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Abstract

Gradient-based methods have been widely used for system design and opti-
mization in diverse application domains. Recently, there has been a renewed
interest in studying theoretical properties of these methods in the context of
control and reinforcement learning. This article surveys some of the recent
developments on policy optimization, a gradient-based iterative approach
for feedback control synthesis that has been popularized by successes of re-
inforcement learning.We take an interdisciplinary perspective in our expo-
sition that connects control theory, reinforcement learning, and large-scale
optimization.We review a number of recently developed theoretical results
on the optimization landscape, global convergence, and sample complexity
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of gradient-based methods for various continuous control problems, such as the linear quadratic
regulator (LQR), H∞ control, risk-sensitive control, linear quadratic Gaussian (LQG) control,
and output feedback synthesis. In conjunction with these optimization results, we also discuss how
direct policy optimization handles stability and robustness concerns in learning-based control, two
main desiderata in control engineering.We conclude the survey by pointing out several challenges
and opportunities at the intersection of learning and control.

1. INTRODUCTION

Reinforcement learning (RL) has recently shown impressive performance in a wide range of ap-
plications, from playing Atari (1, 2) and mastering the game of Go (3, 4) to complex robotic
manipulations (5–7). Key to RL’s success is the algorithmic framework of policy optimization
(PO), where the policy, mapping observations to actions, is parameterized and directly optimized
upon to improve system-level performance. Mastering Go using PO (combined with techniques
such as efficient tree search) is particularly encouraging,1 as the main idea behind PO is rather
straightforward—when learning has been formalized as minimizing a certain cost as a function of
the policy, devise an iterative procedure on the policy to improve the objective. For example, in the
policy gradient (PG) variant of PO, when learning is represented as minimizing a (differentiable)
cost J(K) over the policy K, the policy is improved upon via a gradient update of the form K n+1 =
K n − α�J(K n), for some step size α (also referred to as the learning rate) and data-driven evalua-
tion of the cost gradient �J at each iteration n. In fact, PO provides an umbrella formalism for not
only PG methods (8) but also actor–critic (9), trust-region (10), and proximal PO (11) methods.

More generally, PO provides a streamlined approach to learning-based system design. For
example, it gives a general-purpose paradigm for addressing complex nonlinear dynamics with
user-specified cost functions: For tasks involving nonlinear dynamics and complex design objec-
tives, one can parameterize the policy as a neural network to be trained using gradient-based
methods to obtain a reasonable solution. The PO perspective can also be adopted for other insuf-
ficiently parameterized decision problems, such as end-to-end perception-based control (12–14).
In this setting, one may wish to synthesize a policy directly on images. As such, one can envision
parameterizing a mapping from pixels (observation) to actions (decisions) as a neural network,
and learn the corresponding policy using the PO formalism. Lastly, we mention the use of scal-
able gradient-based algorithms to efficiently train nonlinear policies on many parameters, making
PO suitable for high-dimensional tasks. The computational flexibility and conceptual accessibility
of PO have made it a main workhorse for modern RL.

In yet another decision-theoretic science, PO has a long history in control theory (15–20); in
fact, it has been popular among control practitioners when the systemmodel is poorly understood
or parameterized. Nevertheless, despite its generality and flexibility, the PO formulation of con-
trol synthesis is typically nonconvex and, as such, challenging for obtaining strong performance
certificates, rendering it unpopular among system theorists. Since the 1980s, convex reformula-
tions or relaxations of control problems have become popular due to the development of convex
programming and related global convergence theory (21). It has been realized that many prob-
lems in optimal and robust control can be reformulated as convex programs [namely, semidefinite
programs (22–24)] or relaxed via sum of squares (25, 26), expressed in terms of certificates (e.g.,

1Go is considered a challenging game to master, partly because the number of legal board positions is
significantly larger than the number of atoms in the observable universe.
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matrix inequalities that represent Lyapunov or dissipativity conditions). However, these formula-
tions have limitations when there is deviation from the canonical synthesis problems (e.g., when
there are constraints on the structure of the desired control policy).

