBNebDB Workshq®2000.

[17] A.Hinneburg, C. C. Aggarwal, and D. A. Keim. What is the
nearest neighbor in high dimensional spadesteedings of
the International Conference on Very Large Databases
(VLDB), pages 506-515, 2000.

[18] P. Indyk. Stable distributions, pseudorandom gelnoesat
embeddings and data stream computatRmceedings of the
Symposium on Foundations of Computer Scie660.

[19] P. Indyk and R. Motwani. Approximate nearest neighbor:
towards removing the curse of dimensionalRyoceedings
of the Symposium on Theory of Computibg98.

[20] P.Indyk and N. Thaper. Fast color image retrieval via
embeddingsWorkshop on Statistical and Computational
Theories of Vision (at ICCYR003.

[21] D. Karger and M Ruhl. Finding nearest neighbors in
growth-restricted metric®roceedings of the Symposium on
Theory of Computing2002.

[22] J. Kleinberg. Two algorithms for nearest-neighborrskan
high dimensionsProceedings of the Twenty-Ninth Annual
ACM Symposium on Theory of Computit§97.

[23] R. Krauthgamer and J. R. Lee. Navigating nets: Simple

algorithms for proximity searchiProceedings of the

ACM-SIAM Symposium on Discrete Algorithrae04.

E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficieesch

for approximate nearest neighbor in high dimensional

spacesProceedings of the Thirtieth ACM Symposium on

Theory of Computingpages 614—623, 1998.

J. P. Nolan. An introduction to stable distributioasailable

at

http://www.cas.american.edu/"jpnolan/chapl.ps

Z. Ouyang, N. Memon, T. Suel, and D. Trendafilov.

Cluster-based delta compression of collections of files.

Proceedings of the International Conference on Web

[15]

[24]

[25]

[26]

2 4 6 8 10 12 14 16 18 20 2 4 6 8 10 12 14 16 18 20

(@) pvscforil, (b) p vscfor i,

Figure 3: pvsc

Information Systems Engineering (WISE)02. APPENDIX
[27] N. ShivakumarDetecting digital copyright violations on the
Internet (Ph.D. thesisDepartment of Computer Science, A. GROWTH-RESTRICTED DATA SETS

Stanford University, 2000. In this section we focus exclusively on data sets living iaith
[28] Roger Weber, Hans J. Schek, and Stephen Blott. A

LUV - norm.
guantitative analysis and performance study for . .
similarity-search methods in high-dimensional spaces. ~ Consider a data se?, queryq, and letp be the closest point
Proceedings of the 24th Int. Conf. Very Large Data Bases 1N P 10 g. Assume we know the distangip — g/|, in which case
(VLDB), 1998. we can assume that it is equal tpby scaling. Forc¢ > 1, let
[29] C. Yang. Macs: Music audio characteristic sequence P(q,¢) = PN B(q,c) and letN(q, c) = |P(q, ¢)|.
indexing for similarity retrievalProceedings of the We consider a “single shot” LSH algorithm, i.e., one thatsuse

Workshop on Applications of Signal Processing to Audio and only . = 1 indices, but examines all points in the bucket contain-

Acoustics2001.
. . L ing q. We use the parameteks= r = T log n, for some constant
[30] rF: egrg;?ﬁglilgﬁbg?ggg)r/c}g%ncgeg:jeinggso? &fedkn&eﬁ_sgg)i\//lfor T > 1. This implies that the hash function can be evaluated in time
Symposium on Discrete Algorithn000. O(log n).
[31] V.M. Zolotarev.One-Dimensional Stable Distributiongol. _ b
65 of Translations of Mathematical Monographs, American THEOREM 2. If N(g,c) = O(c”) for someb > 1, then the
Mathematical Society, 1986. “single shot” LSH algorithm findg with constant probability in

expected timd(log n + 2°®),

Proof: For any pointp’ such that||p — q|| = ¢ he probability

thath(p') = h(q) is equal top(c) = [y 2 f2(£)(1 — L)dt, where
folz) = ie*ﬁ“. Therefore

N (g 2 /Tl;(%)Q/ZEdt
p(c) ﬁ/ o "

S1(c) = S2(¢)
Note thatS; (¢) < 1. Moreover

_ 2 e [T et
SQ(C) = E . ; /0. e c C_Zdt
2 0.2

92 r</(2c¢%) _

s0= =t [T e
0

2

Sa(c) = —=—=S[1—e /)

