
I • g - J R  "_JR i n  R ~ _ ~ B  i R o B  i~ l l -  

http://crossmark.crossref.org/dialog/?doi=10.1145%2F99977.99993&domain=pdf&date_stamp=1991-01-03


lmost a decade has passed 
since we started advocating 
a process of  usability design 
[20-22]. This article is a 
status repor t  about the 
value of this process and, 

mainly, a description of new ideas 
for enhancing the use of  the pro- 
cess. We first note that, when fol- 
lowed, the process leads to usable, 
useful, likeable computer  systems 
and applications. Nevertheless, 
experience and observational evi- 
dence show that (because of  the way 
development  work is organized and 
carried out) the process is often not 
followed, despite designers' enthu- 
siasm and motivation to do so. To 
get around these organizational 
and technical obstacles, we propose 
a) greater reliance on existing 
methodologies for establishing test- 
able usability and productivity- 
enhancing goals; b) a new method 
for identifying and focuging atten- 
tion on long-term, trends about the 
effects that computer  applications 
have on end-user productivity; and 
c) a new approach,  now under  way, 
to application development,  partic- 
ularly the development  of  user in- 
terfaces. 

U s a b i l i t y  D e s i g n  P r o c e s s  
R e v i e w  O f  T h e  P r O C e s s  

The  process consists of  four activi- 
ties [18, 20-22].  

Early Focus On Users. Designers 
should have direct contact with in- 
tended or actual users--via  inter- 
views, observations, surveys, partic- 
ipatory design. The  aim is to 
understand users' cognitive, behav- 
ioral, attitudinal, and anthropomet-  
ric characterist ics--and the charac- 
teristics of  the jobs they will be 
doing. 

Integrated Design. All aspects of  
usability (e.g., user interface, help 
system, training plan, documenta- 
tion) should evolve in parallel, 
rather than be defined sequentially, 
and should be under  one manage- 
ment. 

Early~And Continual~User 
Testing. The  only presently feasible 
approach to successful design is an 
empirical one, requiring observa- 

tion and measurement  of  user be- 
havior, careful evaluation of  feed- 
back, insightful solutions to existing 
problems, and strong motivation to 
make design changes. 

Iterative Design. A system under  
development  must be modified 
based upon the results of  behav- 
ioral tests of  functions, user inter- 
face, help system, documentation, 
training approach.  This process of  
implementation, testing, feedback, 
evaluation, and change must be 
repeated to iteratively improve the 
system. 

s t a t u s :  l l f l x e d  R e s u l t s  

We, and others proposing similar 
ideas (see below), have worked hard 
at spreading this process of  usabil- 
ity design. We have used numerous  
channels to accomplish this: fre- 
quent talks, workshops, seminars, 
publications, consulting, addressing 
arguments  used against it [22], con- 
ducting a direct case study of the 
process [20], and identifying meth- 
ods for people not fully trained as 
human factors professionals to use 
in carrying out this process [18]. 

The Process Works. Several lines 
of  evidence indicate that this usabil- 
ity design process leads to systems, 
applications, and products that are 
easy to learn, contain the right 
functions, are well liked, and safe. 
The  process is now well known; 
nearly all human factors people 
endorse it. Several others, often 
working independently, have advo- 
cated more-or-less similar ideas: 
Bennett  [3]; Bury [9]; Damodaran,  
Simpson, and Wilson [13]; Meister 
[28]; Reitman-Olson [31]; Rubin- 
stein and Hersh [33]; Shackel [34]; 
the Usability Engineering group at 
DEC including Whiteside, Good, 
and Wixon (e.g., [17, 40]). 

Second, the usability engineering 
process developed at DEC by 
Whiteside and colleagues has been 
reported to lead to many successful 
applications [17]. 

Third,  retrospective reports 
about the development of  com- 
puter  systems, including several 
that have been very influential, 
emphasize the value of following 

this type of  development  process: 
Xerox's Star system [35]; Apple's 
Lisa T M  system [39]; IBM's Audio 
Distribution System (ADS) [19]; 
IBM's Rexx [12]; Tektronix's 
Graphic Input  Workstation [36]; 
Boeing's banking terminal [10]; 
Digital Equipment  Corporation's 
VAX Text  Processing Utility [16]; 
IBM's QMF [8]; IBM Research 
Computer  Systems Depar tment  
systems [15]; Lotus Development 
Corporation's Lotus 1-2-3 [26]. 
Also see [1]. 

Fourth, case studies have at- 
tempted to test, and have success- 
fully demonstrated,  the value of 
this process [9, 17, 19, 25]. Because 
of practical limitations, these have 
not been controlled experiments 
wherein another  group of design- 
ers built the same system using a 
different development  process. 
One study, in conjunction with a 
one-semester university course, did 
use a controlled experimental  para- 
digm to compare  "prototyping" 
and "specifying design" approaches 
[7]. 

But, The Process is Not Often 
Used. Certainly, most designers 
want to create useful, usable, like- 
able systems. So, why is this process, 
which has existed for a decade or 
so, not used more often? Experi- 
ence has shown that there are pow- 
erful, interacting organizational 
and technical reasons. 

First, development  work is orga- 
nized around goals that are to be 
met. These generally do not in- 
clude usability goals. 

Second, despite the evidence 
[e.g., 17], there is still a belief that 
usability cannot be measured. Aside 
from p rogrammer  productivity 
studies, there are no generally ac- 
cepted behavioral metrics, even 
rough ones, that describe the 
trends in the usability of  computer  
systems in the last two decades (but 
see [14]). 

Third,  also playing a role are 
management  reward structures and 
apparent  conflicts between meeting 
deadlines and achieving usability. 
Project management  is often reluc- 
tant to sign up for usability because 

C O M M U N I C A T I O N S  OF THE ACM/January 1991/Vol.34, No.l 7S 



of  lack of  confidence in managing 
something that does not have clear 
goals and that does not have tools to 
efficiently address problems as they 
arise. Indeed, management has to 
solicit others--all  of  whom already 
have more than enough to d o - - t o  
carry out most recommendations 
that usability people make. 

Fourtlh, designers report that 
software development is not orga- 
nized to carry out this process. Iter- 
ative design is thought  to be too 
risky, too difficult, and too time- 
consuming. The  user-interface 
code and the functional code are 
intermixed. Because of  the amount  
of  effort required and unantici- 
pated side effects, application man- 
agers ofl:en want to minimize user- 
interface changes--even though 
these changes would probably en- 
hance usability. 

Fifth, designers need better tools 
in order  to do iterative design. 

Sixth, nearly every new applica- 
tion creates its own user interface. 
The work is enormous (often over 
half the code), is not leveraged 
(usually does not benefit from code 
reuse), and is generally not carried 
out by people skilled in user-inter- 
face design. 

