
Moving Structures between Smalltalk Images

Steven R. Vegdahl

Computer Research Laboratory
Tektronix Laboratories

P.O. Box 500, M.S. 50-662
Beaverton, OR 97077

(503) 627-6010

Abstract

There are a number of reasons why a user might
want to move data structures between Smalltalk
images. Unfommately, the facilities for doing this in
the standard Smallta~ image are inadequate: they do
not handle circular structures properly, for example.
We have implemented a collection of Smalltalk
methods that handles circular structures; in addition,
these methods have a number of other advantages
over those provided in the standard image. This paper
is largely a discussion of the issues that arose during
their design, implementation, and use.

1. Introduction

There are two types of data with which a Smalltalk
programmer may deal. The first are Smalltalk objects,
which reside in an image; the second are external
data, which can also reside outside an image--in a
text file, for example. From Smalltalk's viewpoint, an
object has a rich semantic structure that includes a
class, instance variables, and associated methods.
External data, on the other hand, is essentially just a
sequence of uninterpreted bits. Because communica-
tion between Smalltalk images occurs only through
external data, the movement of an object from one
image to mother requires that it be transformed into
an external format--such as a character string--by
the source image, and then reconstructed by the target
image.

~ ' ~ . ~ to cop,/without fee all or pert of this matemd is granted provided
that the coples me um made or datributocl for direct commercial advanta~
the ACM ~ t notice and tlze title of the publimtion and its date appear,
taxi notice is idven thin COl~ng is by pennLmon of the Amx:mtion for
Computiu8 Machine~. To copy otherwise, or to republish, requires 8 fee and/
or *pec~ permim/on.

© 1986 ACM 049791-204-7/86/0900-O466 75¢

In the standard SmaUtalk image, a mechanism---
namely, the storeOn: and readFrom: methods--is
provided for writing and reading object definitions to
and from text files [Goldberg 83]. Unfortunately, this
mechanism does not handle circular structures.
Another problem is that this facility formats the text
in compiler-compatible format; recreating the object
is done by compiling and executing the text. In many
SmaUtalk systems--including ones on which the
author has worked-.*.here is an upper limit on the
numbez, of literals that may be included in the text of a
method. The standard Smalltalk facility for reading
and writing objects, then, tends to work only for
small, non-circular objects.

This paper discusses some of the problems that
arise when one considers moving objects between
images in a more general manner. We have imple-
mented a collection of methods that allows most
structures to he written out; there are still cases, how-
ever, that cause problems. This paper is largely based
on our experience in writing the system. It is assumed
throughout that the reader is fluent in Smalltalk.

2. Implementing structure-reading and .writing
methods

The motivation for implementing the methods for
structure-reading and -writing was that the author had
some rather complex data structures to distribute to
several co-workers. Because the data structure
required a relatively long time--and a number of aux-
iliary classes and methods--w generate, the task of
creating it from scratch on each image was quite
cumbersome. Instead, he implemented some rather
simple methods for reading and writing circular struc-
tures; these methods have since been enhanced, but
some problems remain.

466 OOPSLA '86 Proceedings September 1966

http://crossmark.crossref.org/dialog/?doi=10.1145%2F960112.28745&domain=pdf&date_stamp=1986-06-01

The storeStructureOn: method recursively writes a
representation of an object onto a Stream, keeping a
mapping of objects to unique integers. The first time
an object is seen in the depth-first traversal, its struc-
ture is written out; when an object is encountered that
has already been seen, its corresponding integer is
written rather than the entire object definition. Writ-
ing out an object in this manner consists of writing its
class name and size, followed by the definitions of all
its variables, which are accessed using the basicAt:
and instVarAt: selectors.

The readStructureFrom: method creates an object
in a similar way. It recursively parses the input text,
using basic.At:put: and instVarAt:put: to load each
object's values.

The implementation described so far is quite
straightforward. Recursive methods can easily be
implemented for Object that transform object-
structures to and from character strings. Such an
implementation, however, is not adequate. Certain
Smalltalk classes, such as Symbol and Smalllnteger,
must be treated specially. Additional issues arise
when one considers moving objects between images
that run under different interpreters--ones with dif-
ferent word-sizes and floating-point precisions, for
example. Still another set of issues must be faced
when considering images whose class-definitions are
not identical.

The internal text format is readable by humans only
with great difficulty. This is not surprising, as human
readability was not a goal of this project. Results by
Lamb [Lamb 83] suggest that this need not be the
case.

