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Abstract

This paper presents an algorithm for sampling and triangulating a smooth surface
¥ C R? where the triangulation is homeomorphic to ¥.. The only assumption we make is
that the input surface representation is amenable to certain types of computations, namely
computations of the intersection points of a line with the surface, computations of the crit-
ical points of some height functions defined on the surface and its restriction to a plane,
and computations of some silhouette points. The algorithm ensures bounded aspect ratio,
size optimality, and smoothness of the output triangulation. Unlike previous algorithms,
this algorithm does not need to compute the local feature size for generating the sample
points which was a major bottleneck. Experiments show the usefulness of the algorithm in
remeshing and meshing CAD surfaces that are piecewise smooth.

1 Introduction

The need for triangulating a surface is ubiquitous in science and engineering. A set of points
from the input surface needs to be generated and be connected with triangles for such a trian-
gulation. The underlying space of the resulting triangulation should have the exact topology
and approximate geometry of the input. Variety in input specifications of the surface leads to
different problems in surface triangulations.

When the surface is given only through a set of point samples, the problem requires to
approximate the surface with guaranteed topology and geometry from these samples. This
problem, called surface reconstruction, has been recently addressed [1, 2, 4, 14]. When the
surface is polyhedral, i.e. made out of planar patches, the Delaunay refinement techniques
[7,9, 10, 12, 20] solve the problem elegantly.

The case where the surface is smooth and is input with an implicit or parametric equa-
tion occurs in a variety of applications such as in geometric modeling and computer graphics.
Maintaining topology and geometry of the input surface in the output approximation is an im-
portant issue in these applications [3, 23, 25]. Furthermore, in applications that involve finite
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element methods, it is important to generate triangles that are well shaped [21]. In this paper
we present an algorithm that can triangulate a smooth implicit or parametric surface without
boundary with the following guarantees: (i) the output surface has the same topology as the
input, (i) the triangulation is “smooth” in certain sense that we explain later, (iii) all trian-
gles have bounded aspect ratio, (iv) the number of generated sample points is asymptotically
optimal.

Related work. Chew [11] introduced a “furthest-point” sampling strategy that inserts points
into a sample where the Voronoi edges intersect the surface. In effect, this algorithm attempts
to compute the restricted Delaunay triangulation of the surface. Edelsbrunner and Shah [16]
showed that a topological ball property is sufficient for the restricted Delaunay triangulation
to be homeomorphic to the input surface. The algorithm of Chew does not guarantee this
property and thus does not have any kind of topological guarantee. Following the “furthest-
point” strategy Cheng, Dey, Edelsbrunner and Sullivan [8] proposed an algorithm for meshing
a special type of surface called skin surface where they guarantee both topology and geometry.
This algorithm maintains the surface triangulation under deformation and exploits the local
feature sizes which are easily computable for skin surfaces.

Boissonnat and Oudot [5] carried forward the “furthest-point” strategy for general curved
surfaces. They show how an initial seed triangle for each surface component can unfurl into
a full triangulation of that surface component with topological and geometric guarantees. It
requires to compute the local feature sizes for points on the surface which are their distances
to the medial axis. The medial axis computation for surfaces is hard and hence exact local
feature size computation is difficult, if not impossible, for surfaces in general. Of course, one
can approximate the medial axis with existing algorithms [1, 4, 13]. However, these algorithms
require a dense sample with respect to the local feature size in the first place. In this paper we
improve the “furthest-point” strategy by eliminating the need for local feature size computation.
In its place we use some critical and silhouette point computations that are less demanding
than the local feature size computations. In contrast to the algorithm of Boissonnat and Oudot
which computes the local feature size for each sample point generation, our algorithm needs
to compute the critical and silhouette points only sparsely. The algorithm of Boissonnat and
Oudot can be made to work with an one-time computation of the minimum local feature size,
but then, the output triangulation becomes uniform and unnecessarily dense at places where
feature sizes are not small at all.

A related work by Boissonnat, Cohen-Steiner and Vegter [6] considers meshing isosurfaces
from a function E : R? — R evaluated at grid points. The method constructs a triangula-
tion of a box in R® which provides a piecewise linear interpolant E of the function E. The
isosurface £ = 0 is approximated with the isosurface E = 0. The authors provide conditions
on sampling and an associated algorithm to guarantee that the computed surface E = 0 has
the same topology as that of the surface given by £ = 0. This method samples E rather
than the surface £ = 0. It requires the computation of the critical points of E as well as
their indices (a more involved computation). In contrast, our method only samples the surface
E = 0 and computes the critical points of a height function defined on the surface £ = 0
and its restriction to planes. Furthermore, our approach is based on Delaunay/Voronoi geom-
etry as opposed to octree subdivisions. An advantage of Delaunay/Voronoi based approach is
that it fits well with the successful paradigm of Delaunay refinement [7, 20] for mesh generation.

Our approach. We maintain the restricted Delaunay triangulation of a set of points sampled



on the surface and generate more sample points dictated by certain conditions while updating
the triangulation. The algorithm kicks off with a set of initial points, called the seeds. These
points are critical points of a height function on the surface which maps a point of the surface to
one of its co-ordinates. We show that, given such seeds, one can use a simple “topological-disk”
test and certain other critical and silhouette point computations to guarantee the topology.
The critical and silhouette point computations could be costly depending upon the complexity
of the surface, but they are less demanding than the local feature size computations.