W h a t  Ta, DO? 

What is needed for this process of  
usability design to be used more 
often? How can this process, which 
works so well for small groups of  
outstanding people having dynamic 
leaders, be made to work in much 
larger work organizations and in 
organizations which have a higher 
proportion of  workers with average 
abilities? The  original contribution 
of  this article is to address these 
questions by outlining possible so- 
lutions to the six problems just 
mentioned. 

' l r e s t a b l l o  u s a b i l i t y  G o a l s  
F o r  I n d i v i d u a l  S Y s t e m s  
Many components o f  systems and 
applications have technical goals 
which help focus the development 
work (e.g., cycle time will be 20 
nsec; the system will have no more 
than 2 hours of  downtime per 

month; the memory must store 4 
megabytes of  data). Existing meth- 
odology shows that analogous goals 
can be established for usability, as 
illustrated in the next two exam- 
ples. 

E x a m p l e :  T e s t a b l e  u s a b i l i t y  
Goals;  I n  E x i s t i n g  S ~ ; t e m J ;  
Table I is adapted from the 
monthly news bulletin of  the IBM 
Research Computer  Center. The 
rows show four usability measures. 
Three of  these are direct measures 
of  system performance which also 
are key indicants of  user satisfac- 
tion and performance. The  fourth 
is a subjective rating obtained daily 
from users when they logoff. The 
last column contains the usability 
goal (target value) for each mea- 
sure. These have been established 
by user committees and the com- 
puter center staff, and have evolved 
over the years. The  other columns 
contain one month's data on the 
performance of  three large time- 
shared computer  systems used by 
hundreds of  users each day. 

These goals are clearly stated, 
easily communicated, and verifia- 
ble. Continuous system monitoring 
is conducted through automatic 
data logging. The results are in pub- 
lic use, published monthly. Atten- 
tion centers on them. Experience 
shows that the results are taken se- 
riously by users and by manage- 
ment. For instance, hardware is 
ordered when goals are not met. 

E x a m p l e :  T e m ~ a b l e  u e a b l l l t y  
Goals;  I n  N e w  S y s t e m 8  
Analogous measurable goals have 
been established for end-user per- 
formance on applications under  
development, particularly with the 
Usability Engineering approach 
developed at the Digital Equipment 
Corporation [17, 40]. Table II  pro- 
vides an example. The  design team 
makes a list of  the desirable usabil- 
ity attributes (column 1). One of  
those is installability. The team then 
decides how installability will be 
measured. In the example in Table 
II, they decide it will be measured 
with a laboratory task. Time to in- 

stall will be the dependent  variable. 
But what should the goal, or target 
time be? The designers discuss it. 
Since nearly all computer  applica- 
tions are follow-ons of  existing ap- 
plications, the design team has an 
opportunity to survey today's situa- 
tion ("Many cannot install it by 
themselves"). They decide on the 
worst case they would be willing to 
put their name on (1-day with 
media), and the best case given suf- 
ficient time and resources (" 10 min- 
utes with media"). They then set 
their goal ("Planned Level" of  
Table II) to be one hour. This pro- 
cess is repeated with each of  the 
other usability attributes. These 
discussions focus the energy of  the 
design team in the right places. 

The key points to note are that 
this is a group process of  setting 
goals, deciding what the relevant 
usability attributes are, how to mea- 
sure them, and what the target 
goals should be. The  goals are 
clearly stated, easily communicated, 
and verifiable throughout  the de- 
velopment process. Measurement is 
implied. Project management  has 
these goals available, just as they 
have goals for other system compo- 
nents, and can therefore manage 
usability in similar ways. The pro- 
cess provides numeric results, 
which management  likes. Results 
with respect to meeting these meas- 
urable goals can be incorporated 
into product  forecasting. 

For the purposes o f  this article, 
the important implications o f  these 
two examples are that usability 
goals can be organizing forces for 
development work, and of  necessity 
can stimulate iterative design if they 
are to be met. 

P o c u e l a g  A t t e n t i o n  
o n  L O a g - l l f f ~ l  1 r e a d e  I n  
l n d - 1 1 8 e r  P J ~ d a c t l v I t y  

We have just discussed impacting 
the usability o f  individual systems. 
Now let us shift to planning for us- 
ability or  productivity-enhancing 
applications on a broad scale, inde- 
pendent  of  individual systems. Per- 
haps surprising to some, with the 
exception of  programmer  produc- 

7 ~  January 1991/Vol.34, No.l/COMMUNICATIONS OF THE ACM 



tivity studies, there are almost no 
quantitative behavioral measures of 
general trends, over the years, on 
how human and organizational 
productivity are directly affected by 
the use of computer systems (but 
see [14])• As a result, research and 
development work is not organized 
in ways that it would be if such 
knowledge existed and was taken 
seriously. There  is an uncertainty 
and lack of salience about human  
and organizational productivity 
trends when making, purchasing, 
or using computers. Computer  
vendors and customers cannot take 
into account, in a long-term way, 
trends in human  and organiza- 
tional productivity because they are 
unknown.  This lack of general met- 
rics, and their use, suggests that the 
usability and productivity of people 
and organizations who use comput- 
ers is not a serious goal for much 
application development. 

A n a l o g i e s  OUtSide The 
C o m p u t e r  I n d u s £ ~  
There  are behavioral measures of 
general trends and progress in 
other "industries." For example, in 
automobile and highway design, 10 7 
there are measurements of acci- 
dents per thousands of miles cL 
driven. In disease control, there are "~ 
measurements of the number  of ~ 10 6 
incidents per thousands of citizens. 
In education, there are achieve- 
ment  test scores. These measures t- 

o 
are tabulated annually. Each pro- ~ 10 5 
vides a record of past history, an o 
indication of the present situation, "N 

¢.- 
and can be used to project the fu- 
ture. Goals for the future can be set I--- 
in terms of these measurements, "6 10 4 
and whether or not these goals are .o 
met can be determined• Even if the E 
measures are controversial, as are 
SAT scores in education, they get 10 3 
the focus on "how are we doing" 
with respect to "users." 

