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ABSTRACT 
For people with visual impairments, photography is essential 
in identifying objects through remote sighted help and image 
recognition apps. This is especially the case for teachable 
object recognizers, where recognition models are trained on 
user’s photos. Here, we propose real-time feedback for com-
municating the location of an object of interest in the camera 
frame. Our audio-haptic feedback is powered by a deep learn-
ing model that estimates the object center location based on 
its proximity to the user’s hand. To evaluate our approach, 
we conducted a user study in the lab, where participants with 
visual impairments (N = 9) used our feedback to train and test 
their object recognizer in vanilla and cluttered environments. 
We found that very few photos did not include the object (2% 
in the vanilla and 8% in the cluttered) and the recognition 
performance was promising even for participants with no prior 
camera experience. Participants tended to trust the feedback 
even though they know it can be wrong. Our cluster analysis 
indicates that better feedback is associated with photos that 
include the entire object. Our results provide insights into fac-
tors that can degrade feedback and recognition performance 
in teachable interfaces. 
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INTRODUCTION 
Object recognition is one of the daily challenges that people 
with visual impairments face [17]. This is often not limited 
to general object categories such as shirt, soda, or medica-
tion that can be distinguished by touch or other nonvisual 
senses but more so to fine-grained categories such as flavor, 
brand, or other specific characteristics [32]. For this reason, 
beyond adhesive Braille labels [49] or other ad hoc organizing 
systems [30], people have been quick to adopt camera-based 
technologies that either use remote sighted help (e.g., [14, 

Figure 1: Examples of challenging photos taken by people 
with visual impairments sent to Vizwiz crowdworkers. About 
28% of all photos are categorized as unanswearable [26]. 

10, 7]) or leverage pre-trained image recognition models (e.g., 
[56, 25, 53]). Proper aiming of the camera is critical for both 
cases as it can impact the effectiveness of these solutions. 

Images that are blurred, show non-informative viewpoints, 
have low saliency in cluttered backgrounds, or more notably 
miss or partially include the object of interest (as shown in 
Figure 1) make the recognition task challenging for both hu-
mans and machines. In the case of remote sighted help, those 
images tend to typically slow down the response rate as crowd-
workers try to provide feedback or guidance for better camera 
aiming [8]. However, when it comes to pre-trained models, 
current applications do not provide any feedback to users about 
the quality of their photos. Thus, low-quality images typically 
result in recognition errors [61], given that those models are 
often trained with well-framed photos taken by sighted people. 
The problem is further exacerbated when photos from people 
with visual impairments are also used in training as with teach-
able object recognizers [32, 50, 5]; making blind photography 
a primary factor limiting performance. 

To overcome these challenges, we are interested in exploring 
real-time feedback for including and indicating the object of 
interest in the camera frame. While camera framing guidance 
has been explored in accessible blind photography [15, 59, 31, 
54, 55, 8], it has not been evaluated for object recognition, 
especially when training machine learning algorithms. 
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In this paper, we introduce real-time feedback powered by a 
deep learning model that estimates the center of the object 
of interest in the camera frame. Our model is informed by 
prior work [35] providing evidence on the utility of hands 
for people with visual impairments as a natural interface for 
including and indicating the object of interest in the camera 
frame. Specifically, we use convolutional neural networks 
(CNNs) to estimate the center of the object of interest in terms 
of its proximity to a user’s hand by first training a hand seg-
mentation model and then fine-tuning it to learn to locate 
the center of the object in proximity to the segmented hand. 
The coarse location of the object in the camera frame is then 
communicated in real-time through audio and haptic feedback. 

We conducted a user study with nine participants with visual 
impairments to evaluate the effectiveness of our feedback 
in the context of teachable object recognition, where each 
participant trains a mobile phone to recognize 15 objects. We 
show that our feedback can help reduce training examples 
without the object of interest in the frame, even for blind users 
who have never taken a photo before. Our cluster analysis 
indicates that better feedback is associated with photos that 
include the entire object and shorter training times. While 
there is a negative correlation between participants’ age and 
the performance of their models, this seems to be explained by 
their photography experience. Last, participants tend to trust 
the feedback even though they were exposed to its limitations. 

This paper’s contributions are: (1) a real-time feedback ap-
proach for better camera framing triggered by natural object-
hand interactions; (2) insights from a replication study on 
teachable object recognizers; (3) anecdotal evidence on older 
adults interacting with teachable interfaces; and (3) a cluster 
analysis method applicable to other assistive technologies. 

RELATED WORK 
Our work draws from the rich literature on camera manipu-
lation, nonvisual feedback, and object recognition for people 
with visual impairments. To inform the design of our feed-
back mechanism, we focus on sonification and haptic feedback 
methods previously reported for photography and navigation. 
Moreover, to better contextualize the implication of our find-
ings, we discuss current computer vision solutions for this user 
group with an emphasis on teachable object recognizers. 

Blind Photography and Nonvisual Feedback 
Blind photography is not a new concept. Research in this area 
includes efforts around the world on teaching photography 
to people with visual impairments [43, 13]; understanding 
their photography needs [2, 11, 60]; building accessible pho-
tography applications [1, 27, 3, 4]; providing remote sighted 
help [14, 53, 10, 12]; and, more closely related to this work, 
obtaining better-quality photos [15, 59, 31, 54, 55, 8, 61, 39]. 