3. Mapping unique objects

There are several masons why simply writing and
reading the structures recursively while keeping track
of previously seen objects does not work. One of the
most obvious is that certain objects must be unique in
any image. Among such objects are nil, true, false,
and objects of class SmalUnteger, Symbol, Character,
Class and MetaClass; other global variables, such as
the dependency structure, should also be unique.
When such an object is read into the target image, a
new instance should not be created; rather, the exist-
ing object in the target image should be used.

In our implementation, objects that are a kind of
Number are written and read using storeOn: and read-
From:. This is safe, because numbers do not contain
object pointers. (If a subclass of Number were
created whose instances contained object 'pointers, the
methods that assume pointer-fineness would have to
be overridden.) Because two interpreters may differ
in the range of integers that arc representable as
Smalllntegers, this provides some amount of inter-
preter independence. The effect of using using this
notation is invisible to the user, except that two dis-
tinct, but equal, large integers might be mapped to
identical objects. Because we do not expect that
Sntalltalk programmers depend on the internal struc-
ture of numbers, we do not anticipate this being a
problem.

Several other minor modifications were made so
that Numbers could be read properly. First, objects of
class Float were written out to 9 decimal digits of
accuracy rather than the default 6. Before this was
done, the value of a Float object could change when
written out and read back into the same image.
Although a significance of 9 digits is sufficient for our
Smalltalk interpreters, it is not necessarily sufficient
for all interpreters. Mapping floating-point values
between architectures is a difficult problem in general
[Lamb 83]. Another minor modification was neces-
sary when reading in a Fraction value because
Number-readFrom: would stop when it found the
numerator, claiming rightfully to have a (Integer)
number.

The class String also had its storing method
modified to use the standard Smalltalk printOn:
method, rather than listing out each character in ver-
bose format. Thus, the two-character string contain-
ing the characters 'h' and 'i ' is stored as 'hi' instead
of something like 'Character(104) Character(105)'.
The motivation for making this modification was con-
ciseness, although it also improves human readability.

There are a number of objects---nil, true, false,
Symbols, and Classes, for example--for which there
is an obvious object (either existing or easily-
creatable) to which readStructureFrom: can map.
Dealing with global variables, on the other hand, is
more difficult. Currently, global variables in the
source image are mapped into the correspondingly-
named objects in the target image. The rationale
behind this is that what the user usually wants is not a
new copy of a global variablemsuch as the system

September 1986 OOPSIA ~6 Proceedings 467

dictionary or the active process list---but rather the
corresponding global object in the target image.
Problems can arise when this strategy is used, how-
ever, due to the user's ability to declare an arbitrary
global name to have an arbitrary value:

• A global name that is declared in the source
image may not be defined in the target image. In
the present system, an error message is presented
to the user if such a name is not defined in the
target image.

• A global in the source image may have, say, an
integer value, such as the number 2. Having all
references to the integer 2 in the source image
correspond to some other value in the target
image does not seem to be a good idea. In the
present system, "simple" values are exceptions to
the rule.

• Two glohais in the source image may refer to the
same object, resulting in an ambiguity as to
which name should be written out. In the present
system, the decision depends upon the order in
which they appear in the intemal representation
of the system dictionary, and is thus somewhat
arbitrary. This is clearly not an ideal solution.

Another issue that involves global variables is that
of the Smalltalk dependency structure. Our imple-
mentation makes no attempt to represent dependen-
cies between objects. In some cases, this will be what
the user wants; in some cases it will not.

4. Mapping abstract objects

There are some classes for which the physical
structure is not the correct thing to map. In such
cases, it is desirable to represent a more abstract
notion of an object and its contents. This is the case
for the class Set and its subclasses. If the physical
structure is simply mapped to a target image, the
resulting structure may be not be consistent because
hash values are not necessarily preserved across
images. Thus for objects of class Set, the (abstract)
contents--rather than the underlying structure---are
written out. To read in a Set object, first an empty set
is created; it is then filled by successively adding each
element as it is read in: An alternative--and likely
more efficient--implementation would be to read the
structure into the image in the standard manner, and
then to send the rehash message to the object upon
completion.

Actually, neither of the above strategies handles all
cases correctly. Consider an Array object X that con-
tains a Set object, S, as its first element. Let us furth-
ermore assume that S contains X (see Figure 1). If the
read method is used to read in X, it is likely that S
would be incorrectly hashed upon completion. The
reason for this is that the hash value of X depends on
the hash values of its first and last elements, but the
last element of X is nil, not yet having been loaded at
the time S is read in (and rehashed). The sequence of
operations would be something like:

• A skeleton version of the array X is created; that
is to say, it is an object whose size and class are
correct, but whose elements are all nil.