Analog lem Wi th in  The 
C o m p u t e r  I n d u s t r y  
Within the computer industry, 
there are measures of general 
progress for some major system 
components. These provide a basis 

PERFORMANCE 3Y51 SYS2 .., SYS5 GOAL 

Percent Available 100.0 99.9 99.2 97,0 

Downs/Day 0,00 0,10 0.10 < =0.50 

90 Percentile Response 
Time (sec,) 0,25 0,15 0.16 <=0.35 

Average User Satisfaction 
Rating 2.6 2.15 2,32 <=2.5 

•,. from IBM Research Center Computer Center 

lnstaltability Install Time to 
Task Install 

Learning Rate 

Fear of Seeming 
Foolish 

1 Day 1 Hour 10 Minutes Many 
with without with cannot 
Media Media Media Install 

•.. From Digital Equipment Corporation 

;M 
(2. 
t -  

4 0  

q ® 

t -  
O 

(33 
"6 

~K 

Z 
C 

77 79 81 83 85 87  89  91 93 95 97 
Ava i lab i l i t y  Date 

F I G U R E  1. Increases in Chip Density and Miniaturization. Just as #ardware 
Components are Tracked, Ysablll~ Components of Computer Systems may also be 
Tracked and Projected: FET--Field Effect Transistor; CPU ,- Central Processing Unit. 

COMMUNICATIONS OF THE &CM/January 1991/Vo1.34, No.l 7 7 



for long-term planning of  these 
components. Figure 1 provides an 
example, showing how the number  
of  transistors on an integrated cir- 
cuit chip made for the central pro- 
cessing unit (CPU) of  computers 
has increased over the years. (Simi- 
lar graphs show long-term trends 
of  other important computer sys- 
tems components, for example, 
communication costs, communica- 
tions bandwidth, system response 
time, disk access time, system reli- 
ability.) 

Such graphs have easily mea- 
sured, sensible dependent  vari- 
ables. They provide such informa- 
tion about a technical field as where 
it was, where it is now, and where it 
will be---either through one com- 
pany's ,efforts or another's. Of  real 
significance, they are not proprie- 
tary, but are shared among scien- 
tists and engineers throughout  an 
industry--all  of  whom are compet- 
ing to do better. They are based 
upon the efforts of  many compa- 
nies and universities. They show 
huge improvements over decades. 
These improvements do not just 
happen, but are in part driven by 
the knowledge that to be competi- 
tive one must find ways to make 
new products reach the projected 
levels of  improvement, as in Figure 
1. These graphs are taken very seri- 
ously by management.  They con- 
tain behevable metrics. They stimu- 
late decisions about how to organize 
new work. They drive investment, 
which is needed to stay on the pro- 
jected curve. They assume that re- 
sults will be measured. They de- 
mand innovation to stay on the 
projected curve. 

T h e  N e w  I d e a  

We propose that analogous analyses 
and graphs be developed to under- 
stand long-term trends in the usabil- 
ity of  computer  systems and in 
human and organizational produc- 
tivity that result from using these 
systems. Such analyses can set goals 
for future research and develop- 
ment that will affect usability. Just 
as they have done in other technical 
areas, these analyses would proba- 

bly stimulate both a) investment--  
in this case to impact human and 
organizational productivity using 
computers - -and  b) the working 
relations among people trying to 
produce these systems. They would 
also probably raise the level of  ac- 
countability of  both management 
and usability people to meet human 
and organizational productivity 
goals. There  is a view that comput- 
ers have not increased the produc- 
tivity of  individual users and their 
organizations despite their wide- 
spread use and cost [2, 27]. Such 
trend analyses are needed to ascer- 
tain whether or not progress is 
being made, and if so, what the rate 
of  improvement is. The result: the 
consumer benefits. 

Proprietary analyses now exist 
showing improving trends in code 
reliability, hardware reliability, and 
vendor installation t imes--in ef- 
fect, trends in vendor employee pro- 
ductivity. These improvements 
happened because of  goal setting, 
measurement, feedback, manage- 
ment attention, improved tools and 
methods, and work reorganization. 
What is being called for here, then, 
is an extension of  such analyses to 
customer or user productivity. 

What is needed to make such 
trends-in-user-productivity graphs, 
analogous to Figure 1? First, 
thoughtful benchmark tasks. These 
would reflect individual and orga- 
nizational tasks that have a long his- 
tory and a likelihood of  continua- 
tion, for example, "document" 
composition; communication with- 
in an organizational hierarchy, fi- 
nancial analyses, transaction pro- 
cessing. 

Second, appropriate dependent  
variables are needed. One candi- 
date set reflects human perfor- 
mance on common user tasks that 
computers could, or do, help with. 
A second candidate set involves 
measuring group and organiza- 
tional productivity, rather than in- 
dividual productivity. A third set of  
candidates are system variables that 
can be shown to bear at least a mon- 
otonic relation to human produc- 
tivity and feelings. Possibilities in- 

clude system response time, 
availability, and human-computer  
transaction rate [14]. A fourth can- 
didate set involves measuring gen- 
eral cognitive variables (e.g., mental 
effort or stress) and affective states 
while people do computer-related 
work. 

Third, estimates of  the past, 
measurements of  the present, and 
projections of  the future with re- 
spect to these benchmark tasks and 
dependent  variables are necessary. 

Established methodology does 
exist for managing and measuring 
the usability of  individual users 
while using individual computer  
systems, as illustrated in the above 
section on testable usability goals. 
This needs to be extended in three 
ways: from measurement of  ease of  
learning to measurement of  pro- 
ductivity; f r o m  measurement of  
individuals to measurement of  or- 
ganizations; and from measures of  
individual systems to general met- 
rics cutting across many systems 
and many years. 

E x a m p l e  
To illustrate how this might work, 
consider a hypothetical example, 
regardless of  how imperfect. Docu- 
ment composition has been and 
remains a common user task and 
therefore a reasonable basis for 
benchmark tasks. Document com- 
position rate is a reasonable depen- 
dent variable. Assume that docu- 
ment composition rate has through 
computer  aiding increased at I 
word/min/year over the last 15 
years, and is now up to, say, 30 
words/min. Assume that this trend 
is predicted to continue for the next 
decade, and perhaps beyond. What 
kind of  technology must we invent 
to be competitive? What aids will 
allow people 10 years from now to 
compose at 40 words/min? These 
questions must be taken seriously 
because the predic t ion-- f rom ex- 
perience with other system compo- 
nents modeled as in Figure 1--is 
that someone will come up with a 
solution. Should the emphasis be 
on making systems with faster 
human output  methods, for exam- 

7 8  January 1991/Vol.34, No.l/COMMUNICATIONS OF THE ACM 



pie, speech; on revision aids; on 
appending or amending rather 
than composing from scratch; etc.? 
These questions focus the discus- 
sion of  possible new technologies 
on exactly the right issue: how each 
might affect usability, human pro- 
ductivity, and organizational pro- 
ductivity. 

Don't be too harsh on this exam- 
ple. Try a similar one for tasks now 
carried out with spreadsheets, 
using errors and maybe time as the 
dependent variables; or for trans- 
action tasks, using time as a depen- 
dent variable. 