When convex reformulations are not available,PO assumes an important role as themain viable
option. Examples of such scenarios include static output feedback problems (27), structured H∞
synthesis (28–33), and distributed control (34), all of which have significant importance in applica-
tions. The PO framework is more flexible, as evidenced by the recent advances in deep RL. PO is
alsomore scalable for high-dimensional problems, as it does not generally introduce extra variables
in the optimization problems and enjoys a broader range of optimization methods as compared
with the semidefinite-program or sum-of-squares formulations. However, as pointed out above,
the nonconvexity of the PO formulation, even on relatively simple linear control problems, has
made deriving theoretical guarantees for direct PO challenging, hindering the acceptance of PO
as a mainstream control design tool.

In this survey, our aim is to revisit these issues from a modern optimization perspective and
provide a unified perspective on the recently developed global convergence/complexity theory
for PO in the context of control synthesis. Recent theoretical results on PO for particular classes
of control synthesis problems, some of which are discussed in this survey, not only are exciting
but also lead to a new research thrust at the interface of control theory and machine learning.
This survey includes control synthesis related to linear quadratic regulator (LQR) theory (35–44),
stabilization (45–47), linear robust/risk-sensitive control (48–55), Markov jump linear quadratic
control (56–59), Lur’e system control (60), output feedback control (61–67), and dynamic filtering
(68). Surprisingly, some of these strong global convergence results for PO have been obtained in
the absence of convexity in the design objective and/or the underlying feasible set.

These global convergence guarantees have several implications for learning and control. First,
these results facilitate examining other classes of synthesis problems in the same general frame-
work. As will be pointed out in this survey, there is an elegant geometry at play between certificates
and controllers in the synthesis process, with immediate algorithmic implications. Second, the
theoretical developments in PO have generated a renewed interest in the control community
in examining synthesis of dynamic systems from a complementary perspective that, in our view,
is more integrated with learning in general and RL in particular. This will complement and
strengthen the existing connections between RL and control (69–71). Lastly, the geometric anal-
ysis of PO-inspired algorithms may shed light on issues in state-of-the-art policy-based RL,
critical for deriving guarantees for any subsequent RL-based synthesis procedure for dynamic
systems.

This survey is organized to reflect our perspective on—and excitement about—how POmeth-
ods (and PG methods in particular) provide a streamlined approach for system synthesis, and to
build a bridge between control and learning. First, we provide the PO formulations for various
control problems in Section 2. Then we delve into the PO convergence theory on the classical
LQR problem in Section 3. As it turns out, a key ingredient for analyzing LQR PO hinges on
the coerciveness of the cost function and its gradient dominance property (see Section 3.2). These
properties can then be utilized to devise gradient updates ensuring stabilizing feedback policies at
each iteration and convergence to the globally optimal policy. In Section 3.3, we highlight some of
the challenges in extending the LQR PO theory to other classes of problems, including the role
of coerciveness, gradient dominance, smoothness, and the landscape of the optimization prob-
lem. In Section 4, we extend the PO perspective to more elaborate synthesis problems, such as
linear robust/risk-sensitive control, dynamic games, and nonsmooth H∞ state-feedback synthe-
sis. Through these extensions, we highlight how variations on the general theme set by the LQR
PO theory can be adopted to address lack of coerciveness or nonsmoothness of the objective in
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these problems while ensuring the convergence of the iterations to solutions of interest. This is
followed by examining PO for control synthesis with partial observations and, in particular, PO
theory for linear quadratic Gaussian (LQG) and output feedback control in Section 5.Our discus-
sion in Section 5 underscores the importance of the underlying geometry of the policy landscape
in developing any PO-based algorithms. Fundamental connections between PO theory and con-
vex parameterization in control are then discussed in Section 6. In particular, we demonstrate how
the geometry of policies and certificates are intertwined through appropriately constructed maps
between nonconvex PO formulation of the synthesis problems and the (convex) semidefinite pro-
gramming parameterizations.This provides a unified approach for analyzing PO in various control
problems that have so far been studied on a case-by-case basis. Finally, in Section 7, we present
current challenges and our outlook for a comprehensive PO theory for synthesizing dynamical
systems that ensures stability, robustness, safety, and optimality and underscore the challenges in
addressing synthesis problems in the face of partial observations and nonlinearities and in mul-
tiagent settings. Section 7 also examines further connections between PO theory and machine
learning and highlights the possibility of integrating model-based (70) and model-free methods
to achieve the best of both worlds, illustrating how the main theme of this survey fits within the
big picture of learning-based control.