We look into prior work in camera manipulation for people 
with visual impairments to identify characteristics of these 
solutions and understand the diversity of feedback modality 
and information communicated to the user. Table 1 presents 
representative examples from 2010 to 2019 focusing mainly 
on photos for identifying objects [15, 59, 31, 61] while broad-
ening it to other work helping with the quality of photos for 

Table 1: Comparison of several prior applications addressing 
camera manipulation for people with visual impairments. 

[15] [59, 31] [54, 55] [8] [61] [39] [60] 

Focus 
Object • • • 

Barcode/Text • 
Face • • • • 
Any • 

Feedback 
Sound • • • • 
Verbal • • • • 
Haptic • • 

None • • • 

Information 
Face Count • 

Proximity • • 
Directions • • • 

Source 
Human • 

Machine • • • • • • • 

reading barcode or text [39], identifying faces [59, 8, 39, 60], 
and capturing scenes [54, 55]. As shown in Table 1, when help-
ing with the quality of the photos, the majority of solutions opt 
for an automatic approach, which can be instantaneous. These 
instantaneous quality estimates are not always communicated 
to the user [55, 39, 61]. Instead, photos deemed as high quality 
are extracted automatically from video streams. 

When guidance is provided, it often includes verbal instruc-
tions such as left, up, down, right [15, 59, 55, 8] or the number 
of faces in the camera frame [60] though sonification and hap-
tic feedback have been also explored. Specifically, Bigham 
et al. [15] used sonification to direct users to the target ob-
ject’s location. Among three different modalities (tone sound, 
clicking sound, and verbal instructions), they found that par-
ticipants preferred the clicking sound. Similarly, OrCam [39] 
uses a beeping sound to indicate a good framing. This was con-
tradicted in Vázquez et al. [54], where participants preferred 
verbal instructions to the tone sound, which only indicated ob-
ject distance from the frame center. On the other hand, when 
Jayant et al. [31] only provided verbal instructions, with par-
ticipants mentioning tone and haptic feedback as alternatives. 
While none of the prior work explored user guidance in the 
same context with this work, they informed the design of our 
feedback, exploring both sound and haptic modalities. Also, 
we see that communicating the position of the object relative 
to the center rather than just its distance can be helpful. 

Nonvisual guidance is not unique to photography. For ex-
ample, Gerino et al. [24] used a sinusoidal-wave sound and 
differentiated its frequency to convey spatial information. We 
consider this approach during our exploration of feedback 
modalities. Sound was also used by Brock et al. [18] to inform 
blind users of an object’s location in 3D space; stereophonic 
sound was employed for x-axis, pitch for y-axis, and volume 
for distance from the user (z-axis). To reduce the learning cost, 
we consider only the x-axis stereophonic sound for our feed-
back, which has also been previously used in blind navigation 
and found to be more appropriate than verbal instructions [38]. 
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Figure 2: Training examples in our hand-segmentation and 
object-localization models using the EgoHands, GTEA, GTEA 
Gaze+, Intel Egocentric, and TEgO datasets (in the left-to-
right order). Original images are shown on the first row, hand 
segmentation on the second row, and object center annotations 
on the last row. EgoHands is used only in hand segmentation. 

Teachable Object Recognizers 
Given the need for fine-grained labels, object recognizers 
typically rely on the presence of barcodes [29, 40, 39, 6], 
readable text [44, 39, 6], remote sighted help [14, 10, 12, 7], 
or large training datasets [53, 56, 19, 25]. Each method has 
its pros and cons. Barcode readers assume the presence of a 
barcode that is included in the database. Not all objects include 
text and product labels are often not readable. Remote sighted 
help can have high recognition rates given a well-framed photo 
but can be slow as it assumes crowd availability 24/7, often 
comes with a per demand cost, requires a good data plan, and 
more importantly raises privacy concerns. 

Applications that use computer vision can mitigate some of 
these concerns. However, fine-grained object classification 
tasks often face challenges of their own such as lack of training 
data, a large number of classes, and high intra-class versus 
low inter-class variance [20]. A workaround is to significantly 
constrain the recognition task to a specific object category such 
as money readers [45, 6] or a specific user such as teachable 
object recognizers [51, 32, 50, 5]. 

By constraining the recognition task to a specific user, teach-
able object recognizers both limit the number of classes and 
reduce variability between images used to train the models 
and those taken for recognizing real-world objects, which are 
subject to similar conditions and idiosyncratic characteristics 
of the user [32]. However, these approaches are susceptible to 
camera manipulation challenges faced by people with visual 
impairments [32, 35]. This is why some of the first attempts 
in teachable object recognition by Sudol et al. [51] required 
the presence of sighted help in taking high-quality training 
photos, which limits users’ independence. Subsequent work 
in this direction by Kacorri et al. [32] as well as Sosa-García 
and Odone [50] focused on empowering people with visual 
impairments in training their own object recognizers without 
sighted help, a focus that this paper shares. While still in an 
experimental phase, we have seen that some of these attempts 
are reaching real-world applications for training on personal 

objects [5] and faces of familiar people [5, 6, 39]. Similar to 
the use of adhesive Braille labels or other ad-hoc approaches, 
the training phase in these applications assumes that people 
with visual impairments know the label of the object of interest 
at some point (e.g. when first obtaining it). 