A M e w  A p p r O o c h  TO 
A p p l l ¢ o t i o n  D e v e l o p m e n t  
We earlier identified six reasons 
why usability design is not much 
used. The first two and part of  the 
third have just been addressed. The  
remainder are addressed here: 

The e v o l u t i o n  o f  e v e r y  
i n d u s t r y  d e m o n s t r a t e s  
t h e  i n t e r d e p e n d e n c e  o f  

t h e  o r g a n i z a t i o n  o f  work ,  
a v a i l a b l e  too ls ,  
a n d  w o r k  roles.  

• Iterative design is too risky. 
• There is a need for better Soft- 

ware tools. 
• Each application generally redoes 

the user interface. 

These problems are fundamental, 
difficult to solve, inhibit the devel- 
opment of  innovative user inter- 
faces, and limit the growth of  the 
computer industry. Providing sig- 
nificantly better software tools is 
not just a matter of  inserting them 
into present development pro- 
cesses; instead a new approach is 
needed. 

At the IBM Research Center an 
interdisciplinary group of  com- 
puter science and human factors 
people is trying to address these 
problems in a project called ITS [7]. 
As described below, we have in- 
vented, implemented, and demon- 
strated the feasibility of  a radically 
different technical approach, which 
leads to a serious reorganization of  
software development work. Ini- 
tially we are using this approach 
ourselves as well as working with 
potential users ("customers") of  this 
approach, letting their require- 
ments and feedback drive our re- 
search energies. 

L e i s o n s  F r o m  T h e  
H I s £ o r y  O f  W o r k  

In General. By way of  background, 
throughout  history the evolution of  
every industry demonstrates the 
interdependence of  the organization 
of work, available tools, and work 
roles. Historically, tasks have been 
subdivided and component  parts 
modularized to increase productive 
efficiency. This has led to a division 
of  labor and increasing work spe- 
cialization. The speed and cost of  
designing, engineering, and manu- 
facturing complex systems today, as 
always, depends upon how the 
work is organized, the ability to uti- 
lize relevant previous work (e.g., 
how little retooling or reprogram- 

ming is necessary), and how much 
new work can go on in parallel (e.g., 
the degree to which the new ma- 
chine, system, or user interface is 
modular). Standardized parts and 
interfaces, and the evolution of  
larger premade modules, are bene- 
ficial. 

Computer Systems. In its brief his- 
tory and extraordinarily rapid evo- 
lution, the development of  com- 
puter applications has undergone a 
huge degree of  work specialization 
and modularization. To create a 
new application in the early years, 
application developers "started 
from scratch"; they programmed 

all aspects of  it (Figure 2a). Today, 
they no longer need to program 
their own operating system, file 
manager, database manager, query 
language. Instead, these "compo- 
nents," and many other library- 
selectable routines, have been pre- 
viously programmed by others and 
are available for general use. Soft- 
ware tools seriously modify work 
organization [4]. 

User Interfaces. User-interface 
design has not benefitted much 
from modularization and code 
reuse. The result is that today in 
many applications half or more of  
the new code is user-interface code. 
If  this large programming mass 
could be decomposed into compo- 

nents which allowed specialists in 
each component  (including non- 
programmer  specialists) equipped 
with appropriate tools, to work in 
parallel and use, rather than dupli- 
cate, the completed contributions 
of  each other, a huge gain in pro- 
ductivity and usability could result. 

ITS  (A R o p l d  A p p l i c a t i o n  
D e v e l o p m e n t  S y s t e m )  
In  o u r  a t t emp t  to p r o v i d e  a f rame-  
w o r k  in which application develop- 
ers can more readily follow usability 
design, we have been influenced by 
these observations about the evolu- 
tion of  human work. Here we dis- 

COMMUNICATIONS OF THE ACM/January 1991/%1.34, No.l 79 



cuss several key concepts of  ITS: 
four end-user operations; separa- 
tion of  the content and the style of  
applications; rule-based and com- 
puter-executable styles; four inde- 
pendent  organizational and archi- 
tectural components; and four 
work roles. 

F o u r  E n d - H s e r  O p e r a t i o n B  
Our  informal analyses of  a variety 

/ 

of user interfaces indicates that 
end-user activity involves four op- 
erations: filling in forms; selecting 
among prescribed choices, manipu- 
lating lists, and reading informa- 
tion. This insight leads to four cor- 
responding building blocks that are 
sufficient to abstractly describe user 
interfaces: 
* Form blocks, 
• Choice blocks, 

a) Starting from Scratch 

/ 
b) UIMS 

/ 
c) Presentation Systems 

/ .L oi,o=,oo . . .  

d) ITS 

i :mauRm =.  Different Approaches to Application DeveloPment: a) Starting from 
Scratch; b) UIMS; c) Presentation Systems; d) ITS. 

• List blocks, and 
• Info blocks. 

With ITS, application experts 
(see below) structure their applica- 
tions in terms of  these form, choice, 
list, and info blocks. Style designers 
(see below) write rules about how 
these blocks will be rendered on an 
end-user's screen under  various cir- 
cumstances. These two groups can 
work in parallel and independently. 

S e p a w a t l o n  O f  
S t y l e  A n d  C o n t e n t  

UIMS. Work on "user interface 
management  systems" (UIMSs) has 
demonstrated that it is possible to 
separate the user interface from 
functional code (e.g., [24, 29, 30] 
(Figure 2b). This separation is valu- 
able because it reduces the risks 
when designers make changes to 
the user interface, therefore pro- 
moting iterative design. It also can 
promote code reuse. For example, 
several different user interfaces 
could make use of  the same func- 
tional code. On the other hand, this 
approach does not lead to consis- 
tent user interfaces across many 
applications. Most UIMS work is 
presently at the research stage; this 
separation appears in relatively few 
real-world applications (e.g., [16]). 
Further, there is some skepticism 
that UIMS, as presently imple- 
mented, can produce today's ad- 
vanced user interfaces involving 
direct manipulation with rich feed- 
back [32]. 

Presentation Systems. Funda- 
mental to achieving consistency 
across applications is the need to 
separate what might be called the 
"style" of  an application (e.g., the 
look, feel, and workings of  human- 
computer  interaction techniques 
shown on the user interface) from 
the "content" of  an application 
(e.g., the substance--the informa- 
tion that differentiates a passenger 
reservation application from an in- 
surance agent's application). Apple 
Corporation's Macintosh and IBM's 
CUA are examples of  application 
style. "Presentation Systems" (e.g., 
Presentation Manager (PM), Mac- 
ToolKit) make this content-style 

8 0  January 1991/Vol.34, No.l/COMMUNICATIONS OF THE ACM 



separation (Figure 2c). Typically, 
these systems supply several 
human-computer  interaction tech- 
niques (called "controls" in PM), 
each in one, fixed style (e.g., for- 
mat, color, highlighting, behavior). 
This approach leads to a consistent 
style of  user interface across several 
applications. However, to make 
even a small change in a style re- 
quires a serious programmer .  Fur- 
ther, an application can work only 
in the style for which it is written. 
An application written for the Mac- 
intosh style, for example,  will not 
work in the IBM CUA style (which 
uses PM). Thus,  while there is the 
benefit  of  code reuse through the 
reuse of  style, there is no benefit  of  
reuse of  the application content. 
Further ,  a knowledgeable pro- 
g rammer  is needed to "connect" 
these controls to an application's 
content. 

