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Abstract 

There are a number of reasons why a user might 
want to move data structures between Smalltalk 
images. Unfommately, the facilities for doing this in 
the standard Smallta~ image are inadequate: they do 
not handle circular structures properly, for example. 
We have implemented a collection of Smalltalk 
methods that handles circular structures; in addition, 
these methods have a number of other advantages 
over those provided in the standard image. This paper 
is largely a discussion of the issues that arose during 
their design, implementation, and use. 

1. Introduction 

There are two types of data with which a Smalltalk 
programmer may deal. The first are Smalltalk objects, 
which reside in an image; the second are external 
data, which can also reside outside an image--in a 
text file, for example. From Smalltalk's viewpoint, an 
object has a rich semantic structure that includes a 
class, instance variables, and associated methods. 
External data, on the other hand, is essentially just a 
sequence of uninterpreted bits. Because communica- 
tion between Smalltalk images occurs only through 
external data, the movement of an object from one 
image to mother requires that it be transformed into 
an external format--such as a character string--by 
the source image, and then reconstructed by the target 
image. 
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In the standard SmaUtalk image, a mechanism--- 
namely, the storeOn: and readFrom: methods--is 
provided for writing and reading object definitions to 
and from text files [Goldberg 83]. Unfortunately, this 
mechanism does not handle circular structures. 
Another problem is that this facility formats the text 
in compiler-compatible format; recreating the object 
is done by compiling and executing the text. In many 
SmaUtalk systems--including ones on which the 
author has worked-.*.here is an upper limit on the 
numbez, of literals that may be included in the text of a 
method. The standard Smalltalk facility for reading 
and writing objects, then, tends to work only for 
small, non-circular objects. 

This paper discusses some of the problems that 
arise when one considers moving objects between 
images in a more general manner. We have imple- 
mented a collection of methods that allows most 
structures to he written out; there are still cases, how- 
ever, that cause problems. This paper is largely based 
on our experience in writing the system. It is assumed 
throughout that the reader is fluent in Smalltalk. 

2. Implementing structure-reading and .writing 
methods 

The motivation for implementing the methods for 
structure-reading and -writing was that the author had 
some rather complex data structures to distribute to 
several co-workers. Because the data structure 
required a relatively long time--and a number of aux- 
iliary classes and methods--w generate, the task of 
creating it from scratch on each image was quite 
cumbersome. Instead, he implemented some rather 
simple methods for reading and writing circular struc- 
tures; these methods have since been enhanced, but 
some problems remain. 
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The storeStructureOn: method recursively writes a 
representation of an object onto a Stream, keeping a 
mapping of objects to unique integers. The first time 
an object is seen in the depth-first traversal, its struc- 
ture is written out; when an object is encountered that 
has already been seen, its corresponding integer is 
written rather than the entire object definition. Writ- 
ing out an object in this manner consists of writing its 
class name and size, followed by the definitions of all 
its variables, which are accessed using the basicAt: 
and instVarAt: selectors. 

The readStructureFrom: method creates an object 
in a similar way. It recursively parses the input text, 
using basic.At:put: and instVarAt:put: to load each 
object's values. 

The implementation described so far is quite 
straightforward. Recursive methods can easily be 
implemented for Object that transform object- 
structures to and from character strings. Such an 
implementation, however, is not adequate. Certain 
Smalltalk classes, such as Symbol and Smalllnteger, 
must be treated specially. Additional issues arise 
when one considers moving objects between images 
that run under different interpreters--ones with dif- 
ferent word-sizes and floating-point precisions, for 
example. Still another set of issues must be faced 
when considering images whose class-definitions are 
not identical. 

The internal text format is readable by humans only 
with great difficulty. This is not surprising, as human 
readability was not a goal of this project. Results by 
Lamb [Lamb 83] suggest that this need not be the 
case. 

3. Mapping unique objects 

There are several masons why simply writing and 
reading the structures recursively while keeping track 
of previously seen objects does not work. One of the 
most obvious is that certain objects must be unique in 
any image. Among such objects are nil, true, false, 
and objects of class SmalUnteger, Symbol, Character, 
Class and MetaClass; other global variables, such as 
the dependency structure, should also be unique. 
When such an object is read into the target image, a 
new instance should not be created; rather, the exist- 
ing object in the target image should be used. 