The initial seed set is used to capture the topology. Once the topology is recovered, we delete
these seeds. We show that we can maintain the topology of the surface despite these deletions.
This enables us to prove a size optimality result for the output. In the geometry recovery
phase we enforce the aspect ratio and smoothness of the restricted Delaunay triangulation of
the generated sample.

2 Preliminaries

2.1 Necessary concepts

Voronoi diagram. Let P be a finite set of points in R3. The Voronoi cell of p € P is given as
Vy={zeR’: Yge P—{p}, |z —p| < |z —ql}.

The sets V), are convex polyhedra. Closed faces shared by j Voronoi cells for 2 < j < 4 are called
(4 — j)-dimensional Voronoi faces. The 0-, 1-, 2-dimensional Voronoi faces are called Voronoi
vertices, edges and facets respectively. The Voronoi diagram Vor P of P is the collection of all
Voronoi faces.

Delaunay triangulation. The Delaunay triangulation of a set of points P is dual to the
Voronoi diagram of P. Assuming general position, the convex hull of j < 4 points defines a
(j — 1)-dimensional Delaunay simplex if the intersection of their corresponding Voronoi cells is
not empty. The 1-; 2-; 3-dimensional Delaunay simplices are called Delaunay edges, triangles
and tetrahedra respectively. They define a decomposition of the convex hull of all points in P
called the Delaunay triangulation Del P.

Input Surface. The input is a smooth, compact surface ¥ C R? without boundary.

The medial azxis of X is the closure of the set of points that are the centers of maximal balls
called medial balls whose interiors are empty of any points from 3. The local feature size f(x)
at a point z € Y is the Euclidean distance of x from the medial axis. A Lipschitz property
holds for f(), that is, f(z) < f(y) + ||z — y|| for any two points x,y in X, see [1]. A point set
P C ¥ is an e-sample if each x € ¥ has a point p € P within e f(z) distance.

We will need some specific numerical computations on the surface . We assume that the
input representation of ¥ is amenable to these computations. We describe these computations
for the case where ¥ is given with the implicit equation F(x) = 0 where x = (z,y, 2) is the
position vector.

Critical points. Let d € S? be an arbitrary direction with d,, d, and d. being its components
in the z—, y— and z—directions respectively. Define a height function h: ¥ — R as h(x) = x-d.



The critical points of h defined through the local co-ordinate patches on ¥ are the points on X
which have normals along d or —d; see, for example, Wallace [24]. The vector ny = (E,, E,, E.)
with the partial derivatives of E as components is normal to ¥ at x. Therefore, this vector
is parallel to d or —d when E,/d, = E,/d, = E./d,. Hence the system of equations £ =
0,F.d, — Eyd, = 0 and E,d, — E.d, = 0 solves to provide the critical points of h. In what
follows we refer to these points as the critical points of ¥ in the direction d and denote the set
as Zg.

We will also use critical points of a height function defined on some curves.

Genericity condition. We assume that ¥ is generic in the sense that the critical points in
the set Z; are non-degenerate (Hessians are non-singular) for all d € S2.

Silhouette. One of our goals will be to ensure that 3 intersects a Voronoi cell in a topological
disk. The concept of silhouette becomes helpful for this purpose. The silhouette of ¥ with
respect to a direction d is

Jd:{XEZ|nx'd:0}.

It is known that, J; is a ‘Jacobi set” which under the genericity condition are a set of smooth,
pairwise disjoint closed curves [15, 18].

The next lemma will be useful in our analysis. A similar result with some different conditions
can be found in Snyder [22].

Lemma 1 Let M C ¥ be a connected, compact 2-manifold with boundary where the boundary
is a single cycle. The manifold M is a topological disk if there exists a d € S? so that M does
not intersect J,.

Proof. Let d be a direction satisfying the condition of the lemma. Consider the map II: M — A
where A is a plane with the normal d and II projects each point of M orthogonally to A. Since
M is connected, compact and has a single boundary cycle, it is sufficient to prove that II is
one-to-one. Suppose not. Then, there is a line with direction d which intersects M in two or
more points. Let p and p’ be two such consecutive points on this line. The two normals n,
and n,, are oppositely oriented in the sense that one makes an angle smaller than 7/2 with d
and the other makes greater than 7/2 angle with d. None of them can make exactly /2 angle
with d since, in that case, the point in question would be in J;. Consider a curve joining p
and p’. Since M is connected, such a curve always exists. Along this curve the normal to the
surface changes from n, to n,,. By mean-value theorem there is a point on the curve where
the normal is orthogonal to d which is impossible since M does not contain any point of J;.

2.2 Surface computations

The algorithm uses the following numerical computations on the input surface.

CRITSURF(X,d) : This subroutine solves the system of equations as mentioned before to
compute the critical points Z,. Either numerical or symbolic computations can be used for this



purpose [19]. The complexity of this computation certainly depends on the nature of E.