• The set S is created, filled and rehashed. S now
contains X, but X is still an array of nil.

• The elements of X are filled, thereby implicitly
changing its hash value. The reading in of set S,
however, has already been completed; it is there-
fore not rehashed.

X (Array):

S (Set):

Figure 1. Structure that fails to hash properly.

One could argue that hashing objects that have cir-
cularities is a poor idea, and that the user should not
expect it to work; for the above example, the author
might agree. On the other hand, the pointei to S in the
example need not be a direct reference; it is possible
for an arbitrary indirection to cause such improper
hashing to occur. To solve this problem in general, it
is probably necessary to keep a list of Sets created as
the structure is read in, and to send each the rehash
message each after all objects have been created.

468 OOPSLA '86 Proceedings September 1986

Another class of abstract object that causes prob-
lems is that of CompiledMethod. Our initial imple-
mentation reported an error if an attempt was made to
write out a compiled method. This had the unfor-
tunate implication that SortedCollections could not be
written out using our methods, because a SortedCol-
lection contains a BlockContext as an instance vari-
able, which in turn (indirectly) refers to a Compiled-
Method.

Our first attempt at storing compiled methods was
to write out the header fields, object pointers, and byte
codes after decoding them from their rather cryptic
format. As long as the use of the object was confined
to images running the same interpreter, this worked
well; problems occurred when a second (32- rather
than 16-bit) interpreter was made available. The for-
mat of a CompiledMethod was completely different
under the 32-bit interpreter, consisting of three objects
rather than one. Furthermore, the bytecode positions
within the object differed, even though the bytecodes
themselves were the same; any integer variable that
referred to a bytecode position in the source image,
had to be modified when mapped to the target image.

The current implementation routinely moves com-
piled methods between the two image-types at Tek-
tronix. To solve the problem in a general way--for
use with syste~as that compile to native code rather
than using bytecodes, for example---it appears to be
necessary to decompile the method into a source-like
text, and to represent instance variables that are used
as program countersmsuch as program counter values
in BlockC.ontexts--in a source-relative form.

The subject of BlockContexts brings to mind
another potential problem. If an attempt is made to
write out an active block context or method context,
the entire call chain would be written out because
each context contains a pointer to its sender. Because
we believe that this is rarely what the user wants, such
fields are always written out as nil.

5. Mapping redefined objects

Still another problem encountered in attempting to
solve the structure-writing problem was that of mov-
ing objects between images whose class definitions
are not consistent. The current implementation
employs a s imple-and highly inadequate--strategy:
If the number of instance variables for a class is the
same in both images, it maps them by position;

otherwise it reports an error. The user is responsible
for ensuring that the definitions are equivalent.

A simple way of improving this strategy would be
to write out an ordered list containing the names of all
instance variables for each class in the source image.
(Classes that had no instances written out, of course
could be excluded.) Upon reading the object into the
target image, then, the names could be checked,
reporting an error if there is a discrepancy. A slightly
more robust technique would be that of checking
whether the instance variables differed only in that
they were permuted, and then applying the appropri-
ate transformation to the objects in the target image.

More elaborate techniques for solving the problem
are also possible. One would be to allow the user to
specify a message-name that is to be sent to each
newly-created object. The purpose of such a method
would be to fill in the method's instance variables in a
manner prescribed by the user.

These issues are similar to those of the mutation
that takes place within an image when the definition
of a class changes. What typically happens during
mutation is that each instance (object) of the modified
class is changed so that it has the correct number of
instance variables; new instance variables are initial-
ized to nil; also, corrections are made for any instance
variables that may have changed position.

Another consequence of moving inconsistently-
defined objects between images is that moving com-
piled methods between images must be done at the
source-leveL Machine- or byte-code instructions
refer to instance variables by position, not by name,
resulting in incorrect execution if instance-variable
positions have changed.

6. Conclusions

We have implemented a mechanism that is a first
attempt at allowing general structures to be moved
between Smalltalk images. It makes a reasonable
attempt at doing the "right thing" in most cases; in
others, it does the "easy" (as well as wrong) thing.
The system, which consists of about 20,000 bytes of
source code, has become the method of choice within
our user community for moving objects between
images, including those that run under different inter-
preters. Aside from not being able to handle
"unusual" structures, it has been quite successful.