In our implementation, objects that are a kind of 
Number are written and read using storeOn: and read- 
From:. This is safe, because numbers do not contain 
object pointers. (If a subclass of Number were 
created whose instances contained object 'pointers, the 
methods that assume pointer-fineness would have to 
be overridden.) Because two interpreters may differ 
in the range of integers that arc representable as 
Smalllntegers, this provides some amount of inter- 
preter independence. The effect of using using this 
notation is invisible to the user, except that two dis- 
tinct, but equal, large integers might be mapped to 
identical objects. Because we do not expect that 
Sntalltalk programmers depend on the internal struc- 
ture of numbers, we do not anticipate this being a 
problem. 

Several other minor modifications were made so 
that Numbers could be read properly. First, objects of 
class Float were written out to 9 decimal digits of 
accuracy rather than the default 6. Before this was 
done, the value of a Float object could change when 
written out and read back into the same image. 
Although a significance of 9 digits is sufficient for our 
Smalltalk interpreters, it is not necessarily sufficient 
for all interpreters. Mapping floating-point values 
between architectures is a difficult problem in general 
[Lamb 83]. Another minor modification was neces- 
sary when reading in a Fraction value because 
Number-readFrom: would stop when it found the 
numerator, claiming rightfully to have a (Integer) 
number. 

The class String also had its storing method 
modified to use the standard Smalltalk printOn: 
method, rather than listing out each character in ver- 
bose format. Thus, the two-character string contain- 
ing the characters 'h' and 'i ' is stored as 'hi' instead 
of something like 'Character(104) Character(105)'. 
The motivation for making this modification was con- 
ciseness, although it also improves human readability. 

There are a number of objects---nil, true, false, 
Symbols, and Classes, for example--for which there 
is an obvious object (either existing or easily- 
creatable) to which readStructureFrom: can map. 
Dealing with global variables, on the other hand, is 
more difficult. Currently, global variables in the 
source image are mapped into the correspondingly- 
named objects in the target image. The rationale 
behind this is that what the user usually wants is not a 
new copy of a global variablemsuch as the system 
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dictionary or the active process list---but rather the 
corresponding global object in the target image. 
Problems can arise when this strategy is used, how- 
ever, due to the user's ability to declare an arbitrary 
global name to have an arbitrary value: 

• A global name that is declared in the source 
image may not be defined in the target image. In 
the present system, an error message is presented 
to the user if such a name is not defined in the 
target image. 

• A global in the source image may have, say, an 
integer value, such as the number 2. Having all 
references to the integer 2 in the source image 
correspond to some other value in the target 
image does not seem to be a good idea. In the 
present system, "simple" values are exceptions to 
the rule. 

• Two glohais in the source image may refer to the 
same object, resulting in an ambiguity as to 
which name should be written out. In the present 
system, the decision depends upon the order in 
which they appear in the intemal representation 
of  the system dictionary, and is thus somewhat 
arbitrary. This is clearly not an ideal solution. 

Another issue that involves global variables is that 
of the Smalltalk dependency structure. Our imple- 
mentation makes no attempt to represent dependen- 
cies between objects. In some cases, this will be what 
the user wants; in some cases it will not. 

4. Mapping abstract objects 

There are some classes for which the physical 
structure is not the correct thing to map. In such 
cases, it is desirable to represent a more abstract 
notion of an object and its contents. This is the case 
for the class Set and its subclasses. If the physical 
structure is simply mapped to a target image, the 
resulting structure may be not be consistent because 
hash values are not necessarily preserved across 
images. Thus for objects of class Set, the (abstract) 
contents--rather than the underlying structure---are 
written out. To read in a Set object, first an empty set 
is created; it is then filled by successively adding each 
element as it is read in: An alternative--and likely 
more efficient--implementation would be to read the 
structure into the image in the standard manner, and 
then to send the rehash message to the object upon 
completion. 

Actually, neither of the above strategies handles all 
cases correctly. Consider an Array object X that con- 
tains a Set object, S, as its first element. Let us furth- 
ermore assume that S contains X (see Figure 1). If the 
read method is used to read in X, it is likely that S 
would be incorrectly hashed upon completion. The 
reason for this is that the hash value of X depends on 
the hash values of its first and last elements, but the 
last element of X is nil, not yet having been loaded at 
the time S is read in (and rehashed). The sequence of 
operations would be something like: 

• A skeleton version of the array X is created; that 
is to say, it is an object whose size and class are 
correct, but whose elements are all nil. 

• The set S is created, filled and rehashed. S now 
contains X, but X is still an array of nil. 