CRITCURVE(X,F): This subroutine computes the critical points of a height function de-
fined on the curve of intersection between Y and the plane of a Voronoi facet F. Let x' = Mx
be a linear transformation of the co-ordinate axes where the z'-y’ plane is identified with
the plane of F' and the y’-axis is identified with the projection of z-axis on the plane of F.
Writing G(x') = E(M~!x') = 0 gives ¥ with the new co-ordinate axis frame. The equation
H(2',y') = G(2',4',0) = 0 gives the implicit equation of the curve in which ¥ intersects the
plane of F. The system of equations H = 0, H,y = 0 gives the critical points of the height
function h defined on the curve where h(z’,y") = y'. We call the critical points of h as the
critical points of the curve H(z',y") = 0.

SILHFACET(X,F,d): This subroutine determines the intersection points of the silhouette
with the plane of the Voronoi facet F. Let a-x = 1 be the equation of the plane containing
F'. The required point(s) are the solutions of the system of equations E(x) =0, a-x = 1 and
ny -d=0.

CRITSILH(X,d, d’): This subroutine computes the critical points on the silhouette J; for
the height function h: J; — R where h(x) = x - d' for a direction d’ orthogonal to d. The
silhouette is given by two implicit equations E(x) = 0 and G(x) = ny - d = 0. The tangent to
the silhouette at x is given by ny x Gx where Gx = (G4, Gy, G;). Thus, the critical points on
Jg along d’ are the solutions of the system of equations F(x) = 0, ny-d = 0 and (nyx xGx)-d’ = 0.

EDGESURFACE(Y, e): This subroutine determines the intersection points of a Voronoi edge
e with the surface ¥. One way to do this is to align the z-axis with the line of e, say with the
transformation x’ = Mx and then setting y’ and 2’ to zero in the equation G(x') = E(M ~'x) =
0. The equation H(x") = G(2/,0,0) = 0 is an equation in a single variable 2’ whose solution
gives the intersection points of the line of e with ¥. Among those intersection points, one can
compute the points delimited by the endpoints of e.

2.3 Background results

A set of points P on a surface 3 defines a restricted Voronoi diagram Vor P|y, as the collection
of restricted Voronoi cells {Vp|s, = V, N ¥}. Dual to the restricted Voronoi diagram is the
restricted Delaunay triangulation Del P|y. It is a simplicial complex where o € Del P|y if and
only if it is the convex hull of a set of vertices R C P and [ cp Vqls # 0.

A result of Edelsbrunner and Shah [16] relates the topology of the restricted Delaunay
triangulation to the sampled surface as stated in Theorem 1. We say that Vor P|y satisfies the
topological ball property if each Voronoi face of dimension d intersects X in a closed topological
(d — 1)-ball or in an empty set.

Theorem 1 The underlying space of Del P|s, is homeomorphic to ¥ if Vor P|s, satisfies the
topological ball property.



In what follows we use the following functions

c
1—4ec

2
B(c) = arcsinc+ arcsin(—=c)

V3

and a constant k£ > 0 for which the following inequality holds:

=5 < cos(a(k) + 36(k)). (1)

We choose k& = 0.06 for which the above inequality holds and some of the earlier results
become applicable.

We use the notation Za, b to denote the acute angle between the lines supporting the vectors
a and b. In what follows n,,, denotes the normal to a triangle pgr.

An immediate corollary of Lemma 2 of Amenta and Bern [1] is the following.

Lemma 2 Let z,y be any two points in X so that ||z — y| < cf(x) where ¢ < 1/4. Then
Zng,ny < ofc).

Next result follows from Theorem 5 of Amenta, Choi, Dey and Leekha[2].

Lemma 3 Let pgr be a triangle where p,q,r are three points on X and the circumradius of pqr
is smaller than cf(p). Then, for ¢ < 0.06, /1y, n, < B(c).

Next two results are taken from Cheng, Dey, Edelsbrunner and Sullivan [8].

Lemma 4 Let a line L intersect ¥ in two points x,y where the angle ZLn, between L and the
normal n, at x is §. Then, ||z —y|| > 2f(x) cos&.

Lemma 5 Let x, y be two points on ¥. The angle Z(y — z),n, between the vector y — x and
n, s at least o

. T—y
/2 — arcsm(T(m)).

3 Topological ball property

The output mesh produced by our algorithm is the restricted Delaunay triangulation Del P|x
where P is the generated sample. So, our goal is to ensure that Del P|y; is homeomorphic to
3. We ensure this by sampling ¥ so that the topological ball property is satisfied. We establish
that whenever this topological ball property is violated, we can find a point on ¥ which is far
away from all other points and thus maintain a lower bound on inter-point distances. This
lower bound ensures the termination of the algorithm.



3.1 Voronoi edges

The topological ball property requires that a Voronoi edge intersects X only at a single point.
Next lemma shows that if this property is violated, there is a point on ¥ far away from all
existing sample points.

Lemma 6 Let e € V}, be a Voronoi edge that intersects ¥ either (i) in two or more points, or
(ii) tangentially in a single point. Then, the intersection point of e and ¥ which is furthest
from p is at least kf(p) away from p.