One of the main challenges in helping people with visual im-
pairments train their object recognizers is automating feedback 
for high-quality training examples. Perhaps this explains why 
teachable recognizers are initially deployed for personalizing 
barcode readers [21, 58, 39] or faces in scene description [5, 6, 
39]. In both cases, we know what to look for (a barcode or a 
face), and can utilize pre-existing computer vision approaches 
and rich datasets for those recognition tasks. This is not the 
case for object recognizers addressed in this work. The shape 
of an object of interest for a specific user (e.g., a keychain, an 
artisanal product, or art project) is not known a priori, nor is 
the perspective with more distinguishable characteristics for 
that object. More so, the presence of multiple objects in the 
frame makes it difficult to know which is the intended object. 

HAND-GUIDED OBJECT LOCALIZATION FOR FEEDBACK 
Informed by prior work [35], we propose a real-time feedback 
mechanism that guides users to frame an object of interest 
in the camera by leveraging natural object–hand interactions. 
As shown in Figure 3(b), our feedback module estimates the 
object center location in the camera frame (object localization 
model) informed by the presence and shape of the user’s hand 
in the frame (hand segmentation model). 

Hand Segmentation Model 
We first train a hand segmentation model that identifies image 
pixels that correspond to the user’s hands in the camera frame. 
We use a FCN-8s neural network architecture [36] and train 
it with the publicly available egocentric datasets (a total of 
9, 241 training examples): EgoHands [9], GTEA [23], GTEA 
Gaze+ [22], Intel Egocentric [46], and TEgO [35]. All datasets 
focus on human interactions from first-person point-of-view: 
their examples in Figure 2 and a detailed comparison in [35]. 
We used the following hyperparameters in training: 10,000 
learning steps, 10−5 learning rate, and 16 batch size. 

Object Localization Model 
For our object localization model, we take the previously 
trained hand segmentation model and freeze the weights for 
the first five convolutional layers, shown to learn hand-related 
features [37]. We re-train the remaining layers with Gaussian 
heatmap blob annotations for object centers (6,239 training 
examples), shown in Figure 2. These annotations were shown 
to be more robust than pinpointing location coordinates [42, 
37]. The hyperparameters for fine-tuning were the same as 
those noted in the hand segmentation model above. 

ITERATIVE DESIGN OF THE REAL-TIME FEEDBACK 
Building on prior work in blind photography, we explore alter-
native feedback mechanisms that convey the estimated object 
center location in the camera frame. We chose our design 
among several options based on extensive piloting with one of 
the blind researchers in our team. 
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(a) Our nonvisual feedback mechanism. (b) The architecture of our real-time feedback approach for better camera framing. 

Figure 3: Our testbed sends an image to the server, receives an estimated location, and triggers the corresponding feedback. 

Explorations 
Our initial attempts provided an increasingly fast and loud 
beep sound to communicate the proximity of the estimated 
object-center from the camera frame center conveying lim-
ited spatial information as highlighted in Vázquez et al. [54], 
where participants preferred richer verbal instructions to the 
beep sound. To add spatial information, we considered stereo-
phonic sound [18] that informs an object-center location in the 
x-axis with three distinguishable sounds for left, middle, and 
right, as shown in Figure 3(a). We piloted the stereophonic 
sound with a beep tone and a sinusoidal wave sound widely 
used in nonvisual shapes exploration for blind people [24]. We 
explored higher frequencies for the sinusoidal wave sound to 
convey a well-centered object. Also, we considered commu-
nicating the presence of the object within the camera frame 
through vibrations [59, 8], which were more intense when the 
object was well-centered. A combination of the stereophonic 
sound with the vibration deemed more distinguishable. 

Our Feedback Mechanism 
As shown in Figure 3(a), we coarsely divide the camera frame 
with a 3 × 3 grid alphabetically labeled from A to I. Given an 
estimated object-center location from our object localization 
model, we apply the following mapping between the region of 
the estimated location and the feedback modality: 
A, D, G: left-stereophonic sinusoidal wave (200Hz) 
C, F, I: right-stereophonic sinusoidal wave (200Hz) 
B, H: middle-stereophonic sinusoidal wave (200Hz) 
E: middle-stereophonic sinusoidal wave (500Hz) + vibration 

The intuition behind this mapping is that users can tell when 
the object is within the frame, have a sense of whether it is 
on the left or right, and quickly tell when it is well-centered. 
They receive a continuous sound with changing frequency and 
channel, and vibrations for well-centered objects. There is no 
sound or vibration for undetected or out-of-frame objects. 

STUDY AND DATA COLLECTION 
To understand the potential and limitations of our real-time 
feedback approach for camera manipulation in the context of 
teachable object recognizers, we replicate the in-lab user study 
by Kacorri et al. [32], where people with visual impairments 
train object recognizers without any feedback on the photo 
quality. We further extend the study design with a simulated 
real-world environment and additional open-end questions. 

Table 2: Participants’ demographics and years of smartphone 
use. Light perception is indicated with an asterisk. 