ITS. With ITS (Figure 2d), we 
are developing an approach that 
incorporates both the separation 
that UIMSs aim at and the separa- 
tion that "Presentation Systems" 
aim at. ITS decomposes the user- 
interface specifications and code 
into content and style, keeping both 
separated from the functional code. 
ITS is an environment  in which 
many different  styles work. 

On the one hand, with ITS, the 
content of  many different  applica- 
tions can be run in the same style. 
There  is no need to redo the style 
code every time a different  applica- 
tion is developed. This approach 
should lead to consistent user inter- 
faces and facilitate users learning 
later releases of  existing applica- 
tions, or  new applications. Besides 
greatly reducing the amount  of  new 
work through style reuse, this ap- 
proach has the advantage of  
leveraging the work of  the best style 
designers. 

On the other  hand, in ITS the 
same content application can run in 
several different  styles. This has the 
advantage of  greatly reducing the 
amount  of  new work (e.g., the same 
excellent registration application, 
for example,  could run in one style 
at one university, a different  style at 

a second university, and a different  
style at the census bureau).  It also 
leverages the work of  the best ap- 
plication designers (those who cre- 
ate applications with insightful 
functions that lead to enhanced 
productivity for end users and their  
organizations) across a variety of  
end-user  organizations. 

Today many computer  vendors 
(e.g., IBM, Apple,  DEC) as well as 
many of  their customers (e.g., air- 
lines, insurance companies, hotels) 
have their own individual user- 
interface styles (sometimes called 
"user-interface standards"); the 
purpose  is to a) ensure consistency 
within and across their  applica- 
tions; b) reflect the taste of  key peo- 
ple; and c) have their own "image." 
As a result, each application must 
now be p rog rammed  in a com- 
pany's own style. Because style and 
content are not separated,  a ven- 
dor, for example,  who wants to 
make an application for several 
companies may have to redo the 
entire application for each com- 
pany. Having done that, if the ven- 
dor  now wants to make a second 
application for these same compa- 
nies, he or  she must repeat  this pro- 
cess, unable to use much, if any, of  
the style p rogramming  for each 
company from the first application. 
ITS solves these problems. 

Thirdly,  with ITS the same ap- 
p l i c a t i o n - c o n t e n t  and s ty le- -can  
run on several different  operat ing 
systems (ITS has so far run  on 
DOS, OS/2, and AIX). This has the 
advantages of  economy of  scale, 
reduced need to do an application 
over for each operat ing system, and 
making the best work available to a 
larger  number  of  individuals and 
organizations. 

R u l e - B a o o d ,  C o m p u t e r -  
E x e c u t a b l e  S L ~ I o 8  
Today developers have great  diffi- 
culty locating, reading,  under-  
standing, recalling, and applying 
the massive amounts of  required 
detail contained in user-interface 
guidelines books. With ITS, guide- 
lines books can be eliminated. With 
ITS, style rules are executable and 

are instantiated in computers  
ra ther  than in books. A new appli- 
cation is automatically rendered  in 
one or more styles. This allows very 
rapid  proto typing-- typica l ly  some 
progress is made  within an hour.  
Styles are not tuned to a specific 
application, but contain general,  
executable rules controlled by a set 
of  parameters .  Each style has a dif- 
ferent  set of  rules which a) map 
content into human-compute r  in- 
teraction techniques and b) deter-  
mine the details of  each interaction 
technique. To illustrate (Figure 3), 
a style could render  the same set of  
choices (e.g., which let users select 
Freshman,  Sophomore,  Junior ,  or  
Senior) as an action bar, as a menu,  
or  as a half-moon. Within the same 
application, this choice block might 
be rendered  one way in one context 
and another  way in another  con- 
text. 

F O U r  O r g a n l z a £ 1 o n a l  A n d  
A r c h l t o L ~ u r a l  C o n l p o n e n t 8  
ITS has four organizational and 
architectural components.  Two of  
these are on the content side and 
two are on the style side (Figure 
2d): 

Content (application) specifications, 
which include the messages to end 
users, flow of  control, connections 
to function, and guidance to style. 
These are created by application 
experts  (see below). 

Content (application) actions, which 
are atomic programs with general  
utility, for example,  t ransfer  the 
contents of  one list to another;  add 
a string of  numbers.  These  are cre- 
ated by application programmers  
(see below). 

Style specifications, which are the 
rules regulat ing the set of  human-  
computer  interaction techniques 
used to render  content,  including 
interaction methods (e.g., entry vs. 
selection), appearance  of  the end- 
user's screen, and the interaction 
devices. These  are created by style 
designers (see below). 

Style programs make a part icular 
interaction technique work. These 
are created by style p rogrammers  
(see below). 

COMMUNICATIONS OF THE ACM/January 1991/Vol.34, No.l 8 1  



I ...... '1 =o,hom . 
      iiii   iii !ii iiii ii i iiiiii!ii iii  iiiiiii   iii  i i i i! !i!  i!i i!iiiii i!i!i !i!  ! 

Jan,or I=o°,or I 

iiiiiiiiii! i   iiiiiiiiiiii :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 

Freshman 

Sophomore 

Junior 

Scmior 

i 
Sophomore Junior 

F I G U R m  3.  Three Renditions of the Same Set of Choices: Menu Bar (top); Stan- 
dard Menu (left); and Half-Moon (right). 

Poor WOrk R o l e s  

Each work role is associated with a 
different one of  these four compo- 
nents. The  linkages among these 
four work roles are very different 
than those which exist today. Expe- 
rience to date indicates they pro- 
vide the potential for rapidly pro- 
ducing usable applications. 