Proof. Case(i): Let = and y be any two intersection points of e and ¥ (Figure 1). Assume
that ||p — z|| < |lp — y||- Suppose that contrary to the lemma ||p — z|| < |[p — y|| < kf(p). Let e
make an angle £ with the normal n,. If pgr is the dual Delaunay triangle of e, we have

§

LNpgr, Ny + 210y, Ny

B(k) + a(k)

<
<

by Lemma 3 and Lemma 2.
By Lemma 4, ||z — y|| > 2f(z) cos¢. On the other hand ||z — y|| < 2kf(p) < 2= f(z). We
reach a contradiction when the following inequality holds:

% < cos(a(k) + B(k)).

This inequality holds for our choice of k.

o

Figure 1: Voronoi edge intersecting 3 at two points or tangentially.

Case (ii): Let x be the point of tangency between e and ¥ (Figure 1). As argued above, if
|z — p|| < kf(p), we have £, the angle between e and n, no more than a(k) + §(k) which is
much smaller than 7 /2 for k = 0.06. This contradicts that e meets X tangentially at .

3.2 Voronoi facets

Lemma 7 Let F' be a Voronoi facet in V), where F N'Y contains a cycle C (Figure 2). Let L
be any line in the plane of F and normal to C at a point x € C. The furthest point in LN C
from p is at least kf(p) away from p.

Proof. Suppose that, on the contrary, all points of L N C are within kf(p) distance from p.
In particular, ||z — p|| < kf(p). Let pg be the dual Delaunay edge of F. We have ||p — ¢|| <
2|lp — z|| < 2kf(p). We know that
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Lln, = ——Z(qg—p),n,

2
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< E_l(q_p)vnp_‘_lnp’nw
Nl k
<
< arcsin( 27 ) )+ -
(Lemma 5) (Lemma 2)
< arcsink + K
= e 1—4k

< a(k) + (k).

Now we can proceed as in the proof of Lemma 6 to reach a contradiction as L must intersect
C in at least one other point.

Lemma 8 Let I be a Voronoi facet in V), where F'N'Y contains at least two closed topological
intervals. Further, assume that each Voronoi edge intersects X in at most one point. The
furthest point from p which lies on a Voronoi edge and in FNX is at least kf(p) away from p.

i3

\<2B(K

w L

Figure 2: Voronoi facet intersecting ¥ in a cycle (left) and topological intervals (right).

Proof. Suppose that, on the contrary, all intersection points of 3 with the Voronoi edges of V),
lie within kf(p) distance of p. Then, by Lemma 3 all these Voronoi edges make angle smaller
than B(k) with n,. Let u,v and z,y be the two end points of any two topological intervals in
F N 3. Consider the quadrilateral ¢ formed by the supporting lines of the four Voronoi edges
on which these four end points lie. These Voronoi edges are almost parallel since they make
small angle with the common direction of n,. The quadrilateral uvxy must reside in V,, and
hence in @. It is not hard to verify that at least one edge of uvzy makes a small angle less than
28(k) with a Voronoi edge, see Figure 2. Let vz be such an edge. It follows that vx makes an
angle less than a(k)+36(k) = £ with n,. Also |lv—z| <2kf(p) < %f(:r) Now we can reach
a contradiction if

% < cos(a(k) + 306(k))

which holds with the assumed value of k.



3.3 Voronoi cells

The following lemma is used in lower bounding the distances.

Lemma 9 Let a Voronoi cell V,, contain a point ¢ € Jq in the silhouette where d = n,. We
have [|p — q|| = kf(p).

Proof. By definition n,; - n, = 0. On the other hand, if |[p — ¢|| < kf(p) we must have
/ny,,ng < a(k) which implies n,, - n, # 0, a contradiction.

We will use the following lemma in proving Lemma 11.

Lemma 10 Let I be a Voronoi facet in V), where F'N X is a topological interval. Further, let
the two points where the Voronoi edges of F intersect ¥ lie within a distance less than kf(p)
from p. Then, all points of F N'Y lie within a distance less than kf(p) from p.

Proof. Consider the ball B centered at p with radius kf(p). This ball intersects the plane II
of F'in a circle C. We claim that C' and hence B contains F' N Y completely inside. If not, C
intersects the interval F'N ¥ and hence II N ¥ in at least two disconnected components. One
can shrink C into a smaller circle C’ which intersects the interval II N X tangentially at two
points. First shrink C' radially till the closed disk bounded by C intersects II N Y in exactly
two components, one of them being a single point, say a. Now shrink C' further by moving the
center towards a till it intersects II N X tangentially at two points, one of them being a, see
Figure 3.

Figure 3: Nlustration for the proof of Lemma 10.

The plane IT intersects the two medial balls at a in two circles. Let C” be the circle among
these two on the same side of the tangent plane at a as the circle C’ is. Let B” be the medial
ball so that C” = B” NII. We claim that C” is almost as big as a diametric circle of B”. The
distance between p and II is at most kf(p) as the two Voronoi edges of F' are within kf(p)
distance from p. The angle between n,, and II is no more than arcsin (k/2) by Lemma 5. Also
the angle between n, and n, is no more than a(k) (Lemma 2). This means that the diametric
segment of the medial ball B” which passes through a makes at most an angle £ with II where

k
¢ < arcsin 3 + a(k).

Let dq and dy be the diameters of C” and B”. Then,



dq dg cos &

2f(a)cos&

(2(1 — k) f(p)) cos&.