ID Gender Age Onset Handedness Smartphone 

P1 F 53 13 R 8 
P2 F 69 birth* L-reading, R-other 6 
P3 F 60 birth L-reading, R-other 8 
P4 F 66 birth L 4 
P5 F 63 33 R 7 
P6 F 34 28* L 10 
P7 F 29 19* R 10 
P8 F 67 birth* L-touchscreen, R-other 7 
P9 F 64 birth* R 3 

Participants 
We recruited nine participants with visual impairments from 
our local community (IRB #1255427-2) each compensated at 
55–80 (µ : 63.3, σ : 7.1). As shown in Table 2, all participants 
identified as legally blind; five of them reported having some 
light perception. They were all female age 29–69 (µ: 56, σ : 
15). None of them had used a smartphone for more than 10 
years and only three (P3, P7, and P8) had previously taken 
photos more than once a week. Figure 4 shows participants’ 
use and attitudes toward technology potentially affecting our 
task, based on the Rosen et al. [47] questionnaire. 

In open-ended questions, participants reported using Braille la-
bels on kitchen appliances, electronic devices, food items (e.g. 
cans and bottles), cups, clothes, jewelry pouch, ID/credit/gift 
card, and mail. When a Braille label was not available, they 
reported using smell, isolating the object, coming up with 
some ad-hoc solution such as rubber bands for differentiating 
texture, asking for sighted help, or using an object recogni-
tion application — though P1, P4, P7, and P9 had never used 
any technology for object recognition. The applications men-
tioned across the other five participants were: KNFB reader 
[44], BeMyEyes [10], Aira [7], and SeeingAI [6]. 

Testbed 
We implement our feedback mechanism into a custom experi-
mental testbed for iPhone 8, which connects over WiFi with 
a GPU server hosting the localization model. Every 333ms 
our testbed sends a resized (540x720) image to the server and 
receives an estimated location for the object center as shown 
in Figure 3(b). The estimated location is based on the image 
pixels classified with the highest probability as the center of 
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Figure 4: Technology experience and attitude responses. All 
participants have smartphones; more than half are using apps 
for object recognition; and all are positive about technology. 

the object of interest. For this study, we use p > 0.3 as a 
threshold. There is no sound or vibration when the thresh-
old is not met (e.g. for an undetected or out-of-frame object). 
For the object center within the frame, the testbed triggers 
the corresponding feedback to the A–I regions. Given the 
high rate of 333ms, participants perceive the feedback with 
continuous sound changing frequencies and channels, on/off 
vibrations, and silent pauses, as they move the object or the 
camera around. Beyond the shutter sound, the testbed commu-
nicates to the participant in real-time the count of photos taken 
and the completion of the training process for each object. 

Object Stimuli 
As shown in Figure 5(a), we use three objects for practice. The 
grill salt and mountain dew can are selected from the TEgO 
dataset [35] used to train our object localization model. Thus, 
the estimates for their object-center locations are anticipated 
to be more accurate and stable. On the other hand, the nut mix 
has not been seen by the object localization model, providing 
experience of less stable feedback. Given that our object 
localization model is error-prone like any machine learning 
algorithms, it is important to have participants learn about this 
and familiarize themselves with the fact that the feedback can 
be imperfect and thus it is not to be trusted at all times. 

While the premise of teachable object recognizers works best 
for unique objects (e.g. keychains or artisanal products that 
may or may not have readable texts or recognizable labels), 
researchers [32, 50] often use commercial products that allow 
for exploration of different shapes, sizes, materials, visual 
similarities, and more importantly, stimuli that allow for repli-
cability of the study. We follow this approach and adopt the 
object stimuli from Kacorri et al. [32] (Figure 5(b)). Due to 
product changes, labels for some of the stimuli such as k-cups, 

(a) a spice jar, soda can, and a snack box. 

(b) 15 stimuli: baking soda, caramel coffee, cheetos, chewy bars, 
chicken broth, coca cola, diced tomatoes, diet coke, dill, fritos, 
lacroix apricot, lacroix mango, lay’s, oregano, pike place roast. 

Figure 5: Objects for (a) practice and (b) stimuli in our study. 

Figure 6: The wild test setting in the cluttered environment. 

baking soda, chicken broth, diced tomatoes, and diet coke were 
different, though, the shape and material that could potentially 
impact participant interactions remain the same for all stimuli. 

Environment 
We have two environments in our study. The first is a tra-
ditional lab setup, where participants sit in front of a gray 
unpatterned table against a plain white wall (Figure 7) as in 
Kacorri et al. [32]. We call this vanilla as each object is 
placed in the plain background. To explore the potential of our 
feedback in more realistic scenarios, the second environment 
is a simulated real-world setup. We call this wild as photos 
are taken on a wooden surface against a cluttered background 
including a book-shelf and other objects (Figure 6). We con-
trol for lighting conditions across participants by having both 
environments indoors without natural light. 

Study Procedure 
A study session took three hours on average. We first collected 
demographic information, prior experience with taking photos 
and object recognition apps, and attitudes towards technology. 
Then, participants were introduced to the study task. Using 
our testbed, they first learned about the feedback by taking 
five well-framed photos for each of the practice objects. They 
took photos by using either a shutter button on the screen or 
volume buttons on the left side of the phone. 
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Figure 7: Vanilla environment and the camera manipulation across participants in train mode. 

The following instructions introduced the feedback: 

The app tries to estimate the object of interest based 
on your hand; that is, given your hand position and pose 
in the camera, the app will try to estimate the center of 
the object that you are interacting with. Please note that 
the feedback may not be perfect; so it may play for a 
different object from the one you care, or may not play at 
all even if your object is in the camera frame. For it to 
work best, use your hand to interact with the objects. 