Contempt or application experts 
exist for nearly all new applications. 
(We use the two terms content ex- 
pert and application expert inter- 
changeably.) For example, regis- 
trars know their schools' rules and 
policies for student registration. 
They understand the "content," 
(i.e., the work or business that is 
basic to their existing or new appli- 
cation). They know the jobs of  pos- 
sible end users. They can identify 
the data that must flow across the 
user interface-- to and from end 
users. Today, however, their role is 
limited to being interviewed, in- 
deed often by intermediaries only, 
rather than by the developers 
themselves. Given appropriate 
tools, application experts (assisted 
by "analysts" if needed) can struc- 
ture their knowledge and instan- 
tiate it in computer-executable 
form. They do not need to know 
much about user-interface style. 
Application experts can be assisted 
by human factors people to make 
usability requirements more salient 

and to do user testing. 
Application experts create the 

user-interface content specifica- 
tions (Figure 2d). Figure 4 shows an 
example display of  an action bar 
across the top, a pulldown menu 
from the choice item called "File," 
and a window containing a scroll- 
able list and three pushbuttons. 
The cloud on the middle right of  
Figure 4 illustrates schematically 
what an application expert did to 
create the window. Having applica- 
tion experts involved directly in- 
creases the probability that the re- 
suiting application will contain the 
right functions to enhance end- 
user, and their organization's pro- 
ductivity. 

Application (content) programmers 
get from others, or write them- 
selves, any new actions (programs) 
required by their application (Fig- 
ure 2d). To date, they have pro- 
grammed in C. The cloud on the 
bottom right of  Figure 4 schematic- 
ally illustrates this. 

Style designers also exist today, 
having skills in human factors and 
graphic design. Their  current role 
is mainly that of  advocate; they 
identify problems and describe so- 
lutions, but do not have the tools to 
implement their ideas during appli- 
cation development. (They do have 
prototyping tools, but the results of  
that work are generally not directly 

incorporated into their applica- 
tions.) With ITS, style designers spec- 
ify style rules (Figure 2d). They se- 
lect a human-computer  interaction 
technique from the existing ITS 
library, and they compose general 
rules about the content conditions 
under  which that interaction tech- 
nique will be used. The cloud on 
the middle left of  Figure 4 illus- 
trates the spirit of  some style rules 
to render a choice block as push- 
buttons. Style designers create 
styles that are suitable for a variety 
of  applications. 

Style programmers are needed to 
create entirely new interaction 
techniques, if a style designer can- 
not modify an existing one to get 
the desired result. Style program- 
mers write programs necessary for 
making an interaction technique 
work (the "SIRS," or style imple- 
mentation routines, in Figure 2d). 
To date, they have done this in C. 
The cloud on the lower left of  Fig- 
ure 4 schematically illustrates this. 

ITS provides content experts with 
tools to help them structure their 
knowledge about their application 
in terms of  the four building blocks 
(choices, forms, lists, and informa- 
tion blocks). Style designers have 
tools to select appropriate human- 
computer  interaction techniques 
from a computer-based library of  
well-tested ones, and to map these 
onto an application's content 
blocks. Presently these are markup 
languages, as suggested in Figure 4. 
A WYSIWYG approach is not used 
because of  the need to specify this 
information in an abstract way [38]. 
We are using ITS to create "work- 
benches" for these experts, i.e., 
using ITS to create user interfaces 
for ITS tools. 

.StatuB Of  ITS 
This radically new way of  thinking 
about computer  applications devel- 
opment  is not just a pipe dream. In 
the last three years at the IBM Re- 
search Center we have been design- 
ing and implementing these ideas, 
and demonstrating their feasibility 

8 2  January 1991/Vo1.34, No.l/COMMUNICATIONS OF T H E  A C M  



[7, 37]. We have given over 100 live 
demonstrations of  ITS to a variety 
of  people and in a variety of  meet- 
ings. So far, major parts of  several 
styles have been created, including 
IBM's CUA-2 style. User interfaces, 
based upon the (content) require- 
ments of  20-30  applications, have 
been created, many in a few days 
each, and some have been demon- 
strated in multiple styles. Present 
emphasis of  the work includes a) 
developing further core ITS; b) 
demonstrating ITS to both com- 
puter scientists involved in research 
and to real-world application devel- 
opers, getting their feedback and 
understanding their requirements; 
c) helping various application 
groups use ITS to develop their 
own applications, and being driven 
by their feedback; d) carrying out 
applications of  our own. ITS is a 
true rapid application development 
system. A prototype made with ITS 
becomes part of  the final applica- 
tion itself. This is in contrast to the 
use of  most popular prototyping 
tools available today, which require 
developers to begin again, once the 
prototype is complete. 

The major aims of  ITS are to 
provide designers and developers 
with an organizational and techni- 
cal approach with which they can be 
more productive and can create 
applications which allow their user 
organizations to be more produc- 
tive. Such applications require iter- 
ative design, and our  experiences to 
date demonstrate the ability of  non- 
programmers to iteratively improve 
the user interface. 

Experience shows that the three- 
way split among style of  the user 
interface, content of  the user inter- 
face, and the functional code allows 
changes to be made in the user in- 
terface and still preserves the integ- 
rity of  the functional code. herative 
design--so necessary to achieve 
good usability--proceeds rapidly, 
without the usual risks because of  
the way the work is decomposed. 

On the style side, a particular 
style can be prototyped and itera- 
tively engineered. In the long run, 
winning styles can emerge from a 

larger set of  styles, the dropouts 
having never attained the favor of  
organizations or end users. This 
approach will leverage the work of  
the best style designers. 

ITS allows parallel development 
of  application components Oust as 
automobile design allows parallel 
development of  tires, ignition sys- 
tem, and braking system). ITS al- 
lows exciting new human-computer  
interaction techniques to be incor- 
porated into an existing style file. 
ITS provides a mechanism whereby 

the results and details of  laboratory 
human factors experiments can be 
incorporated into a widely used 
style library [23]. It appears that 
ITS will make it much easier to 
maintain existing applications (once 
written in ITS) over the years, a job 
that is very difficult and expensive 
today [ 11 ]. 

C o n c l u s i o n  
The process of  usability design is 
vital to achieving usable, likeable, 
productivity-enhancing applica- 

Options [ Help 

Documents 

Files 

Purpose : UserAction, 
1 <items<9, 

then show as pushbuttons, 
with drep-shadow, 

rounded comers, 
centered..., 

SIR 
Library 

:~ :EliSt:ci :Choice Purpose = UserAction 
:ce rnsg = OK, deactivateto = 1 

msg = NO, c ac vatete = 1 
:ci msg = HELP, activate = help 3 

g • p  m~gta ACTION,  s - -  
ram ).~,~ 

F I G U R E  4.  Schematic Illustration of how each of the ITS Work Roles Contrib- 
ute to an Application. Application Experts Specify the Content of the User Inter- 
face (upper-right cloud); Content Programmers Write the Functions or Actions 
(bottom-right cloud); Style Designers Write the Style rules (upper-loft cloud); and 
Style Programmers Write the Style Implementation Routines (bottom-loft cloud). 