The radius di/2 of C" is more than kf(p) if cosé > k/(1 — k), a condition satisfied by our
choice of k.

(AVARAVARLVS

The circles C’ and C” meet only tangentially at a. Also the interior of C” is empty of any
point of ¥ other than a. If C’ contains or coincides with C”, its radius is bigger than kf(p)
contradicting the fact that C” is inside B, see Figure 3(a). If C’ is contained inside C”, we reach
a contradiction since C” intersects X in at least two points one of which must reside inside C”
(Figure 3(b)). It follows that F' N X lies within kf(p) distance as claimed.

Lemma 11 Let V,NX be a manifold with boundary where the boundary has at least two cycles
none of which resides on a single facet of V,,. Then, there is a point of ¥ on a Voronoi edge of
Vp which is at least kf(p) away from p.

Proof.

Let I be any facet of V), intersecting . We can assume that F' N X is a single topological
interval. Otherwise, F' N ¥ has more than one topological interval since it cannot contain any
cycle by the condition of the lemma. In that case we can apply Lemma 8 to have a point on a
Voronoi edge of F' satisfying the claim of the lemma.

For the sake of contradiction assume that all points of intersection between the Voronoi
edges of V), and ¥ lie within a distance less than kf(p) from p.

Now consider a ball B of radius kf(p) centering p. We claim that BNX is a topological disk
D. For otherwise B would contain a medial axis point by a result of Boissonnat and Cazals [4]
which would imply that B has a radius at least f(p) reaching a contradiction for k < 1.

The boundary cycles of the manifold M = V,, MY must lie in B as each point on them has a
distance less than kf(p) from p by Lemma 10. Let C' be any of these boundary cycles. Consider
the Voronoi facets that contain points of C'. Let R denote the convex polytope containing p
inside and bounded by the planes of these Voronoi facets. The cycle C bounds a smaller disk,
disk(C), in the topological disk D. This smaller disk lies inside V}, and hence in R. Consider
another boundary cycle C’ of M which must exist according to the condition of the lemma.
This cycle lies inside R as R contains V},. If disk(C') and disk(C") are not disjoint, one must lie
completely inside the other as C' and C’ cannot cross each other. Assume, in that case, disk(C)
is contained inside disk(C"). Consider a curve joining two points on C' and C” and lying outside
disk(C'). The interior of this curve must intersect R. This is because this curve goes outside R
as it goes outside disk(C') and then must reenter R to meet C’. Let G be a facet of R at which
this curve reenters R and x be the point of reentry. Let L be the line joining = to its closest
point y on the interval of C' on G. If y is an interior point of the interval, L intersects C' at
right angle and we reach a contradiction with similar arguments as in the proof of Lemma 7.
If y is an end point of the interval, it must lie on a Voronoi edge of V},. In this case the angle
between L and n, is less than the angle between the Voronoi edge and n,. Again, we can use
arguments of the proof of Lemma 7 to reach a contradiction.
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4 Topology sampling

The sampling algorithm first inserts points of 3 into a sample P as long as the restricted Delau-
nay triangulation Del P|y; is not homeomorphic to . It ensures the topological ball property
by four tests, namely VOREDGE(), TorPODisk(), CRITCURVE() and SILHOUETTE(). The first
two tests involve computing the intersections of Voronoi edges with the surface and some simple
combinatorial checks. Only the third and fourth tests use more complicated computations such
as computing the points by CRITSILH and SILHFACET . Formulation of our lemmas allows us
to apply these two tests only when the other two fail. Thus, they are used only sparsely. We
argue later that these tests are sufficient to achieve the homeomorphism. All four tests also
insert a point into the sample P if they fail.

VOREDGE(e € V)

If EDGESURFACE(X,e) computes a single point x, check if e meets ¥ at = tangen-
tially. If so, return x. Otherwise, if EDGESURFACE(Y, e) computes two or more
points, return the point furthest from p among them.

Let T, be the set of triangles in Del P|y; incident to p. ToPODISK checks if the triangles in
T, make a topological disk. This is done by first checking if each edge incident to p in 7, has
exactly two incident triangles from 7},. If this condition is satisfied, it checks if there is exactly
one cycle of triangles in 7}, around p. The test fails if either of the conditions is not satisfied.

ToroDIsk(p)

If T}, is not a topological disk, return the intersection point of a Voronoi edge of V),
and X which is furthest from p.

The next test checks if a facet F' intersects ¥ in a cycle though it does not compute the
cycle explicitly. It uses CRITCURVE(X,F) instead.

FACETCYCLE(F € V},)

Compute X :=CRITCURVE(X,F).

If any point x € X lies inside V},, compute a line L going through x as follows. The
line L is the projection of a line L’ onto the plane of I where L’ goes through z
and is parallel to the z-axis. (Notice that L is normal to the intersection curve of ¥
and F' at x by the definition of CRITCURVE)

If L intersects ¥ at any point other than x in V), return the point among such
intersection points which is furthest from p.

SILHOUETTE( ) checks if a Voronoi cell has any point of the silhouette. For this check it uses
CRITSILH and SILHFACET computations. If the check succeeds, it introduces a point from the
silhouette.