2. POLICY OPTIMIZATION FOR LINEAR CONTROL: FORMULATION

Control design can generally be formulated as a PO problem of the form

min
K∈K

J(K ), 1.

where the decision variable K is determined by the controller parameterization (linear map-
ping, polynomials, kernels, neural networks, etc.), the cost function J(K) is some task-dependent
control performance measure (tracking errors, closed-loop H2 or H∞ norm, etc.), and the fea-
sible set K represents the class of controllers of interest, for example, ensuring closed-loop
stability/robustness requirements. Such a PO formulation is general and enables flexible policy
parameterizations. For example, consider a modern deep RL setting where one wants to design
a policy maximizing some task-dependent reward function for a complicated nonlinear system
xt+1 = f (xt, ut, wt), with (xt, ut, wt) being the state, action, and disturbance triplet. PO has served
as the main workhorse for addressing such tasks. Specifically, one just needs to parameterize the
policy as a (deep) neural network and then apply iterative PO algorithms such as trust-region
PO (10) and proximal PO (11) to learn the optimal weights.

The focus of this article is the recently developed (global) convergence, complexity, and land-
scape theory of PO on classical control tasks, including LQR, risk-sensitive/robust control, and
output feedback control. In this section, we formulate these linear control problems as PO via
proper selection of K, J, and K in Equation 1.

2.1. Case I: The Linear Quadratic Regulator

There are several ways to formulate the LQR problem. For simplicity, we start by considering
a discrete-time linear time-invariant (LTI) system xt+1 = Axt + But, where xt is the state and ut
is the control action. The design objective is to choose the control actions {ut} to minimize a
quadratic cost function J := Ex0∼D

∑∞
t=0(x

T
t Qxt + uT

t Rut ), with Q � 0 and R � 0 being preselected
cost-weighting matrices. In this setting, the only randomness stems from the initial condition x0,
which is sampled from a certain distribution D with a full rank covariance matrix.

It is well known that under some standard stabilizability and detectability assumptions, the
optimal cost is finite and can be achieved by a linear state-feedback controller of the form
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ut = −Kxt. Therefore, we can formulate the LQR problem as a special case of the PO prob-
lem in Equation 1. Specifically, the decision variable K is simply the feedback gain matrix.
Under a fixed policy K, we have ut = −Kxt for all t, and the LQR cost can be rewritten as
J(K ) = Ex0∼D[

∑∞
t=0 x

T
0 ((A− BK )T)t (Q+ KTRK )(A− BK )t x0], which is a function of K. This cost

can also be computed as J(K ) = Tr(PK�0), where �0 = Ex0xT
0 is the (full-rank) covariance matrix

of x0, and PK is the solution of the following Lyapunov equation:

(A− BK )TPK (A− BK ) +Q+ KTRK = PK . 2.

The above cost J(K) is only well defined when the closed-loop system matrix (A − BK) is Schur
stable, i.e., when the spectral radius satisfies ρ(A− BK) < 1. Therefore, one can define the feasible
set K as

K = {K : ρ(A− BK ) < 1}. 3.

