
BUS: An Effective Indexing and Retrieval Scheme in
Structured Documents

Dongwook Shin, Hyuncheol Jung, and Honglan Jin

Department of Computer Engineering
Chungnam National University

220 Kung-Dong, Yusong-Gu, Taejon
305-764 Republic of Korea

Tel: +82-42-82 l-6657
FAX: +82-42-822-4997

E-mail: {shin, hcjang, hljin} @comeng.chungnam.ac.kr

ABSTRACT
In recent digital library systems or World Wide Web
environment, many documents are beginning to be provided
in the structured format, tagged in mark up languages like
SGML or XML. Hence, indexing and query evaluation of
structured documents have been drawing attention since they
enable to access and retrieve a certain part of documents
easily. However, conventional information retrieval
techniques do not scale up well in structured documents.

This paper suggests an efficient indexing and query
evaluation scheme for structured documents (named BUS)
that minimizes the indexing overhead and guarantees fast
query processing at any level in the document structure. The
basic idea is that indexing is performed at the lowest level of
the given structure and query evaluation computes the
similarity at higher level by accumulating the term
frequencies at the lowest level in the bottom up way. The
accumulators summing up the similarity play the role of
accumulating all the term frequencies of the related part at a
certain level.

This paper also addresses the implementation of BUS and
proves that BUS works correctly. In addition, along with
several experiments, it shows that BUS facilitates efficient
indexing in terms of space and time and guarantees the
reasonable retrieval time in response to user queries.

KEYWORDS: structured documents, SGML, XML,
information retrieval, indexing, accumulator

pc~~~~p~s~on to m&c digital or herd copm ol’all or part of this work for
personal or c~‘~room use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the i%tt citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Digital Libraries 98 Pittsburgh PA USA
Copyright ACM 1998 O-89791-965--3/981 6...%5.00

INTRODUCTION
Structured documents are the documents that embed the
document structure into the texts. Recently, many
documents tend to be produced as structured ones using
markup languages like SGML (Standard Generalized
Markup Language) [4] or XML (extensible Markup
Language) [6] since they make it possible to handle the texts
in piece by piece in browsing or retrieval. Many digital
library systems built up recently assume that the documents
have been originally supplied with tagged in SGML.
Furthermore, World Wide Web is likely to step toward XML
from HTML (HyperText Markup Language) soon in
creating Web pages. SGML and XML provide full-fledged
features in making documents structured as they are,
whereas HTML has only limited functions in structuring.

This tendency calls for the emergency of a new information
retrieval system that enables to retrieve and access arbitrary
parts of documents (hereafter we use the terminology
“element” and “part of document” interchangeably) easily. It
raises a difficult problem that the system should be able to
figure out relevant elements to users queries issued at any
level of the structure, which have not been tackled seriously
in the conventional information retrieval system. And most
of the structuring techniques proposed so far did not handle
the problem efficiently [1, 7, 8, 9, lo].

This paper proposes an indexing and query evaluation
scheme (named BUS (Bottom Up Schenze)) for structured
documents that minimizes the indexing overhead and
guarantees fast query response time. The basic idea is that
indexing is performed at the leaf elements of the given
structure and query evaluation computes the similarity at
higher level by accumulating the weights at the lowest level
in the bottom up way. It underlies the result of R. Wilkinson
[15] that “the retrieval of whole documents can he carried
out effectively using just their parts” in part and the idea of
UID (Unique element IDentifier) [S] that enables to compute
ancestor element of a given element fast.

235

http://crossmark.crossref.org/dialog/?doi=10.1145%2F276675.276702&domain=pdf&date_stamp=1998-05-11

The accumulators that accumulate the term frequencies of
the corresponding elements play the major role in query
evaluation. In the inverted list, a posting is assumed to have
the pair of the frequency of a term and the CID (General
element Identifier), where the frequency is the number of
occurrences in the element and the GID comprises the
document number and the UID of an element at the lowest
level of the structure with some auxiliary information. In
query evaluation, the UIDs in the postings are converted into
the corresponding UIDs of the ancestor elements at higher
level and the frequencies are added into the accumulators
that correspond to those of the ancestors. It results in
accumulating all the term frequencies appearing in the
ancestor element into the corresponding accumulator. Now,
as we reproduce the frequency of a term appearing in an
element at an arbitrary level, we can compute the weight of
the term in the element in various ways.