After practicing, participants took photos of fifteen object stim-
uli in three different modes: vanilla train, vanilla test, and 
wild test. In train mode, participants were asked to take se-
quentially 25 photos per object, to train their object recognizer. 
By hearing the count and end of training, participants provided 
the balanced number of examples across objects. The order of 
object assignment in the training mode was randomized. Par-
ticipants were provided with the following instructions [32]: 

• Increase consistency. When taking photos for training, 
imagine how your future self could be holding and taking a 
photo of that object to identify it. 

• Include object in the camera scope. Distance the phone 
from the object relative to the object size (closer for a 
smaller object and further away for a larger object). 

• Obtain discriminative photos. Many products tend to avoid 
printing their labels where the seal is. If you can tell by 
touch where the seal, avoid taking photos on that side. 

In contrast, in test mode (both vanilla and wild), participants 
were asked to take a single photo of an object at a time. Objects 
were handed to the participants in vanilla. Whereas in wild, 
participants were guided every time to reach a specific object. 
The process was iterated five times per object in each test 
mode so that in the end they took five photos per object in 
vanilla and wild, respectively. The order of the object in each 
iteration was randomized to minimize learning effects. 

OBJECT RECOGNITION PERFORMANCE 
To assess the potential of our feedback approach in the context 
of teachable object recognizers, we used the images taken in 
train mode from each participant and built for each a personal 
object recognizer. Specifically, ten recognition models were 
trained per participant by randomly selecting 20 out of the 
25 training images per object. To allow for comparability 
of our results with those of Kacorri et al. [32], we used the 
same recognition model based on Google’s Inception V3 [52] 

pre-trained on ImageNet [48] and fine-tuned it to the randomly-
selected train data of the participant. Our hyper-parameters 
in training the models were: 1, 000 training steps, 100 batch 
size, 0.01 learning rate, and no data augmentation. These 
parameters are the same as those used in Kacorri et al. [32]. 

Similar to Kacorri et al. [32], we recruited two sighted people 
(S1 and S2). Their data are used to gauge the performance 
of the CNN architecture on the stimuli and merely serve as 
an upper baseline. S1 is a 26-year old male sighted computer 
scientist with machine learning experience. S2 is a 31-year 
old male sighted economist with a basic understanding of it. 

Observations and Findings 
Promising performance for those with no camera experience. 
Figure 8 shows the average accuracy of the participants’ object 
recognition models on their (vanilla test and wild test) data, re-
spectively. Participants (P1, P2, P4, P5, P6, P9), who had none 
or little experience of photography before the study, achieved 
at least around 50% accuracy on average in the vanilla test. 
By comparison, a random 15-way classification would yield 
about 7% accuracy. We observe that the models from our 
participants performed comparably to those reported in Ka-
corri et al. [32], even though our study includes a participant 
pool that is 16 years older on average with limited experience 
both in blind photography as well as mobile apps that use a 
camera for object identification. Indeed, we observe a negative 
correlation between our participants’ age and the performance 
of their models (r = −0.74, p < 0.05) even though this seems 
to be explained by their photography experience. 

Recognition performance varies by photography experience. 
We observe that participants with experience in photography 
(P3, P7) tend to achieve higher accuracy than that of those 
without, with P7’s models achieving performance comparable 
to S1’s in vanilla. Yet, this was not the case for all participants 

Figure 8: Average model accuracy per participant. 
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Figure 9: Proportion of photos with fully, partially, or not 
included objects and hands. Errors bars show variance among 
participants, who were able to fully capture the object in 60– 
80% of their photos and include their hand in more than 50%. 

with photography experience. For example, P8’s models don’t 
outperform by much the models of other participants with 
no experience. A primary limiting factor seems to be P8’s 
tendency to block the camera view with her finger. Without 
P8, we observe a correlation between photography experience 
and model performance in vanilla (r = 0.8, p < 0.05). 

Robustness to new environments is still challenging. Testing 
on a different environment than the one you trained might per-
haps defeat the whole purpose of personalization. However, 
it also measures robustness. When comparing the vanilla test 
(same environment with train) to the wild test, we observe that 
models from S1–S2 achieve similar performance. However, 
this is not the case for P1–P8. This discrepancy can be ex-
plained by many factors. It could be that simply S1–S2 have a 
better sense of how machine learning works and their visually 
inspected photos encompass that knowledge. For example, we 
observed that photos of S1 and S2 in the wild minimized the 
background with the most salient object viewpoint covering 
the camera frame. Inaccurate feedback in the cluttered envi-
ronment for P1–P8 could be another factor. This could explain 
why the ratio of photos fully including the target object was 
lower in the wild than in vanilla (Figure 9). Last, it could be 
due to changes in photo variations; variations in vanilla photos 
seem to be different from those in the wild (Table 3). 

QUALITATIVE ANALYSIS 
Each participant took 375 photos in train, 75 in vanilla test, 
and 75 in wild test. Participants spent about 4 minutes to train 
on an object with 25 photos (153s− 373s, µ: 258s, σ : 90s). 