• The elements of X are filled, thereby implicitly 
changing its hash value. The reading in of set S, 
however, has already been completed; it is there- 
fore not rehashed. 

X (Array): 

S (Set): 

Figure 1. Structure that fails to hash properly. 

One could argue that hashing objects that have cir- 
cularities is a poor idea, and that the user should not 
expect it to work; for the above example, the author 
might agree. On the other hand, the pointei to S in the 
example need not be a direct reference; it is possible 
for an arbitrary indirection to cause such improper 
hashing to occur. To solve this problem in general, it 
is probably necessary to keep a list of Sets created as 
the structure is read in, and to send each the rehash 
message each after all objects have been created. 
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Another class of abstract object that causes prob- 
lems is that of CompiledMethod. Our initial imple- 
mentation reported an error if an attempt was made to 
write out a compiled method. This had the unfor- 
tunate implication that SortedCollections could not be 
written out using our methods, because a SortedCol- 
lection contains a BlockContext as an instance vari- 
able, which in turn (indirectly) refers to a Compiled- 
Method. 

Our first attempt at storing compiled methods was 
to write out the header fields, object pointers, and byte 
codes after decoding them from their rather cryptic 
format. As long as the use of the object was confined 
to images running the same interpreter, this worked 
well; problems occurred when a second (32- rather 
than 16-bit) interpreter was made available. The for- 
mat of a CompiledMethod was completely different 
under the 32-bit interpreter, consisting of three objects 
rather than one. Furthermore, the bytecode positions 
within the object differed, even though the bytecodes 
themselves were the same; any integer variable that 
referred to a bytecode position in the source image, 
had to be modified when mapped to the target image. 

The current implementation routinely moves com- 
piled methods between the two image-types at Tek- 
tronix. To solve the problem in a general way--for  
use with syste~as that compile to native code rather 
than using bytecodes, for example---it appears to be 
necessary to decompile the method into a source-like 
text, and to represent instance variables that are used 
as program countersmsuch as program counter values 
in BlockC.ontexts--in a source-relative form. 

The subject of BlockContexts brings to mind 
another potential problem. If an attempt is made to 
write out an active block context or method context, 
the entire call chain would be written out because 
each context contains a pointer to its sender. Because 
we believe that this is rarely what the user wants, such 
fields are always written out as nil. 

5. Mapping redefined objects 

Still another problem encountered in attempting to 
solve the structure-writing problem was that of mov- 
ing objects between images whose class definitions 
are not consistent. The current implementation 
employs a s imple-and highly inadequate--strategy: 
If the number of instance variables for a class is the 
same in both images, it maps them by position; 

otherwise it reports an error. The user is responsible 
for ensuring that the definitions are equivalent. 

A simple way of improving this strategy would be 
to write out an ordered list containing the names of all 
instance variables for each class in the source image. 
(Classes that had no instances written out, of course 
could be excluded.) Upon reading the object into the 
target image, then, the names could be checked, 
reporting an error if there is a discrepancy. A slightly 
more robust technique would be that of checking 
whether the instance variables differed only in that 
they were permuted, and then applying the appropri- 
ate transformation to the objects in the target image. 

More elaborate techniques for solving the problem 
are also possible. One would be to allow the user to 
specify a message-name that is to be sent to each 
newly-created object. The purpose of such a method 
would be to fill in the method's instance variables in a 
manner prescribed by the user. 

These issues are similar to those of the mutation 
that takes place within an image when the definition 
of a class changes. What typically happens during 
mutation is that each instance (object) of the modified 
class is changed so that it has the correct number of 
instance variables; new instance variables are initial- 
ized to nil; also, corrections are made for any instance 
variables that may have changed position. 

Another consequence of moving inconsistently- 
defined objects between images is that moving com- 
piled methods between images must be done at the 
source-leveL Machine- or byte-code instructions 
refer to instance variables by position, not by name, 
resulting in incorrect execution if instance-variable 
positions have changed. 

6. Conclusions 

We have implemented a mechanism that is a first 
attempt at allowing general structures to be moved 
between Smalltalk images. It makes a reasonable 
attempt at doing the "right thing" in most cases; in 
others, it does the "easy" (as well as wrong) thing. 
The system, which consists of about 20,000 bytes of 
source code, has become the method of choice within 
our user community for moving objects between 
images, including those that run under different inter- 
preters. Aside from not being able to handle 
"unusual" structures, it has been quite successful. 
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The moving of arbitrary structures between Small- 
talk images--even ones that run under the same 
interpreter--is not a trivial task. Problems and ambi- 
guities arise involving global variable names, hash 
values, and inconsistent class definitions. Still more 
problems arise when an attempt is made to move 
structures between images that run on different inter- 
preters; many of these are similar to those faced when 
cloning an image so that it can run on a new inter- 
preter. These include compatibility of floating-point 
formats, and the representation of CompiledMethods. 