This paper also addresses how to implement BUS as
effective as possible and proves that BUS works correctly.
In addition, according to several experiments, it shows that
BUS facilitates efficient indexing in terms of space and time
and quick retrieval in response to user queries.

The paper is organized as follows. Section 2 surveys the
works concerning about modeling, indexing and retrieval
with respect to structured documents. Section 3 proposes the
notion of GID (General element IDentifier) and indexing
making use of GID. Section 4 presents how query evaluation
is done utilizing the indexing information at the leaf nodes.
Section 5 addresses the implementation details. Section 6
proves the correctness of BUS and analyzes the performance
in terms of indexing overhead and retrieval time. Section 7
presents concluding remarks with some further researches.

RELATED WORKS
For years, there has been growing interest in handling
structured documents well in terms of indexing and retrieval.
I. Macleod [8, 91 proposed a conceptual model for structured
documents named Maestro. It supports structured documents
and a query language that enables to retrieve any node in the
structure based on the context as well as content. In addition,
he suggested a way of processing queries, which could not
accommodate the weighed search.

R. Winkinson [15] showed that the retrieval of the whole
documents could be carried out effectively using their
subparts, but not vice versa. He first measured the similarity
of the subparts against the query and yielded the similarity of
the whole document by manipulating the results of subparts
appropriately. M. Volz et al. [14] suggested an object-
oriented coupling with OODBMS that models structured
documents into classes. They could compute the similarity
of the entities whose indices have been built in advance, but
left to the users how to figure out the similarity of the
entities whose indices have not been made.

B. Lowe et al. [7] presented the subtree model that is
suitable in representing hierarchically structured documents

and processing queries. However, they did not suggest a
good indexing and retrieval model that avoids duplicated
indices and relevant match at any level of the hierarchy. T.
Arnold-Moore et al. [I] proposed the ELF model and SGQL
query language. ELF model gives a uniform interpretation of
the transformation made by the SGQL query language that
allows a wide range of structured queries as well as content
queries. But, they did not address how to implement the
transformation efficiently.

Zprise [12] is one of the public domain software developed
by NIST that is able to handle SGML documents and
supports 239.50 protocol. However, it offers a limited range
of field search in that it only retrieves elements in a fixed set
of fields such as ‘title’ and ‘author’, where they should not
be hiearchical with one another. Panorama made by
Softquad offers a simple search function that is able to
highlight the words matched in the query. Even if it gives
high quality browsing of SGML documents, it does not have
indexing and retrieving features. So far, several commercial
systems have been released to support SGML documents.
But, most of them (for example the systems developed by
OpenText and FernTree) assume to have duplicated indices
to each level where the elements are retrieved.

G. Navarro and R. Baeza-Yates [10, 1 l] suggested a model
named Proximal nodes that is expressive and can be
efficiently implemented. It first computes the content part of
the query and next treats the structural part. They presented
an efficient way to compute the structured query as a
mapping of a set of nodes to another. However, they did not
handle the weighting scheme in the model.

Lee et al. [5] proposed an indexing structure that is able to
reduce the storage overhead taken to indexing at all levels of
document structure. They first represented a document as a
k-u-y complete tree where k is the largest number of child
elements of an element in the structure. The result of the
mapping is called ‘document tree’. Secondly they assigned
each element a UID (Unique element IDentifier) according
to the order of the level-order tree traversal. In this tree, with
the knowledge of a child’s UID one can compute the parent
UID directly by the following expression:

For instance, Figure 1 shows a document tree and the result
of assigning UIDs to elements. In this figure, the nodes in
dotted line represent the virtual nodes which do not exist in
the document tree, but are necessary for making the structure
k-ury complete tree.