V2T

We havep(1) = S1(1)—S(1) > 1—e" /2 —
for some constant > 0. This implies that the probablllty that

!Similar guarantees can be proved when we only know a constant

approximation to the distance.

o
o
o 4
ENRo

(a) query time vs:

(b) speedup va

Figure 4: Gain as data size varies

collides withg is at least(1 — A/r)* =~ e~*. Thus the algorithm
is correct with constant probability.
If ¢> < 7?/2, then we have
2 ¢
c)<1l——-(1—-1/e
pe) S1=—=2(1-1/¢)
or equivalentlyp(c) < 1 — Be/r, for proper constant8 > 0.
Now consider the expected number of points colliding wjth
Let C be a multiset containing all values of= ||p' — q||/|lp — ql|
overp’ € P. We have

BlPng '@ = > p)"
ceC
= > p@"+ D> pe)F
ceC,e<r/V2 ceCc>r/V2
< ¥ (1ch/r)k+(1f%)T'n
c€C,e<r /2
r/V2
< [0= Ben)Nig e+ Dde+ 00)
1
r/V2
< / e P N(g,c+ 1)de + O(1)
J1

If N(q,t) = O(c"), then we have
r/V2

E[PNg ()] =0 / e Pc+1)’de | =2°0
1

B. ASYMPTOTIC ANALYSISFOR THE GEN-
ERAL CASE

THEOREM 3. For anyp € (0,2] there is a(ri,r2, p1,p2)-
sensitive familyi for ¢ such that for anyy > 0,

Inl/p: 11
= < (1 . =).
P In1/ps < (147) - max (cp’c)

We prove that for the general caged (0, 2]) the ratiop(c) gets
arbitrarily close tanax (-, 1). For the casg < 1, our algorithm

is the first algorithm to solve this problem, and so there i€xo
isting ratio against which we can compare our result. Howeve
show that for this caseis arbitrarily close to;;. The proof follows
from the following two Lemmas, which together imply Theor8m

Let! = 1=£2, 7 = 1 — p;. Thenp = % < {228 by the
following lemma.

LEMMA 1. Forz € [0,1) andl > 1 such thatl — Iz > 0,

log(1l —)

1
— < -
log(1—1Ix) — 1
Proof: Notinglog(1 —Iz) < 0, the claim is equivalent tblog(1 —
z) > log(1 — lz). Thisin turn is equivalent to

glz)=(1—Iz)— (1—z) <0.

This is trivially true forz = 0. Furthermore, taking the derivative,
we seeg’(z) = —1 + I(1 — z)!~*, which is non-positive for: €
[0,1) and] > 1. Therefore,g is non-increasing in the region in
which we are interested, and g¢x) < 0 for all values in this
region.

Now our goal is to upper bounﬁ%.

LEMMA 2. For anyy > 0, there isr = r(c, p, y) such that

1-— 11
plg(l—l—'y)-max(—)
].*pg

c?’ ¢

Proof: Using the values op1, p» calculated in Sub-section 3.2,
followed by a change of variables, we get

1— 71— D) f(t)dt’
1— 71— D)Lf(D)ar
1— [y (1= 14)f(t)dt

1 [/~ L) f(t)dt
(1— [y f&)dt) + 2 [tf(t)dt
(L= [/ fydt) + < [7/°tf(t)dt

1*p1
1—p2

0.7

0.6

05

0.4

0.3

0.2

0.1

35

30

25

20

15

10

350 400 450

(a) query time vs dimension

L L L L L L L L
100 150 200 250 300 350 400 450 500

(b) speedup vs dimension

Figure 5: Gain as dimension varies

Setting
Flz)=1- /0 F(b)dt
and '
Gz) = % / t(t)dt
we see o
1—p1 F(r)+ G(r)
1—po F(r/c)+ G(r/c)

- (F(r) _G())
F(r/e)’ G(r/e)]’

First, we considep € (0, 2) — {1} and discuss the special cases
p = landp = 2 towards the end. We bourfd(r)/F (r/c). Notice
F(z) = Prafa > z] for a drawn according to the absolute value
of a p-stable distribution with density functiofi(-). To estimate
F(x), we can use the Pareto estimation ([25]) for the cumulative
distribution function, which holds far < p < 2,

<

V6 > 0 Jxp s.t. Ve > xo,
Crz P(1-6) < F(z) < CpzP(1+9)

whereC,, = 2T (p) sin(mp/2). Note that the extra factor 2 is due
to the fact that the distribution function is for the abselualue of
thep-stable distribution. Fi¥ = min(y/4,1/2). For this value of
4 letrg be thex in the equation above.