SILHOUETTE(V},)

Compute the normal direction n, = (E,, E,, E;). Choose a direction d orthogonal
to ny,.

Compute X := CRITSILH(X, np,d).

If XNV, # ¢, return one point of X lying inside V,. Otherwise, for each facet
F €V, compute Y := SILHFACET(F,d). If Y N F # ¢, return a point from Y lying
inside F'.

11



Initially P contains all critical points of 3 along the z = (0,0, 1) direction computed by
CRITSURF. It will be clear in Lemma 12 how this initial set helps in satisfying the topological
ball property. TOPOLOGY uses the four tests VOREDGE, TorPODISK, FACETCYCLE and SIL-
HOUETTE, necessarily in this order to insert points into the sample P. This ordering enables
the algorithm to postpone the complicated computations necessary in the FACETCYCLE and
SHILOUETTE tests only after the simpler computations in VOREDGE and ToPODISK.

ToproLoGY(P)

1. Check if any of VOREDGE, ToPODISK, FACETCYCLE, or SILHOUETTE necessarily
in this order, can insert a new point. If so, insert it in P and update the Voronoi
diagram. Continue the process till no new point is inserted.

2. Return P

Lemma 12 If the input sample to TOPOLOGY includes all critical points of X for a direction
and TOPOLOGY terminates, the topological ball property holds for Vor Pls, at the end of its
execution.

Proof. No Voronoi edge can intersect 3 in more than one point at the end of TOPOLOGY since
otherwise VOREDGE would succeed to insert a new point.

Next, consider the possibility of a Voronoi facet F' intersecting ¥ in more than one topo-
logical intervals, in cycles, or in combination of both. If there is more than one topological
interval, ¥ must intersect more than two Voronoi edges of F' since no Voronoi edge intersects X
in more than one point. This means the dual Delaunay edge of F' is incident to more that two
triangles in Del P|y,. But, this violates the topological disk condition imposed by ToPODISK
for some point p € P. Next, consider when F intersects ¥ in a single topological interval and
also in some cycle C'. A local minimum z € C is detected to reside in a Voronoi cell. Also the
line L as computed by FACETCYCLE is normal to C and thus intersects C' in another point.
Thus, the test in FACETCYCLE succeeds which would trigger another insertion, a contradiction
to the termination of TOPOLOGY.

The intersection of a Voronoi cell V}, with ¥ is a manifold possibly with boundary. This
manifold cannot have a component M which is a manifold without boundary since in that case
the maxima and minima of M computed by CRITSURF as seed points are in P and also in V),
an impossibility.

Now consider the case where M is a connected, comapct 2-manifold with a single boundary
cycle but is not a topological disk. Thanks to Lemma 1, M must intersect the silhouette Jy
where d = ny. Let d’ be the direction orthogonal to d chosen by SILHOUETTE for its computation
of the set X. If M contains a closed curve from J;, then there exists a point ¢ in J; which is
critical along the direction d’. This point is computed by SILHOUETTE in the set X which lies
inside V},. It triggers an insertion which violates the termination of ToPOLOGY. If M does not
contain any closed curve from Jg, a curve from it must intersect a Voronoi facet of V,. In that
case SILHOUETTE computes a point in the set Y by SILHFACET which lies inside F. Again, a
point from Y is inserted contradicting the termination of TOPOLOGY.

The only remaining case is that V,, N ¥ is a manifold with more than one boundary cycle
where each of these cycles intersect a cycle of Voronoi edges. The dual to this cycle of Voronoi
edges is a cycle of triangles in Del P|y, around p. Since none of the Voronoi edges intersects 3
in more than one point, the two boundary cycles induce two distinct cycles of triangles around
p. Therefore, TOPODISK(p) fails and should insert a new point contradicting the termination
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of TOPOLOGY.

Lemma 13 Any point inserted by TOPOLOGY is more than kf(p) away from its closest sample
point in P.

Proof. Tt follows from Lemma 6 that VOREDGE inserts a point kf(p) away from its closest
point p.

ToroDIsK inserts a point when it fails. The restricted Delaunay triangles incident to p do
not form a topological disk if (i) an edge does not have two restricted Delaunay triangles, (ii)
two or more cycles of restricted Delaunay triangles are incident to p.

Case (i): Assume that a restricted Delaunay edge has exactly one triangle in 7},. This means
that X has intersected the dual facet F' of the edge in a single Voronoi edge e. Since ¥ has no
boundary, F'N3 cannot have any end point other than on e. This means Y. intersects e in more
than one point or tangentially. This is not possible since VOREDGE has taken care of all such
Voronoi edges before TOPODISK is called.

Next, consider the case when a restricted Delaunay edge has two or more triangles incident
to it from 7T},. This means the dual facet I has intersected X in two or more topological intervals.
Apply Lemma 8 to claim that the point inserted by ToPODISK is at least kf(p) away from its
closest sample point p.

Case (ii): In this case V, N X has at least two boundary cycles none of which lie completely
inside a facet. Apply Lemma 11 to claim that the inserted point is at least kf(p) away from p.

When FACETCYCLE inserts a point, the furthest point on L NY is at least kf(p) away from
p by Lemma, 7.