The main idea behind this is that if every sub-element of an
element has the same keyword, say, hypertext, the keyword
need only to be indexed at the parent level, which can take
off all the indices at the sub-element level. It was
demonstrated to reduce the indexing overhead in the exact

236

query match, while it does not work in the partial match any
more where the source of similarity comes from the weights
of terms.

element.

r-l dl

m m m q real node [III/ virtual node

(a) 3-ary document tree

element UID element UID
dl 1 s3 8
Cl

c2
sl
s2

2 s4
3 P’
5 P2
6 p3

(b) Result of assigning UIDs

9
14
15
16

Figure 1: Document tree and the result of assigning UlDs

INDEXING STRUCTURED DOCUMENTS IN BUS
Indexing on structured documents can be performed in
various ways. A simple method is to index at all levels and
to produce appropriate indexing information at the level the
query wants. But as it repeats indexing at each level, it
usually takes excessive amount of space and time in
indexing. Instead of this simple indexing, we carry out the
indexing only once at the text level and reproduce all the
indexing information at higher level in query evaluation.
Here the text level means the level of an element where the
text is included.

General element identifier
The UID proposed by Lee et al. [5] assumes a simple
document structure that allows only one type of element at
a level. That is, as it assigns only a unique number to each
element according to the level-order tree traversal, it does
not provide a way of discriminating elements of different
types at the same level. For instance, assume that a
document structure has the elements, ‘title’, ‘abstract’ and
‘chapter’ at the second level as in Figure 2. Now suppose
that a user wants to retrieve documents having ‘query
evaluation’ in the title element. With only UID, there is no
way of discriminating the title elements from chapter
elements, which might result in retrieving all the documents
having ‘query evaluation’ in ‘title’ or ‘abstract’ or ‘chapter’

level 1

level 2
title
(2)

paragraph section
level 3 (5) (6)

paragraph
level 4 (7)

(1) The number in the upper-left corner of a
rectangle means the type number of an element

Figure 2: A document structure having different types of
elements at a level

As a way of supplementing the limitation of UID, we
propose the notion of GID (General element IDentifier) that
is composed of (1) Document number, (2) the UID of the
element in the document tree, (3) the level of the element in
the document tree, and (4) the element type number in the
structure. The first constituent in GID informs which
document the element belongs to and the second tells the
location of the element in the document tree. The third and
the fourth constituent facilitate the reproduction of term
frequencies in the appropriate level that a user wants. That is,
with the third constituent, we can compute the difference of
the user level (the level that the user wants to retrieve
elements) and the text level (the levels of the elements where
the text is included and thus indexing is really performed),
and map the elements at the text level to the elements at user
level.

The fourth constituent helps to filter out the elements of
types different from what the user wants. For instance, if a
user wants to retrieve ‘chapter’ elements having
‘accumulator’, the ‘title’ and ‘abstract’ elements should not
be involved in the computation. As we encode the element
type in GID, we can let only the elements of the appropriate
types take part in the query evaluation.

Indexing with GID
The indexing is carried out in each element at the text level
and terms are extracted with the auxiliary information: (1)
the frequency of a term appearing in the element and, (2) the
GID of the element. For instance, suppose that a document
has the structure with the auxiliary information as shown in
Figure 3.

237

level 1

level 2

level 3

III mternal node

<5,2.2.2>

I---,
I I vfrt”al node
I - - -’

browsing (4) rl It represents a node that has the terms, ‘browsing’ with frequency four,
HTML (3) and ‘HTML’ with three. The number m the upper-left corner of the

rectangle means the GID of the element.

Figure 3: Example document tree with auxiliary information

First, the indexer scans through the document, assigning a
GID to each element. Secondly, it extracts terms and
calculates their frequencies in each element at the text level.
With the setting in Figure 3, the indexer computes the
triples: <hypertext, 1, <5,2,2,2>>, <model, 1, <5,2,2,2>>,
<retrieval, 1, <5,2,2,2>>, and <semantics, 1,<5,2,2,2>> in
the first element at the text level, where the first element is
the term extracted, the second is the frequency in the
element, the third is the GID of the element

As we mentioned before, the indexer carries out the
indexing only once scanning through the elements at the text
levels. The result of indexing is stored as the inverted index
with the B+tree and the posting file.

QUERY EVALUATION OF BUS
With structured documents, it is natural that a user wants to
retrieve a part of document at a certain level. For instance,
she or hc may want to get paragraphs or sections relevant to
‘structured document processing’. Query evaluation has to
satisfy the queries like this using the information obtained in
the indexing step.