COMMUNICATIONS OF THE ACM/January 1991/Vol.34, No.1 8 ~  



tions. Nevertheless,  the process is 
not  used as much  as many  design- 
ers would like, due  to organiza-  
tional and  technical reasons. T h e  
goal o f  this article was to identify 
the problems l imit ing the use of  
usability design in creat ing com- 
pu te r  applications,  a n d  then  sug- 
gest solutions to them. T h r e e  solu- 
tions were described:  a) greater  
reliance on  existing methodologies  
for establishing testable usability 
and  produc t iv i ty -enhanc ing  goals 
for individual  applications;  b) a new 
method  for ident i fy ing an d  focus- 
ing a t ten t ion  on  long- te rm trends 
about  the effects that compu te r  
applicat ions are having on  end-use r  
productivi ty;  c) a new technical and  
organi:zational approach  to applica- 
t ion deve lopment ,  now u n d e r  way, 
tha t  directly involves applicat ion 
experts  and  style designers  a n d  
makes iterative design much  easier 
than  he re to fo re . [ ]  

Acknowledgments. 
This  article is based u p o n  the 1988 
Huma:n Factors Society Presidential  
Address  of  J o h n  Gould.  Gould  
worked jo in t ly  with Clayton Lewis 
on the deve lopmen t  of  the usability 
design approach,  and  with Stephen 
Boies, who is the director  of  the 
ITS project,  on  most  everything.  

References 
1. Akscyn, R.M. and McCracken, D.L. 

Zog and the USS CARL VINSON: 
Lessons in system development. In 
Proceedings of Interact'84 First 1FIP 
Conference on Human-Computer. El- 
sevier Science Publishers, Amster- 
dam, 1985, 303-308. 

2. Attewell, P. The productivity para- 
dox. 1990. Unpublished manu- 
script. 

3. Bennett, J.L. Managing to meet 
usability requirements: Establishing 
and meeting software development 
goals. In Usability Issues and Health 
Concerns, J. Bennett, D. Case, J. 
Sandelin, and M. Smith Eds. Pren- 
tice..Hall, Englewood Cliffs, N.J. 
198,t, 161-184. 

4. Blomberg, J.L. The variable impact 
of computer technologies on the 
organization of work activities. In 
Proceedings of the Conference on Com- 
puter-Supported Cooperative Work 

(Austin, Tex., 1986), pp. 35-42. 
5. Boehm, B.W. A spiral model of 

software development and en- 
hancement. IEEE Comput. (May 
1988), 61-72. 

6. Boehm, B.W., Gray, T.E., Seewaldt, 
T.. Prototyping versus specifying: A 
muhiproject experiment. IEEE 
Trans. Softw. Eng., 10, 3 (1984), 290- 
302. 

7. Boies, S.J., Bennett, W., Gould, 
J.D., Greene, S.L., and Wiecha, C. 
The interactive transaction system 
(ITS): Tools for application devel- 
opment. IBM Res. Rep. RC 14694, 
1989. 

8. Boyle, J., Ogden, W., Uhlir, S., Wil- 
son, P. QMF usability: How it really 
happened. In Human Computer ln- 
teraction--lnteract '84 (1984), pp. 
877-882. 

9. Bury, K.F. The iterative develop- 
ment of usable computer interfaces. 
In Human-Computer Interaction-- 
Interact '84 (1985), pp. 343-348. 

10. Butler, K.A. Connecting theory and 
practice: A case study of achieving 
usability goals. In Human Factors in 
Computing Systems Proceedings 
CH1'85 (1985), pp. 93-98. ACM, 
N.Y. 

11. Corbi, T. Program understanding: 
Challenge for the 1990s. IBM Syst. 
J., 28, 2 (1990), 294-306. 

12. Cowlishaw, M.F. The design of the 
REXX language. IBM Syst. J. 23, 4 
(1984), 326-335. 

13. Damodaran, L., Simpson, A., Wil- 
son, P. Designing Systems for People. 
Manchester, England, NCC Publi- 
cations, 1980. 

14. Doherty, w.J., Thadhani, A.J. The 
economic value of rapid response 
time. IBM Tech. Rep. GE20-0752- 
0, 1982. (Available from author at 
IBM T.J. Watson Research Center, 
Yorktown Heights, N,Y. 10598.) 

15. Foulger, D. Discovering the PC 
User Interface. Unpublished Man- 
uscript, 1986. (Available from the 
author at IBM T.J. Watson Re- 
search Center, Yorktown Heights, 
N.Y. 10598.) 

16. Good, M. The iterative design of a 
new text editor. In Proceedings of the 
Human Factors Society--29th Annual 
Meeting (Santa Monica, Calif, 1985), 
pp. 571-574. 

17. Good, M., Spine, T.M., Whiteside, 
J., George, P. User-derived impact 
analysis as a tool for usability engi- 
neering. In Human Factors in Com- 
puting Systems CHI'86 Proceedings 

(1986), ACM. New York, pp. 241- 
246. 

18. Gould, J.D. How to design usable 
systems. In Handbook of Human- 
Computer Interaction M. Helander 
Ed., Elsevier Science North- 
Holland Publishers, 1988, 757-789. 

19. Gould, J.D. & Boies, S.J. Human 
factors challenges in creating a 
principal support system--The 
speech filing system approach. 
ACM Tran. Office Info. Sys. 1, 4 
(1983), 273-298. 

20. Gould, J.D., Boies, S.J., Levy, S., 
Richards, J.T., Schoonard, J. The 
1984 Olympic Message System--A 
test of behavioral principles of sys- 
tem design. Commun. ACM 30, 9 
(Sept. 1987), 758-769. 

21. Gould, J.D., Lewis, C.H. Designing 
for usability--key principles and 
what designers think. In Proceedings 
of the 1983 Computer-Human Interac- 
tion Conference (1983), pp. 50-53. 

22. Gould, J.D., Lewis, C.H. Designing 
for usability--key principles and 
what designers think. Commun. 
ACM 28 (1985), 300-311. 

23. Greene, S.L., Gould, J.D., Boies, 
S.J., Meluson, M. and Rasamny, M. 
Evaluation of entry and selection 
methods in an airlines reservation 
scenario. IBM Res. Rep., RC-15799. 
1990. 

24. Hartson, R. User interface manage- 
ment control and communication. 
IEEE Softw. (Jan. 1989), 62-70. 

25. Hewett, T.T., Meadow, C,T. On 
designing for usability: An applica- 
tion of four key principles. In 
Human Factors in Computing Systems 
CH1'86 Proceedings, (1986), ACM, 
New York, pp. 247-252. 