Now we can see that the LQR problem is a special case of the PO problem in Equation 1.
There are also several slightly different ways to formulate the LQR problem. In an alternative

formulation, we can add stochastic process noise and consider the following LTI system:

xt+1 = Axt + But + wt , 4.

where the disturbance {wt} is a zero-mean independent and identically distributed (i.i.d.) process
with a full rank covariance matrixW. The design objective is then to choose {ut} to minimize the
time-average cost

J := lim
T→∞

1
T
E

[
T−1∑
t=0

(
xT
t Qxt + uT

t Rut
)]

, 5.

where Q � 0 and R � 0 are preselected weighting matrices. Again, it suffices to parameterize
the policy as ut = −Kxt. For a fixed policy K, the cost in Equation 5 can be computed as J(K ) =
Tr(PKW ), where PK is the solution for Equation 2. Again, the cost is well defined only for K
satisfying ρ(A−BK)< 1.This setting leads to almost the samePO formulation as before. Similarly,
the discounted LQR can be formulated as PO.

2.2. Case II: Linear Risk-Sensitive/Robust Control

One can enforce risk sensitivity and robustness via the formulation of linear exponential quadratic
Gaussian (LEQG) (72) andH∞ control (73), respectively. For linear risk-sensitive control, we still
consider the LTI system in Equation 4, with wt ∼ N (0,W ) being an i.i.d. Gaussian noise, and the
design objective is to choose control actions {ut} to minimize an exponentiated quadratic cost,

J := lim sup
T→∞

1
T

2
β
logE exp

[
β

2

T−1∑
t=0

(
xT
t Qxt + uT

t Rut
) ]

, 6.

where β is the parameter quantifying the intensity of risk sensitivity, and the expectation is taken
over the distributions for x0 and wt for all t ≥ 0. One typically chooses β > 0 to make the control
risk averse. As β → 0, the objective in Equation 6 reduces to the LQR cost.

The above LEQG problem is also a special case of the PO problem in Equation 1. It is known
that the optimal cost can be achieved by a linear state-feedback controller. Again, one can just
parameterize the controller as ut = −Kxt,where the gainmatrixK is the decision variable.Then the
cost function can be specified as J(K ) = − 1

β
log det(I − βPKW ), where PK is the unique stabilizing
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solution to the following algebraic Riccati equation:2

PK = Q+ KTRK + (A− BK )T
[
PK − PKW

1
2 (−β−1I +W

1
2 PKW

1
2 )−1W

1
2 PK

]
(A− BK ).

Notice that, in this case, J is well defined only when K is in the following feasible set:

K =
{
K : ρ(A− BK ) < 1, and ‖(Q+ KTRK )

1
2 (zI − A+ BK )W

1
2 ‖∞ <

1√
β

}
, 7.

where ‖·‖∞ denotes the H∞ norm of a given discrete-time transfer function. Hence, the LEQG
problem is a special case of the PO problem with J and K as defined above.

For the LEQG problem, theH∞ constraint ‖(Q+ KTRK )
1
2 (zI − A+ BK )W

1
2 ‖∞ < 1√

β
is im-

plicitly required by the problem formulation. Importantly, the LEQG problem can be viewed as
a special case of the more general mixedH2/H∞ design problem studied in robust control. In this
article, we will cover two important robust control settings, namely, the mixedH2/H∞ design and
the H∞ state-feedback synthesis.

For mixedH2/H∞ design, consider the following system, where wt is the disturbance and zt is
the controlled output:

xt+1 = Axt + But +Dwt , zt = Cxt + Eut . 8.

It is standard to assume ET[C E] = [0 R] for some R� 0. The mixed design objective is to synthe-
size a linear state-feedback controller that minimizes an upper bound on the H2 cost and satisfies
an additionalH∞ robustness requirement on the channel fromwt to zt.TheH∞ constraint is posed
explicitly and is powerful in guaranteeing robust stability in the presence of any small gain type of
uncertainty, including being time varying, dynamic, or nonlinear. For the mixed design problem,
the robustness constraint is directly enforced on K, and hence the feasible set K is modified as

K = {
K : ρ(A− BK ) < 1, and ‖(C − EK )(zI − A+ BK )D‖∞ < γ

}
, 9.

where γ quantifies the robustness level. The smaller γ is, the more robust the system is in theH∞
sense (since it can tolerate the small gain uncertainty at the level 1/γ by the small gain theorem).
There exist several objective functions that upper bound the H2 cost (74, 75); a common one is
J(K ) = Tr(PKDDT ), where PK is the solution to the algebraic Riccati equation introduced earlier
withQ = CTC, γ = 1/

√
β, andW = DDT. Notice that the mixedH2/H∞ control aims at improv-

ing the average H2 performance while maintaining a certain level of robustness by keeping the
closed-loop H∞ norm smaller than a prespecified number.