Accumulation of frequency
The query evaluation procedure (QEP) of BUS is able to do
that by manipulating accumulators and UID gotten from the
postings. First, it creates a set of accumulators

corresponding to all the elements in the document set. Note
that the pair of document number and UID uniquely
identifies any element in the document set. Secondly
analyzing the user query, it figures out which level and
element type the user wants. For instance, if a user issues a
query “find out the section containing “browsing” ” to the
documents having the structure in Figure 2, the QEP
recognizes that the user wants to retrieve at level 3 and the
element type that should be involved in the query evaluation
is ‘section’ or ‘paragrph’ in ‘section’.

Thirdly, QEP accesses the posting files and extracts the
postings. If a posting has a CID whose element type number
is six or seven, it calculates the difference of the user level
and text level. For instance, with a posting <browsing, 4,
<5,32,4,7>>, the QEP understands that the posting should be
involved in the query evaluation and calculates the
difference of the user level and rexr level - one. Fourthly, the
QEP maps the UID in the posting to the parent UID at the
user level, creating UID 11 from UID 32 using the formula
presented in Section 2. Fifthly, the frequency 4 is added into
the accumulator <5,1 l>, where the first constituent
represents the document number and the second means the
UID. Doing this way, the QEP sums up all of the
frequencies of the descendant elements to the accumulator
corresponding to the user level element. Figure 4 shows the
result of accumulators.

238

accumulators
I I

A subtree of the document
tree in Figure 3

<5,11,3,6> /qhy

Figure 4: The result of the accumulators

Weight computation with term frequency and document Document Frequency) of the term, and a normalization
frequency
Once the frequency of a term is obtained, its weight can be

function. Among these, the IDF value is computed as a

computed. Normally, the weight of a term is calculated by
function of the document frequency, which is acquired as the
number of non-zero accumulators in BUS. Table 1 shows

using the term frequency in the document, the IDF (Inverse several variations of these components.

Table 1: Components of term weighting scheme

Term Frequency Component
b 1.0 binary weight equal to 1 for terms in a document (term frequency is

ignored)
n tf raw term frequency (number of times a term occurs in a document)
a 0.5+0.5* augmented normalized term frequency (use maximum normalization where each tf is divided by

maximum tf, and further normalize the resulting value to lie between 0.5 and 1 .O)
1 In tf + I .O logarithmic term frequency which reduces the importance of raw term frequency in those

collections with widely varying document length
Document Frequency Component
n 1.0 no change in weight; use original term frequency component (b, n, a, or 1)
t In * multiply original term frequency component by an inverse document frequency factor (N is the

total number of documents in the collection, and n is the number of documents in which a terms
appears)

Normalization Component
n 1.0 no change; use factors derived from term frequency and collection frequency only (no

normalization)

use cosine normalization where each term weight w, is divided by a factor of Euclidian vector
length

239

As for the term frequency, there has been suggested several
ways to take it to weight computation. Among these, we can
calculate most of formulas directly from frequency
information except the augmented normalized term
frequency. The augmented normalized term frequency calls
for the knowledge of the maximum frequency of the terms
appearing in the target element, which can not be kept track
of in BUS. It is because the frequency of a term at the target
element is accumulated at query evaluation time when the
term is issued by a user. Hence, there is no way of knowing
which term occurs most frequently in the target element
without accumulating frequencies for all the terms appearing
in the collection.

With regard to IDF, we can reproduce the raw document
frequency as the number of non-zero accumulators in each
term retrieval step. The IDF is obtained as a simple
logarithmic function of the raw document frequency as
shown in Table 1.

As for the normalization factor, we can not apply the cosine
normalization since it requires the knowledge of all weights
of terms in the target element. It is owing to the same reason
that we can not compute the augmented normalized term
frequency. However, we have no reason to stick to cosine
normalization, since it has been reported that byte length
normalization yields significant improvement in retrieval
effectiveness over cosine normalization [131. Byte length is
easily computed as the summation of all the byte lengths of
the text level elements that belong to the target element.

IMPLEMENTATION
The key issues in implementing BUS are : how to represent
the posting structure and how to manage accumulators
efficiently. In traditional IR systems, a posting is composed
of document id, term frequency and so on. In BUS, a posting
has the same structure as the one used in traditional IR
except that CID is used instead of document id. With respect
to memory management, BUS requires as many
accumulators as the number of elements in the document set.
However if we use the hashing technique we can reduce the
number of accumulators significantly.