Photos from the participants were coded using a pre-
established coding scheme to analyze common patterns and 
photo-taking strategies. Beyond counting the presence of the 
object and hand in the photos (Figure 9), we adopted the codes 
in Hong et al. [28] based on the four dimensions that humans 
generalize across for visual recognition [41]: size, location, 
viewpoint, and illumination. Specifically, as shown in Table 3, 
we counted how many participants varied the object size by 
zooming in and out; location as captured by the difference in 
the background, and viewpoint in terms of object side, perspec-
tive such as camera angle, and position in the camera frame. 
Since we control for lighting conditions, the illumination code 
was not included. Two raters coded the photos independently 
with an almost perfect agreement (Cohen’s kappa=0.84). 

Table 3: The number of participants who included variations 
while taking photos in train, vanilla test, and wild test 

Size Location Side Perspective Position 
(Vanilla) Train 9 1 7 6 9 

Vanilla Test 8 1 9 6 9 
Wild Test 7 4 5 3 7 

Observations and Findings 
Limited number of photos without the object of interest. Figure 
9 shows the average proportion of photos including the object 
of interest. We observe that less than 2% of the photos in the 
train and vanilla test don’t include the object of interest. This 
number is slightly higher (8%) in the wild, where the object 
localization task and accurate feedback are more challenging. 

The inclusion of a hand in photos varies by participants. Fig-
ure 9 shows the average proportion of photos including a 
participant’s hand. A hand was included in photos when par-
ticipants either held the objects while taking photos or used 
their hands as a reference point for photography. Participants 
were consistent across the three sessions in how they included 
their hand. P1, P4, P5, P6, P7, and P9 included their hand 
in more than half of their photos, whereas P2, P3, and P8 in 
less than 15%. When carefully examining the videos from the 
latter, we noticed that they used their hand to interact with the 
object and obtain feedback, and then removed it to use both 
hands for stabilizing the camera and taking the photo. 

Positive attitudes towards teachable object recognizers. At the 
end of the study, we asked participants about their experience. 
Overall, they were positive about training and having their 
own object recognizer (Figure 10); all participants agreed that 
this is feasible, and most of them agreed that this is something 
that they are willing to do. Only P1, who had no camera expe-
rience and was unable to aim well the camera at smaller object 
stimuli, found training difficult. She said “I think the small 
objects are a little bit tough to figure out. There is not much 
feedback.” Like P1, other participants (P5, P8, and P9) also 
thought that difficulties arose when there was none or little 
feedback. P8, who had the tendency to block the camera view 
with her finger, said “(I had difficulty with) really small object 
that we couldn’t really get the feedback on.” Even when it was 
challenging to get feedback for well-centered objects, partici-
pants appreciated the spatial information. P5 said “When you 
got the decent tone (not the high pitch tone), you knew you 
were off on that, so at least you got some feedback.” 

Figure 10: Post-study feedback. Most participants thought 
training is not difficult and they were willing to provide photos 
to train and improve the performance of an object recognizer. 
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Focus on the feedback despite it being error-prone. All partic-
ipants expressed that their attention during the study was on 
receiving feedback. When asked what did they do when un-
sure that the feedback was right, they all reported readjusting 
the position of the phone and the object to get the feedback. 
Despite having experience with feedback errors during the 
practice session, P2 and P3 said “I just had to trust the feed-
back I had at the last moment” and “If (I) didn’t get the best 
feedback, I took the picture based on what feedback I got (be-
fore)”, respectively. Moreover, some participants seemed to 
utilize the feedback for learning. For example, P4 and P5, 
who never took pictures before our study, mentioned “I found 
that, in some aspects, it was easier having the object on a flat 
surface and taking a picture of the object on the flat surface, 
(but) it depended on what the object was” and “To me, (I) 
have nothing to have keep (my) hand straight, and I intended 
to go like this, I was using my hand as info (for direction)”, 
respectively. 

ANALYSIS OF INTERACTION STREAMS 
While the preceding analyses reveal interesting insights, they 
do not take into account the sequential nature of the feedback 
experienced by participants. In order to learn richer patterns 
of camera–object interactions, we adopt some of the unsu-
pervised learning techniques used in Kacorri et al. [34] to 
uncover participant–object clusters based on the interaction 
streams, which preserve the temporal structure of the data. 
Feedback data collected during the train mode were used for 
this analysis, as they characterize the participants’ continuous 
interactions with the feedback on each object. 

Specifically, we represent each of 135 participant–object pairs 
(9 participants × 15 objects) by the feedback stream received 
from the server. For each of 25 training photos, we consider 
any feedback in the preceding 1-second interval, which corre-
sponds to the last three images sent to the server (one every 
333ms) for feedback generation. Thus, a stream in our data 
consists of 25 4-tuples ( f3, f2, f1, Take), where fi could be: 

None No feedback generated (no object location was esti-
mated by our localization model). 

Center The high-tone and haptic feedback generated (an ob-
ject was estimated to appear at the center, region E). 

Left The left-stereophonic tone feedback generated (an object 
was estimated to appear on region A, D, or G). 

Right The right-stereophonic tone feedback generated (an 
object was estimated to appear on region C, F, or I). 

Middle The mid-stereophonic tone feedback generated (an 
object was estimated to appear on region B or H). 