In the remaining case when SILHOUETTE inserts a point ¢ € J4 with d = n,, we have ¢ at
least kf(p) away from p by Lemma 9.

4.1 Deleting seeds

All new points other than the seeds are added at least some constant times the local feature
size distance away from their closest sample point. This property can be used to show that
the output sample size is optimal except that the seeds can be arbitrarily dense. Although the
case where the set of critical points is dense is unlikely in practice, the theoretical guarantee of
optimality cannot be achieved unless we delete the seeds. We do so after the topology of the
input surface is captured.

It is true that if we delete a sample point, the topological ball property may not remain
valid. Thanks to the next lemma we can restore it by inserting more points by TOPOLOGY.

Lemma 14 Let p € P be any point and Vor Pl|y satisfy the topological ball property. No
Voronoi cell in Vor (P \ p) can have a connected component of ¥ inside.

Proof. Suppose that V; € Vor (P \ p) has a connected component @ of ¥ inside it. Now con-
sider introducing the point p into Vor (P \ p). The bisecting plane H of p and ¢ must intersect
@ in V; since otherwise there is a Voronoi cell not satisfying the topological ball property in
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Vor P|s. The plane H intersects @ in a cycle which resides in a Voronoi facet in Vor P. Thus,
Vor P|x, does not satisfy the topological ball property, a contradiction.

After deleting a seed point, the only thing we need to ensure is that a Voronoi cell V, does
not have any connected component of ¥ residing completely inside V},. Precisely this is the
case avoided by seeds in the proof of Lemma 12. Lemma 14 enables us to avoid this case after
deleting a seed point. So, we have the following corollary.

Corollary 1 TOPOLOGY can restore the topological ball property given P\ p as input where p
is a seed point and Vor P satisfies the topological ball property.

Putting together we have the topology sampling step as follows.

SAMPLETOPOLOGY(P)

1. TopoLoGY(P)
2. while there is a seed point p € P
delete p from P and call TorpoLOGY(P)

5 Geometry sampling

Topological guarantee of the output triangulation alone is not sufficient for many applications.
In finite element methods, it is important that the surface triangles have bounded aspect ratio.
Also, the output approximation should be smooth enough as it approximates a smooth surface.
We introduce two sampling steps that take care of these two issues.

5.1 Quality

In order to restore the quality of the triangles, we take the approach of Chew [11]. Define
p(t) = 7 as the radius-edge ratio of a triangle ¢ where r is the circumradius of ¢ and £ is its
shortest edge length. It is well known that a triangle is well shaped if its radius-edge ratio is
bounded from above. Following Chew [11], if there is a triangle ¢ in Del P|y, with p(t) > po > 1,
we introduce the point where the dual Voronoi edge of ¢ intersects 3. Certainly, if this procedure
terminates, all triangles in the output has radius-edge ratio no more than pg. We will show
later that this process terminates. We choose pg = (1 + k)? which guarantees termination as

well as a size optimality result.
QuALITY(P)

While there is a triangle ¢ with p(¢) > (1 + k)? in Del P|x, insert any point of
intersection between the dual Voronoi edge of ¢ and ¥ into P and update Vor P.

5.2 Smoothness

The output surface is a piecewise linear approximation of 3. One could take different measures
of smoothness such as discrete curvatures for the output. We choose a simple measure for ease
in implementation. Let e be any edge on a triangulated surface N with two triangles incident
on it. We define the roughness g(e) of e as g(e) = m — 6 where 6 is the internal dihedral angle
at e. We sample more points until all edges have roughness below a threshold.
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SMOOTH(P)

while there is an edge pg € Del P|y, with g(pq) > 2a(k) insert the point furthest
from p among all intersections of the Voronoi edges of V,, and ¥ and update Vor P.

Lemma 15 Any point inserted by SMOOTH is more than kf(p) away from its closest neighbor
n P.

Proof. Let pq be the edge which triggers the insertion of a point z by SMOOTH. So x is
the intersection point of a Voronoi edge in V,, and X furthest from p. Suppose z is within
kf(p) distance of p. Then all intersection points of the Voronoi edges of V}, and ¥ are within
kf(p) distance from p. This means all restricted triangles incident to p have circumradii no
more than kf(p). By Lemma 3 the two triangles pgr and pgs incident to p have normals sat-
isfying Znpq,n, < a(k) and Zny,gs,n, < o(k). Therefore, Znyg, 0,05 < 2a(k) which means
9(pq) < 2a(k) contradicting the insertion of x.

6 Meshing and Guarantees

We maintain the restricted Delaunay triangulation Del P|y; all the time during sampling. This
triangulation is produced as the output mesh of the DELMESH algorithm that combines all
steps.

DELMESH(X)
1. Compute P :=CRITSURF(X,(0,0,1)).
2. P() =P
3. SAMPLETOPOLOGY(P)
4. QuAaLIiTY(P)
5. SMOOTH(P)
6. Go back to 2 if Py # P
7. Output Del P|x.

Notice that after geometry sampling we go back to check the topology since more sample
points may disturb the topology of the restricted Delaunay triangulation. In implementation
we do not need to search the entire triangulation for possible topology violation. Instead, since
each insertion changes the Delaunay triangulation locally, only a local search is sufficient.