As described above, a posting structure is drawn in Figure 5.
Here, the UID consumes eight bytes since in handling
complicated DTD, UID occasionally grows too big.

DID UID Level E-type-num Tf

DID : Document ID
UID : Unique element ID
Level : Element level
E-type-num : Element type number
Tf : Term frequency

Figure 5: Posting structure in BUS

In managing accumulators, BUS basically calls for as many

accumulators as the number of elements in the document set.
To reduce the memory consumed at run time, we use
hashing techniques. The memory structure managing
accumulators are described in Figure 6.

<DID, UID>

hashin+::“fi5/

<1,3>

Figure 6: Memory structure for accumulators

In Figure 6, when a posting is read from the posting file, the
<DID, UID> pair is mapped into an element of the dynamic
array using a hash function. If an accumulator collides with
another, it is chained at the end of the linked list.

BUS has been implemented in C/C++ on Solaris operating
system. The system works on client-server model, where the
client is programmed in JAVA applets. Hence, anyone can
freely connect to the system in a Web browser and test how
it works. At present, BUS is able to handle SGML
documents, but can support documents in XML easily, if the
SGML parser is replaced by the XML one.

ANALYSIS

Correctness of BUS
In this section, we prove that BUS works correctly and
demonstrate that it is feasible. Note that the main objective
of BUS is to index the structured documents only at text
level and reproduce the data necessary for computing the
weight at use level dynamically.

First, Theorem 1 proves that BUS reproduces the raw data
used in computing weights - term frequency and document
frequency exactly.

Theorem 1. BUS reproduces exactly the term frequency and
the document frequency of the element that the query wants.

Proof) Suppose that a query wants an element type ‘e/e’ at
level k and the text has been indexed at level 1. QEP in
section 4 extracts only postings from the posting file whose
level is 1, and merges the frequencies into the accumulator
that corresponds to the clement at level k.

240

Now suppose that there is an element which is a descendant
of ‘ele’ , but whose frequency is not added to the
corresponding accumulator of the ancestor ‘ele’. Then there
are two possibilities: first is that the element is not indexed,
nor kept into the posting file. Second is that the frequency is
not added to its ancestor accumulator. But the two cases are
not possible because all the elements must have been
indexed in BUS and the frequencies of elements at level 1
should be added to the corresponding accumulator at level k
by the UID calculation. Therefore, the accumulators must
have all the term frequencies of the corresponding element.

Secondly, the document frequencies are calculated as the
number of accumulators whose value is non-zero. It is
apparent because if there is an element that has at least one
occurrence of a term, the term should appear in a sub-
element of the element at level 1. Then the frequency must be
added to the corresponding accumulator, which makes the
value of the accumulator greater than zero. (Q.E.D.)

Now we prove that we can reproduce the term frequency and
document frequency of an element at user level. Hence, we
can yield the same retrieval effectiveness in six weighting
schemes (3 term frequency variations x 2 document
frequency variations) among sixteen weighting schemes
described in Table 1. We are not able to reproduce other ten
weighting schemes exactly. But, in six out of ten that use.
cosine normalization, we are able to yield at least the same

retrieval effectiveness as the original ones if we employ byte
length normalization [131 instead of cosine normalization.

The remaining four schemes are those which use augmented
normalized term frequency as the term frequency component.
In these four, we can not reproduce the same effectiveness,
nor guarantee the similar result as the original ones.

Experimental result of BUS implementation
Here, we analyze how BUS indexes and retrieves efficiently
as compared with the traditional IR technique. As an
experimental data, we take three sub-collections in TREC
corpus [3] - PATENT, AP, and WSJ. In particular, we
choose Patent sub-collection in measuring query evaluation
since it allows nested structure (mean the structure where an
element is contained in another element) and has deeper
structures than others do. Appendix 1 shows the DTD
structure of Patent collection graphically. In this structure,
the element ‘Dot’ represents the whole document, while
‘Text’ and ‘Par’ indicate certain parts of the document. Note
that the traditional IR system is only capable of retrieving
texts at ‘Dot’ level, whereas BUS allows the retrieval at any
level specified in the DTD.