We map the pairs to a feature space based on the normalized 
4-tuple frequency in each stream, a slight variation from prior 
work [57, 34, 33]. We then construct a similarity graph by 
representing each pair with a node and comparing pairs using 
cosine similarity. Last, we identify clusters of similar pairs by 
graph partitioning using the Louvain community detection al-
gorithm [16]. As shown in Figure 11, to interpret the meaning 
of the clusters, we isolate the primary features (i.e. 4-tuples) 
that seem responsible for that formation. For each cluster, we 
build a binary classifier that distinguishes pairs belonging to 
that cluster from all the other pairs as in prior work [33]. 

Observations and Findings 
User-object interactions fall under three distinct clusters. The 
first cluster (C1) contains 47 participant-object pairs. The 
presence of the (None, None, None, Take) tuple, occurring 
more frequently for the pairs in this cluster that any other pairs, 
indicates that participants received no feedback immediately 
before taking these photos. This means that objects were either 
out of frame or the localization model had a hard time detect-
ing their center. The second cluster (C2) contains 57 pairs. In 
contrast to C1, the higher frequencies of the (Center, Center, 
Center, Take) and (Center, Center, None, Take) tuples in this 
cluster indicate that participants held back from taking photos 
of these objects till they received well-centered feedback. The 
third cluster (C3) contains the other 32 pairs, where partici-
pants received some feedback estimating that the object was 
in the camera frame, though not well-centered, with higher 
frequencies for (Middle, Middle, Middle, Take), (Right, Right, 
Right, Take), and (Left, Left, Left, Take). 

Participant-specific & object-specific interactions in clus-
ters. Figure 13 shows the distribution of the clusters across 
participant-object pairs. Reflecting on the fact that our feed-
back approach relies both on participants’ photo-taking strate-
gies and object characteristics, it demonstrates two types of 
clustering tendencies: participant- and object-wise clustering. 
Specifically, five participants tend to have consistent interac-
tions captured by a single cluster which were less dependent 
on the object. For example, P2, P7, and P9 hold off taking 

Figure 11: By representing the stream of interactions in a (participant, object) pair as a unique node, we find three distinct clusters 
and their descriptive features that are most responsible for this cluster formation. 
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(a) Feedback WER across pairs. (b) % of photos including hands. (c) % of photos with full object. (d) Time spent in training. 

Figure 12: Comparing clusters across different interaction characteristics during training. 

Figure 13: Cluster distribution across participant-object pairs. 

the photo till they feel the vibration for well-centered objects 
and P4 tries to obtain some feedback indicating that the object 
is in the frame. Only P6, who has some residual sight and 
often uses other apps for object recognition, tends to take the 
photo even though there is no feedback. When describing 
her strategy she said “I put the camera to where I thought 
the middle of the object was, and then I pulled back and then 
took a picture”. Looking at the object-wise clustering patterns, 
we observe that participants had difficulty in getting feedback 
for the chewy bars but tend to get well-centered feedback for 
the diet coke, which was similar to some of the objects the 
localization model was trained on. 

High variance in object localization estimations for feedback. 
To better contextualize the interaction patterns and participants’ 
feedback in our analysis, we manually annotated all images 
sent to the server within the 1-second pre-photo window with 
ground truth object center locations (a total of 10,125 images; 
135 steams × 3 feedback images × 25 photos). This allows 
us to assess the quality of the localization model, which can 
affect the interactions. Specifically, we calculate the differ-
ences between the ground-truth feedback and that received 
by participants prior to taking the photo using the word error 
rate (WER) metric. We found a 0.39 WER on average (0.04 – 
0.96 1, σ : 0.24). As shown in Figure 12(a), we also provide 
pair-level WERs across the clusters. 

1Higher WERs were observed on objects such as chewy bars, pike 
place roast, and caramel coffee that were present in the images but 
not localized by our model. 

Different characteristics observed for each cluster. To confirm 
and further study semantics we associate to each cluster, we 
characterize the clusters in terms of feedback errors, the ratio 
of images where hands are present, the ratio of images that 
included the entire object, and the overall time spent training 
on an object by the participant ( Figure 12). We observe that 
while participants in C1 did not receive feedback right before 
taking the photo, this is because the localization model often 
failed to localize the object (WER: µ : 0.65, σ : 0.15). However, 
they were inconsistent in including their hands in the images, 
which can help the localization (hand ratio: µ : 0.64, σ : 0.38). 
Still, many of their training photos fully included the object (µ : 
0.96, σ : 0.02) though it took participants a bit longer (µ : 228s, 
σ : 140s). In contrast, we observe lower WERs for C2 (µ : 0.27, 
σ : 0.13) and C3 (µ : 0.22, σ : 0.14). For C3, this may be due to 
the high ratio of images that included the participants’ hands 
(µ: 0.88, σ : 0.30). However, in C2, where the feedback is 
indicating a well-centered object, we notice a higher variation 
(µ: 0.55, σ : 0.45). As discussed in the qualitative analysis, 
this could be explained by some participants including a hand 
to obtain feedback, then removing it to stabilize the camera 
and take the photo. One of the most important observations is 
that C2 participants that took photos after feedback indicating 
well-centered objects tend to have a higher ratio of training 
examples with the object of interest fully included. Last, we 
notice that C3 instances tend to spend less time in training (µ : 
130s, σ : 66s), with participants taking photos as long as they 
receive some feedback that the object is within the frame. 