26. Kapor, M. Invited talk, IBM Re- 
search, Hawthorne, New York, 
1989. 

27. Landauer, T.K. Human factors 
driven design of information re- 
trieval systems. Invited address, 
Human Factors Society, Denver, 
1989. 

28. Meister, D. Human Factors Testing 
and Evaluation. North-Holland Sci- 
ence Publishers, Amsterdam, Neth- 
erlands, 1986. 

29. Olsen, D.R., Kasik, D., Rhyne, J., 
and Thomas, J. ACM SIGGRAPH 
workshop on software tools for user 
interface management. Comput. 
Graph. 21, 2 (1987) (see papers fol- 
lowing this introduction), 71. 

30. Pfaff, G.E. Ed. User interface man- 
agement systems. In Proceedings of 
the IFIP/EG Workshop on User Inter- 

8 4  January 1991/Vo1.34, No.l/COMMUNICATIONS OF 1"HE A C M  



face Management Systems. Seehiem, 
(Federal Republic of Germany, Oc- 
tober, 1983) Springer-Verlag, N.Y. 
1985. 

31. Reitman-Olson, J. Expanded design 
procedures for learnable, usable 
interfaces, In Proceedings of the 
ACM-SIGCH1 Human Factors in 
Computing Meeting. (1985), ACM, 
New York, pp. 1-3. 

32. Rosenberg, J., Hill, R., Miller, J., 
Schulert, A., and Shewmake, D. 
UIMSs: Threa t  or menace? In Pro- 
ceedings of CHI. (Washington, May 
15-19, 1988), ACM, New York, 
pp. 197-200. 

33. Rubinstein, R., Hersh, H. The 
Human Factor: Designing Computer 
Systems for People. Digital Press, Bur- 
lington, Mass., 1984. 

34. Shackel, B. Information tech- 
nology--A challenge to ergonomics 
and design. Behav. Inf. Tech. 3 
(1984), 263-275. 

35. Smith, D.C., Irby, C., Kimball, R., 
Verplank, B., Harslem, E. Design- 
ing the star user interface. Byte 7, 4 
(1982), 242-282. 

36. Weiner, H. Human factors lessons 
from the design of a real product. 
TEK Tech. Rep., 1984. (Can be ob- 
tained from the author at Tek- 
tronix, Box 1000, Wilsonville, Ore- 
gon 97070). 

37. Wiecha, C., Bennett, W., Boies, S., 
and Gould, J. Generating highly 
interactive user interfaces. In Pro- 
ceedings of CHI'88 (Austin, Tex., 
April 30-May 4, 1989). ACM New 
York, pp. 277-282. 

38. Wiecha, C., Boies, S., Green, M., 
Hudson, S., and Myers, B. Panel: 
Direct manipulation or program- 
ming: How should we design inter- 
faces? In Proceedings of the Second 
Annual ACM S1GGRAPH Symposium 
on User Interface Software and Tech- 
nology. ACM Press, N.Y., pp. 124- 
126. 

39. Williams, G. The Lisa computer sys- 
tem. Byte 8, 2 (1983), 33-50. 

40. Wixon, D. and Whiteside, J. Engi- 
neering for usability: Lessons from 
the user-derived interface. In 
Human Factors in Computing Systems 
CH1'85 (1985), pp. 144-147. ACM, 
N.Y. 

CR Categories and Subject Descript- 
ors: C.5 [Computer Systems Organiza- 
tion]: Computer  System Implementa- 
tion; D.2.2 [Software Engineering]: 
Tools and Techniques--User interfaces; 

H.1.2 [Models and Principles]: User /  
Machine Systems--Human factors; K.6.1 
[Management of Computing and Infor- 
mation Systems]: Project and People 
Management--Systems analysis and de- 
sign, systems development; K.6.3 [Manage- 
ment of Computing and Information 
Systems]: Software Management - -  
Software development 

General Terms: Design 
Additional Key Words and Phrases: 

Application development, usability, us- 
ability engineering 

About the Authors: 
J O H N  D. GOULD is a manager of the 
Human Factors group at IBM Research. 
He is interested in human factors and 
computers. His work involves the devel- 
opment of computer tools and applica- 
tions that are useful, usable, and well 
liked. He is wise enough to have worked 
with both Boies and Lewis. 

STEPHEN J. BOIES is a senior man- 
ager of the ITS project in IBM Re- 
search. He is interested in human fac- 
tors and computers, and has 

championed user-interface design re- 
search in IBM Research. He makes 
computer tools and applications that 
work, and that even Gould can use. Au- 
thors '  Present Address: IBM Research--  
Hawthorne, P.O. Box 704, Yorktown 
Heights, NY 10598. 

CLAYTON LEWIS is an associate pro- 
fessor of computer science at the Uni- 
versity of  Colorado. He is interested in 
human factors and computers, sharing 
his ideas with others through his work, 
teaching, and communication with col- 
leagues. Author's Present Address: 
Computer  Science Department,  Univer- 
sity of Colorado, Boulder, CO 80309. 

Permission to copy without fee all or part of 
this material is granted provided that the 
copies are not made or distributed for direct 
commercial advantage, the ACM copyright 
notice and the title of the publication and its 
date appear, and notice is given that copying 
is by permission of the Association for 
Computing Machinery. To copy otherwise, or 
to republish, requires a fee and/or specific 
permission. 

© 1991ACM0001-0782/90/1200-074 $1.50 

HOW CAN YOU SIMPLIFY AN9 REDUCE 
THE COST OF SOFTWARE 9EVELOPMENI? 

You start wi th  

CASE 
Computer-Aided 
Software Engineering 
8y !".6. Lewis 
420 pp., 274 illus., $45.95 

Just pub l i sbed  r 

This comprehensive guide explains proven ways to 
apply CASE techniques and tools to write the best 
possible software. Included are specific examples that 
take a project from inception to final stage, clearly 
illustrating how to apply CASE tools to your own 
applications. The book shows you how and when to 
use CASE for different functions,  including cost 
es t imat ion,  project  managemen t ,  r equ i r emen t  
specification, coding, testing and maintenance. And it 
covers such important new areas as UIMS, object- 
oriented design, visual programming, and the Spiral 
Life Cycle model. 

To take full advantage of the time- and money-saving 
benef i t s  of CASE, send  for your  FREE 15-day 
examination of CASE: Computer-Aided Sof tware  
Engineering today! No obligation to purchase! 

To order by credit card call toll free 1-800-926-2665. 
Or write to: VAN NOSTRAND REINHOLD, Mail Order 
Dept., P.O. Box 668, Florence, KY 41022-0668. 
1/91 c 1129 

Circle # 3 8  on Reader Service Card 

COMMUNICATIONS OF THE ACM/January 1991/Vol.34, No.l 8 S  