Table 2 shows the indexing overhead of BUS in three sub-
collections. After indexing the original collection, we apply
one of the compression method named 6- coding [161 to
each field in the posting structure separately.

Table 2: The indexing overhead of BUS

collection

PATENT
AP
WSJ

data size index size (M byte) time
W byte) before after index overhead after (hour)

compression compression compression (%)
256 284.59 119.66 46.74 2.5
254 369.8 1 62.36 24.55 2.4
267 346.98 60.87 22.80 2.6

As shown in Table 2, BUS consumes around 23 to 47 %
space overhead after compression and takes around 2.5
hours in indexing about 250 M bytes. This overhead is never
significant because with 20 to 50 % more space, we can
handle every element residing in each document. However,
if we apply the traditional IR method in handling structured
documents and index the documents that have deep nested
structure, the index size is likely to grow too big reaching
several hundred percents (even several thousand percent) of
the size of the real data. Moreover, it may take huge amount
of time in indexing because the indexer repeats indexing at
each level in the whole hierarchy.

Note that the compression ratio in PATENT sub-collection
is lower that the other two. It is because the UID values
created in PATENT are far greater than those made in AP or
WSJ. In fact, PATENT has a deep hierarchical structure,
whereas AP and WSJ do not. As we move toward to lower
levels in the document structure, the UIDs of elements
increase fast. The effect of the compression is diminished

when the target values are high.

In the aspect of retrieval time, BUS does not add much
overhead because it only calls for calculating the UID of the
target element in retrieving each posting, which could be
computed by a multiple of two addition, one division and
one truncation operation (It is because we have to repeat the
computation of finding parent UID as many times as the
difference of the user level and text level.)

Table 3 shows the response time of BUS and traditional IR
respectively, when a user query is given to the PATENT
collection. Table 3 summarizes the response times of 50
queries issued at three levels : Dot, Text, and far level as
shown in Appendix 1. The queries arc made manually from
the concept fields in TREC queries - 5 1 to 100. In query
evaluation at Dot or Text level, the UID (located at Par
level) in each posting is converted to the UID at user level
(Dot or Text level), while at Pur level, the UID need not be
converted. As expected, the retrieval can be performed in a

241

reasonable speed. The average response time of the fifty
queries is 1 second in Dot level and 0.54 second in PAR

indexed in PAR level and the level difference from DOC to

level. Note that the response time in DOC level is longer
the text level is greater than the other two. As opposed to

than that in TEXT or PAR level. It is because the text is
BUS, the traditional IR system simply extracts postings and
goes through similarity calculation.

Table 3: The comparison of BUS and the traditional IR system with respect to the response time

Traditional IR
BUS (element type number, level)

Result of retrieval --rl-2 DOC TEXT PAR
Topic Num Query made

/ fromconcept fd

057

(1850919,5)
time

\ num &$ num ;iFc; num ;;:I num (set)

1 MCI Communications Corp. I 14 0.07 14 0.24 14 0.23 2 0.24

063

065

067

batch, interactive, process,
user interface
storage., database, data,
query

students, agitators, dissidents
fine-diameter fibers, glass,

4145 0.26

2300 0.16

338 0.02

1143 1 L.13 1
A. In

414~ 1 1.~1 1 11670 1 0.98) L ’̂ *=

-

2300

338

2279

338

4456

269

1.13 Y 0.47

068) ceramic, mineral-wool,) 446 ’ 0.09 1 446) 0.54 ’ 445) 0.50 ’ 408 (0.48 1

075

asbestos, cellulose
increased efficiency,
smaller payroll, 5135 0.35 5135 2.47 5131 1.84 10646 1.22 _ _
work force reduction

077 poaching, illegal hunting,
fishing, trapping, equipment

genetically engineered

448 0.10 448 0.75 415 0.74 337 0.69

082
I

product, plant, animal, drug, microorganism, vaccine, 3281 (0.33) 3281) 4.18 j 3189 1 3.25 1 9973 / 2.22 /

CONCLUSION AND FURTHER STUDIES
Structured documents have been gaining growing attention
since most of documents in digital libraries are beginning to
be made with tagged in SGML. Furthermore, it is likely that
many Web documents are going to be written in XML
instead of HTML. However, the conventional information
retrieval systems and the structural methods proposed so far
do not handle the weighting scheme well in the document
structure.