September 1966 OOPSLA '86 Proceedings 469

The moving of arbitrary structures between Small-
talk images--even ones that run under the same
interpreter--is not a trivial task. Problems and ambi-
guities arise involving global variable names, hash
values, and inconsistent class definitions. Still more
problems arise when an attempt is made to move
structures between images that run on different inter-
preters; many of these are similar to those faced when
cloning an image so that it can run on a new inter-
preter. These include compatibility of floating-point
formats, and the representation of CompiledMethods.

Some of the problems encountered--such as the
interaction between circularity and hashing, and the
representation of CompiledMethods---appear to have
solutions. Many of the of the other problems appear
either to be intrinsically difficult, or to require human
intervention. These include the preservation of dis-
tinct (but equal) large integers, mapping global vari-
ables, dealing with inconsistent class definitions, and
the taking of a reasonable action in mapping depen-
dencies. Although solving the problem in a general
fashion does not appear to be possible, it is our
experience that a tool which solves even a portion of
the problem is quite valuable.

References

[Goldberg 83] A. Goldberg and D. Robson,
Smalltalk-80: The Language and its Implementa-
tion, Addison-Wesley, Reading, Massachusetts
(1983).

[Lamb 83] D.A. Lamb, Sharing Intermediate Repre-
sentations: The Interface Description Language,
PhD thesis, Camegie-MeUon University (1983).

Appendix A. Default structure-writing code.

The following are three methods defined in Object
that implement the core of the structure-writing
mechanism. Classes for which these methods are
inappropriate must override them. The StructOutput-
Table object is an auxiliary object that keeps track of
objects seen so far, as well as the image's globals.

storeStructureOn: aStream
"Writes on aStream a circular description of the

receiver."

self
storeStmctureOn: aStream
auxTable: (StmctOutputTable new).

storeStructureOn: aStream auxTable: auxTable
"Stores the definition of an object onto aStream,

given that the objects contained in auxTable
have already been seen. This method is rarely
overridden. In our implementation, it is only
overridden by Number. In the normal case, the
object's id number is written out, followed by
a '#' and its class name, and finally a set of
parentheses enclosing its definition."

I expand I

expand ~-- false.
aStream

nextPutAll:
(auxTable

idOfElement: self
ifNew: [mum I expand ~ true]).

print, String.
expand

ifrme:
[self isUniqueValue

if False:
[auxTable

if: self
isGlobal: [:name I

aStream nextPutAll: '&', name. ^self]].
aStream

nextPutAll: '#', self class printString, '('.
self

storeDefinitionOn: aStream
auxTable: auxTable.

aStream nextPutAll: ')'].

470 OOPSLA ~8 Proceedings September 1986

storeDefinitionOn: &Stream auxTable: auxTable
"Stores all relevant information about the

contents of an object. First the number
of slots in its variable part is written
out (or '-' if the object has no variable
part. Then the object's instance
variables are written, followed by its
array-variables."

aStream
nextPutAll:
(self class isVariable

if Free: [self basicSize printString]
ifFalse: ['-']).

1 to: self class instSize do: [:i I
aStream nextPutAll: ' '.
(self instVarAt: i)

storeStmctureOn: aStream
auxTable: auxTable].

1 to: self basic.Size do: [:i J
aStream nextPutAll: ' '
(self basicAt: i)

storeStmctureOn: aStream
auxTable: auxTable].

Appendix B. Example structure-writing output.

The follow|ng are examples of the output from
storeStructureOn:. The first example (see Figure 2)
was created by evaluating the Smalltalk expression

Array
with: nil
with: 5
with: 'Hello Charlie'
with: nil

in a workspace. This array, whose four elements are
nil, the Integer 5, the String 'Hello Charlie', and nil,
respectively, was written by our system as

l#Array(4 2#UndefinedObject(-) 3%5
4#String('Hello Charlie') 2)

Array:

String: 'Hello Charlie'

Figure 2. Example data structure.

The second example (see Figure 3) was produced by
executing

s t-- Set new.
o ~-- Array with: s with: 3/4 with: Form.
a t-- Array with: #xyz with: o.
s add: #xyz; add: Form; add: a.

in a workspace. Set s, con t~s the class object Form,
the Array a, and the symbol #xyz. Array a, in turn,
contains the symbol #xyz, and the Array o, which con-
tains the Set s, the Fraction 3/4, and the C/ass object
Form. The resulting output from our system when
applied to s was:

l#Set(2&Fonn 3#Array(2 4#Symbol('xyz')
5#Array(3 1 6%(3/4) 2)) 4)

Figure 3. Another example data structure.

Se~ember 1966 OOPSLA '86 Proceedings 471