If we setr > ro we get

F(r)
F(r/c)

Cr"(1 +4)
Cp(r/c)=P(1 - 9)
rP(1 + 6)(1 + 20)

NGCE

() e
(3) a+m.

Now we boundG(r)/G(r/c). We break the proof down into
two cases based on the valuepof

IN

IN

Case 1:p > 1. For these-stable distributions/® ¢ f (t)dt con-
verges to, sayk, (since the random variables drawn from those
distributions have finite expectations). Ag(t) is non-negative
on [0, c0), f(f tf(t)dt is a monotonically increasing function of
which converges td,. Thus, for everyy’ > 0 there is some-
such that

1

(=80, < [t
0
Seté’ = min(y/2,1/2) and choose’ > cri. Then
w Jo tf(t)dt

& [T0ef@dt+ 5 [7C tF(b)dt
o Jo tf(B)dt

G(r'")
G(r'/c)

S !
< [Totf(t)dt
1
_/kp
< - r -
- %(1 - él)kp
< l(1 +26")
C
1
< E(l +7). 1)

Case 2:p < 1. For this case we will choose our parameters so that
we can use the Pareto estimation for the density functiorno€

xo large enough so that the Pareto estimation is accurate hinwit

a factor of(1 £ ¢) for x > x¢. Then forz > x,

G(x) =1 [0 tf(t)dt + % [T tf(t)dt

< 2 oo tf()dt + [T pC,trdt

f;‘l tf(t)dt +
PUp _p—ptl

z(1-p)™~

=1
x

(htye
z(1-p)™

o PP +4)

(o e ()t — EEhae ™) +
(#%5(1+0)).

(1—p)

1

T

1
zP

T 10 L L L L
0.5 1 15 2 25 3 0.5 1 15 2 25 3

(a) query time v (b) speedup vs

Figure 6: Gain ase varies

Sincez is a constant that depends @the first term decreases as = 1
1/x while the second term decreasesl#s” wherep < 1. Thus ¢
for everyd' there is some:; such that for alle > 1, the first term Also for the case = 2, i.e. the normal distribution, the compu-
is at mosty’ times the second term. We choaBe= 4. Then for tation is straightforward. We use the fact that for this cB$e) ~
x> max($1,$0), 2 1 7Tr2 .
f(r)/r andG(r) = VerSmmant wheref(r) is the normal den-
G(z) < (1+6)° (pCy)) sity function. For large values of, G(r) clearly dominates'(r),
(1 —p)z» becauseF'(r) decreases exponentially ("*/2) while G(r) de-
In the same way we obtain creases a$/r. Thus, we need to approxima%é’(r(% asr tends
‘ C to infinity, which is clearly!.
Gz 162 —Pxe__
(@> 00 (2
2
Using these two bounds, we see for cmax(z1, z0), lim (r) - lim 1—e7= _ 1
) C, r— 00 (%) r—00 C(l _ 67;"7) C
G(r) 1+ (5)
Glr/o) < 5 e Notice that similar to the previous parts, we can find the eppr
(11 —9) (W) priater (c, p,) such that=2L is at most most1 + 7).
< c—p(l + 99)
1
< c—p(l +7)

for 6 < min(vy/9,1/2).
We now consider the special casegpo& {1,2}. For the case
of p = 1, we have the Cauchy distribution and we can compute

directly G(r) = @ andF(r) = 1 — Ztan"'(r). In fact

for the ratioFTT(;)C) , the previous analysis for genegavorks here.
As for the ratioc‘?r(;)c) , we can prove the upper bound §fusing

L'Hopital rule, as follows:

lim G(r) lim In(r? + 1)
=00 G(%) - T —00 cln((r/c)2 + 1)
2r
(r2+1)

T C(cz(rg/cg+l))
27,2 2
— gim € (r°/c” +1)
T —00 C(T2 + 1)
2 2
2
~ Jim 20T/

r—oc 2cr