This paper suggests BUS (Bottom Up Scheme) - an efficient
indexing and query evaluation method for structured
documents. and shows that it indexes and retrieves
structured documents effectively. The basic idea is that
indexing is performed at the lowest level of the given
structure and query evaluation reproduces the term weights
at higher level by accumulating the term frequencies at the
lowest level in the bottom up way. The accumulators
summing up the similarity play the role of accumulating all

the weights of the related part at a certain level.

This paper also shows how to implement BUS efficiently
and demonstrates that it indexes and retrieves structured
documents efficiently. An experimental result with TREC
collection shows that BUS does not add much overhead in
indexing phase in terms of space and time, and retrieves any
elements in a reasonable speed.

We implemented BUS on Solaris operating system and
demonstrated that it worked quite well. At present, BUS can
handle SGML documents. But it is able to accommodate
XML documents easily if the SGML parser is replaced by
the XML one. Therefore, we believe that BUS is one of the
promising methods in constructing an information retrieval
system in the future digital libraries or Word Wide Web.

Several works remain to be done. First, the UID values
hardly change once it is assigned to an element. However, if
a document is updated and exceed the largest number of chid

242

nodes - k, which is decided in the old one, the UIDS should
be computed again. Secondly, we will apply the BUS to
the various kinds of structured query languages [1, 2, 91
which provide a mixed form of content and structure.

ACKNOWLEDGEMENTS
We are grateful to Hyoungsik Woo, Youngil Kim and
Hyojin Nam for their invaluable work in developing various
parts of the software.

REFERENCES
1.

2.

3.

4.

5.

6.

7.

8.

Arnold-Moore, Fuller, T. M. Lowe, B Thorn, J and
Wilkinson, R. The ELF data model and SGQL query
language for structured document databases, Proc. Sixth
Australian Database Confgerence, 1995.

Dao, T. Sacls-Davis, R. Thorn, J.A. Indexing Structured
Text for Queries on Containment Relationships.

Harman, D. Overview of the Second Text Retrieval
Conference, Proc. The Second Text Retrieval Conference
(TREC-2) (1994) pp I-20.

Herwijnen, E. Practical SGML: Second Edition, Kluwer
Academic Publishers, 1994.

Lee, Y.K. Yoo, S.J. Yoon, K. Berra, P.B. Index Structures
for Structured Documents,” Proc. Digital Library ‘96
(1996) pp. 91-99.

Light, R. Presenting XML, Sams Net, 1997.

Lowe, B. Zobel, J. Sacks-Davis R. A Formal Model for
Databases of Structured Text, Proc. DASFAA’95 (1995).

Macleod, IA. Storage and Retrieval of Structured

Documents, Information Processing and Management 26,
2 (1990) pp. 197-208.

9. Macleod, I.A. A Query Language for Retrieving
Information from Hierarchical Text Structure, The
Computer Journal 34, 3 (1991) pp. 254-264.

10. Navarro, G. A Language for Queries on Structure and
Contents of Textual Databases, Master Thesis, Unuversity
of Chile. 1995.

11.

12.

13.

14.

15.

16.

Navarro, G and Baeza-Yates, R. Proximal Nodes: A
Model to Query Document Databases by Contents and
Structure, ACM transaction on SIGMOD, 1996.

NIST, Guide to Z39.50/PRISE 1.0, NIST document,
1995.

Singhal, A. Salton, G. and Buckley, C. Length
Normalization in Degraded Text Collection, Technical
report in Cornell University, 1995.

Volz, M. Aberer, K. Bohm, K. A Flexible Approach to
Combine IR Semantics and Database Technology and
its Application to Structured Document Handling, GMD
Technical Report No. 891, 1995.

Wilkinson, R. Effective Retrieval of Structured
Documents, in Proc. the Seventeenth Annual
International ACM-SIGIR Conference on Research and
Development in Information Retrieval (1994) pp. 3 1 l-
317.

Witten, IA. Moffat, A., and Bell, T.C. Managing
Gigabytes, Van Nostrand Reinhold, 1994.

Appendix 1: The DTD structure in PATENT sub-collection

DOC

243