DISCUSSION 
We discuss implications and limitations of our findings in the 
context of blind photography and teachable object recognizers. 

Implications 
Our study and findings provide evidence for the potential of a 
real-time feedback approach that can help people with visual 
impairments include and indicate an object of interest in the 
camera frame. We see how human- or computer-powered ob-
ject recognition apps could benefit from the following insights: 

• Feedback leveraging hand proximity to the object can help 
minimize photos that do not include the object of interest 
even for blind users who have never taken a photo before. 
Our cluster analysis indicates that more accurate feedback 
is associated with more photos that include the entire object. 
This emphasizes the need for more training data to further 
improve the accuracy of the localization model. 
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• Even though participants are willing to include their hands 
to obtain feedback, their hands are often not included in 
the final photos, which can help to preserve user anonymity 
when photos are sent to crowdworkers or remote servers. 
This highlights the need to incorporate such feedback mech-
anisms on-board the user’s device. 

• Participants were able to overcome many cases of false 
negatives (undetected objects). While they did not receive 
any feedback, they were able to fully or partially include the 
object in the frame. However, when feedback was received, 
they tended to trust it, even though they were exposed to its 
limitations. This indicates the need for a tighter threshold 
on the feedback mechanism to reduce false positives. 

Our work replicates a previous study by Kacorri et al. [32] 
with an older participant pool and thus contributes to the vali-
dation and reliability of their findings. Our results confirm the 
potential of teachable object recognizers and participants’ will-
ingness to personalize their object recognizers by providing 
training examples. Moreover, we find that: 

• There seems to be a negative correlation between partici-
pants’ age and the performance of their recognizers though 
this seems to be explained by their photography experience. 
Thus, it is important to also consider participants with these 
characteristics when evaluating similar applications. 

• One factor limiting recognition accuracy was blocking of 
camera view with fingers, which can be detected as a special 
case (similar to detecting no light in the environment). 

• Photos taken in simulated or real-world environments with 
cluttered background remain a challenge and should be 
included in the evaluation of similar applications. 

Last, we demonstrate how to obtain rich insight from data-
driven methods on participant interactions with an intelligent 
feedback mechanism. We see how our clustering and word er-
ror rate analysis methods may be adapted to the study of other 
assistive applications that incorporate real-time feedback. 

Limitations 
One motivation for teachable object recognizers is that person-
alized models are required for objects that often don’t have a 
barcode, a readable text, or an accessible database entry but 
are unique to users. However, in this study, we use commer-
cial products not meeting these characteristics. While this is a 
common strategy among researchers [50, 32], which allows 
for experimental control and replication, it also limits the type 
of insights and feedback we could gain through real-world 
scenarios. As we build our technology to a fully working 
prototype, we will move to real-world deployments. 

Another limitation is that our participant characteristics are 
skewed: all are female and six out of nine are over age 60. 
However, we think this could be a strength. Studies tend to 
reach younger people as early adopters. Thus, older adults are 
often excluded from early stages of technological innovations. 
We were excited to see our participants training their own 
intelligent assistive technology, and, for some, this was their 
first time taking photos. P5, aged 63, said “I want one today. 
Because you get a chance of identifying things. And it would 

be less complex than what I use right now. .. So you could 
have everything on your shelf that you want to look at, and you 
could go boom boom, and it would have it in its repertoire.” 

When constructing the interaction streams, we limited the feed-
back to one second prior to each photo in training. While larger 
windows potentially allow for more insights, it would create 
an even larger number of images requiring hand-annotations 
to calculate the performance of the feedback. For this analysis, 
we annotated more than ten thousand images. 

Finally, our analysis did not consider the distribution of confi-
dence scores in the object recognition output; we simply used 
the label prediction with the highest confidence score (top-1). 
In a real-world scenario, users may benefit from knowing the 
model’s confidence when it recognizes an object as it may help 
the users learn more about their recognition model throughout 
interactions [28]; for example, a recognition model may say 
“not sure” if the confidence score of its top-1 estimation does 
not stand out. This is the direction we are currently exploring. 

CONCLUSIONS 
This work presents a real-time feedback mechanism to help 
people with visual impairments take better photos of objects 
with their mobile phones for object identification. By employ-
ing convolutional neural networks, our feedback has learned to 
estimate the center of the object of interest based on its prox-
imity and the pose of the user’s hand. The estimated location 
within the camera frame is communicated to the user through 
audio-haptic feedback building upon prior work for conveying 
spatial information in blind photography. 

We explore the potential of this feedback mechanism in the 
context of teachable object recognizers, where people with 
visual impairments are called to train their object identification 
application by providing a small number of training examples 
per object. In a user study with nine participants with visual 
impairments and two sighted people whose models serve as a 
baseline, we find that very few photos from the participants do 
not include the object of interest (2% in the vanilla and 8% in a 
simulated real-world environment). Moreover, the recognition 
performance was promising even for those participants who 
had no prior camera experience. 

While many factors can still be explored in improving the 
quality of the photos (e.g. training with better architectures 
and more data, verbose feedback, and better thresholding), the 
most important remaining issue is its usability in a real-world 
setting over longer periods. We believe that this work has been 
instrumental for better understanding some of the challenges 
that users with visual impairments may face when interacting 
with such teachable interfaces, and hope that it contributes to 
future work in this direction. 
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