Some of the problems encountered--such as the 
interaction between circularity and hashing, and the 
representation of CompiledMethods---appear to have 
solutions. Many of the of the other problems appear 
either to be intrinsically difficult, or to require human 
intervention. These include the preservation of dis- 
tinct (but equal) large integers, mapping global vari- 
ables, dealing with inconsistent class definitions, and 
the taking of a reasonable action in mapping depen- 
dencies. Although solving the problem in a general 
fashion does not appear to be possible, it is our 
experience that a tool which solves even a portion of 
the problem is quite valuable. 
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Appendix A. Default structure-writing code. 

The following are three methods defined in Object 
that implement the core of the structure-writing 
mechanism. Classes for which these methods are 
inappropriate must override them. The StructOutput- 
Table object is an auxiliary object that keeps track of 
objects seen so far, as well as the image's globals. 

storeStructureOn: aStream 
"Writes on aStream a circular description of the 

receiver." 

self 
storeStmctureOn: aStream 
auxTable: (StmctOutputTable new). 

storeStructureOn: aStream auxTable: auxTable 
"Stores the definition of an object onto aStream, 

given that the objects contained in auxTable 
have already been seen. This method is rarely 
overridden. In our implementation, it is only 
overridden by Number. In the normal case, the 
object's id number is written out, followed by 
a '#' and its class name, and finally a set of 
parentheses enclosing its definition." 

I expand I 

expand ~-- false. 
aStream 

nextPutAll: 
(auxTable 

idOfElement: self 
ifNew: [mum I expand ~ true]). 

print, String. 
expand 

ifrme: 
[self isUniqueValue 

if False: 
[auxTable 

if: self 
isGlobal: [:name I 

aStream nextPutAll: '&', name. ^self]]. 
aStream 

nextPutAll: '#', self class printString, '('. 
self 

storeDefinitionOn: aStream 
auxTable: auxTable. 

aStream nextPutAll: ')']. 
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storeDefinitionOn: &Stream auxTable: auxTable 
"Stores all relevant information about the 

contents of an object. First the number 
of slots in its variable part is written 
out (or '-' if the object has no variable 
part. Then the object's instance 
variables are written, followed by its 
array-variables." 

aStream 
nextPutAll: 
(self class isVariable 

if Free: [self basicSize printString] 
ifFalse: ['-']). 

1 to: self class instSize do: [:i I 
aStream nextPutAll: ' '. 
(self instVarAt: i) 

storeStmctureOn: aStream 
auxTable: auxTable]. 

1 to: self basic.Size do: [:i J 
aStream nextPutAll: ' ' 
(self basicAt: i) 

storeStmctureOn: aStream 
auxTable: auxTable]. 

Appendix B. Example structure-writing output. 

The follow|ng are examples of the output from 
storeStructureOn:. The first example (see Figure 2) 
was created by evaluating the Smalltalk expression 

Array 
with: nil 
with: 5 
with: 'Hello Charlie' 
with: nil 

in a workspace. This array, whose four elements are 
nil, the Integer 5, the String 'Hello Charlie', and nil, 
respectively, was written by our system as 

l#Array(4 2#UndefinedObject(-) 3%5 
4#String('Hello Charlie') 2) 

Array: 

String: 'Hello Charlie' 

Figure 2. Example data structure. 

The second example (see Figure 3) was produced by 
executing 

s t-- Set new. 
o ~-- Array with: s with: 3/4 with: Form. 
a t-- Array with: #xyz with: o. 
s add: #xyz; add: Form; add: a. 

in a workspace. Set s, con t~s  the class object Form, 
the Array a, and the symbol #xyz. Array a, in turn, 
contains the symbol #xyz, and the Array o, which con- 
tains the Set s, the Fraction 3/4, and the C/ass object 
Form. The resulting output from our system when 
applied to s was: 

l#Set(2&Fonn 3#Array(2 4#Symbol('xyz') 
5#Array(3 1 6%(3/4) 2)) 4 ) 

Figure 3. Another example data structure. 
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