6.1 Termination and quality

Theorem 2 DELMESH terminates.

Proof. We claim that other than seed points, any two points p and ¢ in the sample P at
any stage of DELMESH have distance ||p — ¢|| > kf(p)/(1 + k). We assume the above claim
inductively before the insertion of a point p. We show that p is inserted more than kf(p) away
from all other existing points. Then, by Lipschitz property of f(), it can be shown that any
other existing point ¢ # p is more than kf(q)/(k + 1) distance away from p establishing the
inductive hypothesis.
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If p is inserted by SAMPLETOPOLOGY it is more than kf(p) away from all other points
by Lemma 13. If p is inserted by QUALITY, it is more than (k + 1)2¢ distance away from its
closest sample points where £ is the length of an edge in Del P|y, incident to one of the closest
samples ¢ of p. By inductive hypothesis ¢ > kf(q)/(k + 1) since all seed points are deleted
before QUALITY is called. Thus, |[p—¢q|| > k(k+1)f(q). By Lipschitz property of f(), we have
lp — q|| > Ef(p). If p is inserted by SMOOTH, Lemma 15 confirms the claim.

Let fy, = Inf,ex f(p). Since ¥ is smooth we have f,,, > 0. It follows that ¢,,, = kf,,,/(k+1) >
0. Since any two inserted points in P are at distance £,, > 0 or more by the above argument,
we can have only fintely many points allowed to be inserted by the standard packing argument.
Termination of DELMESH follows.

Theorem 3 The output surface N of DELMESH satisfies the following properties:
(i) N is homeomorphic to 3.

(ii) Each triangle in N has radius-edge ratio less than (1 + k)2,

(iii) Roughness of each edge of N is less than 2a(k).

Proof. Since DELMESH terminates, the conclusion of Lemma 12 holds. Therefore, (i) follows
immediately because of Theorem 1. The properties (ii) and (iii) are immediate from the termi-
nation of DELMESH.

6.2 Optimality

Theorem 4 The number of points in P is within a constant factor of any e-sample of ¥ for
any € < 1/5.

Proof. The number of points in any e-sample of ¥ is Q( [, ﬁ dx) for any € < 1/5 [17]. We
show that P has at most c - fz ﬁ dx points for some suitable constant ¢ > 0.

Consider any two points p and ¢ in the final P. By the arguments in the proof of Theorem
2 we have ||p —q|| > kf(p)/(k 4+ 1). We can center disjoint balls B, of radii ﬁ f(p) at the
points p € P. For each point x € B, N X, the Lipschitz condition implies that

2+ 3k
< —
F@) < F0) +lIp— ol < 2508 (o). )
Also, by Lemma 5, Z(x — p),n, > 7/2 — arcsm(4f4k) Let 2’ be the orthogonal projection of x

onto the tangent plane at p. It follows that [|p — 2/|| > |[p — x| - cos(arcsin()) > |Ip — z| /2.
We conclude that
mk?

area(B, NY) > 601+ )

s [(n)*. 3)
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Putting everything together, we obtain

St 2 % Sy T

peEP
(2)&(3) 2
NI x5
peP
k?
> — - |P|.
- 4(2 + 3k)? 7]
This proves that the size of our mesh is asymptotically optimal.

7 Discussions

We presented a provable algorithm for sampling and meshing a smooth surface without bound-
ary. Implicit and parametric surfaces can be meshed with this algorithm with guaranteed
topology and geometry and also with guarantees on the mesh size and quality. Although the
theory applies to smooth surfaces, we experimented with non-smooth surfaces and the results
are encouraging.

We implemented a simplified version of DELMESH using CGAL [27]. We did not implement
the FACETCYCLE and SILHOUETTE tests. Figure 4 shows some of the results of this implemen-
tation. For our experiment we took some of the triangulated surfaces obtained by a surface
reconstruction software called TIGHT COCONE as input [26]. Although these surfaces already
have sample points, we disregarded all these sample points for our experiments and considered
the piecewise linear surface as input. DELMESH generated a new sample and mesh.

We took the local maxima, minima and saddle points in the input surfaces as seed points.
Figure 4 shows the progression of the output at different stages. We set the roughness angle at
10°.

We experimented with some CAD surfaces as well though they are not smooth. They are
represented with standard STL files where the curved surface patches are triangulated. Third
column in Figure 4 shows one such surface. In this case we took the sample points on the edges
and vertices where the original surface patches meet as the seeds. The output of DELMESH is
a surface mesh with guaranteed quality.

These examples show that DELMESH can be used for remeshing triangulated surfaces and
meshing CAD surfaces while guaranteeing bounded aspect ratio. An open question remains if
the method or its variant can be proved to mesh non-smooth surfaces with guarantees. The
critical point computations are the most costly computations in the algorithm. Can we avoid
them and under what circumstances?
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whose comments were helpful improving the paper.
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Figure 4: First row shows the surfaces to be sampled. Second row is the restricted Delaunay of
the seeds. Third row shows the triangulation after the topology is captured with seeds deleted.
Fourth row shows the results after smoothing. For the CAD data, the seeds contain vertices on
sharp edges and corners which are not deleted and smoothing are not applied to sharp edges

and vertices.
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