By contrast, theH∞ state-feedback synthesis aims at improving the system robustness and the
worst-case performance by achieving the smallest closed-loopH∞ norm. For simplicity, consider
the LTI system xt+1 = Axt + But + wt initialized at x0 = 0. The design objective of H∞ control
is to choose {ut} to minimize the quadratic cost J := ∑∞

t=0(x
T
t Qxt + uT

t Rut ) in the presence of the
worst-case �2 disturbance satisfying

∑∞
t=0 ‖wt‖2 ≤ 1.This problem can be reformulated as the PO

problem with the cost J(K) being defined as the following closed-loop H∞ norm:

J(K ) = sup
ω∈[0,2π ]

λ
1
2
max
(
(e− jωI − A+ BK )−T(Q+ KTRK )(e jωI − A+ BK )−1). 10.

The reason is that the above cost actually satisfies

J2(K ) = max∑∞
t=0 ‖wt‖2≤1

∞∑
t=0

xT
t (Q+ KTRK )xt = max∑∞

t=0 ‖wt‖2≤1

∞∑
t=0

(xT
t Qxt + uT

t Rut ).

2The solution PK � 0 satisfies ρ((A− BK )T(I − βPKW )−1) < 1, andW−1 − βPK � 0.
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The above cost is well defined only for K satisfying ρ(A− BK)< 1.Therefore,minimizing theH∞
cost function defined by Equation 10 over K given by Equation 3 leads to a policy that minimizes
the quadratic cost under the worst-case �2 disturbance.

2.3. Case III: Linear Quadratic Gaussian and Output Feedback Control

Consider the following LTI system that can only be partially observed:

xt+1 =Axt + But + wt , 11a.

yt =Cxt + vt . 11b.

Here, wt and vt are zero-mean white Gaussian noises with covariance matricesW � 0 and V � 0.
At step t, one can only observe yt, and the state xt is not directly measured. The design objective
is to choose actions {ut} to minimize the time-averaged cost defined in Equation 5 given such
partial observation information. Again, Q � 0 and R � 0 are preselected weighting matrices. It is
assumed that the pairs (A, B) and (A,W

1
2 ) are controllable and that the pairs (C, A) and (Q

1
2 ,A)

are observable.
This problem can also be formulated as a special case of the PO formulation given by

Equation 1. Under our assumptions, it suffices to consider (full-order) dynamic controllers of
the form

ξt+1 = AKξt + BKyt , ut = CKξt , 12.

where ξ t is the internal state of the controller and has the same dimension as xt. For convenience,
we encode the dynamic controller as

K :=
[
0 CK
BK AK

]
. 13.

The cost function J(K) is well defined when the closed-loop system is stable, and hence, the feasible
set should be specified as

K =
{
K :

[
A BCK
BKC AK

]
is Schur stable

}
. 14.

For any K ∈ K, the cost J(K) can be represented as

J(K ) = Tr

([
Q 0
0 CT

KRCK

]
XK

)
= Tr

([
W 0
0 BKV BT

K

]
YK

)
, 15.

where XK and YK are the unique positive semidefinite solutions to the following Lyapunov
equations:

XK =
[
A BCK
BKC AK

]
XK

[
A BCK
BKC AK

]T

+
[
W 0
0 BKV BT

K

]
, 16a.

YK =
[
A BCK
BKC AK

]T

YK

[
A BCK
BKC AK

]
+
[
Q 0
0 CT

KRCK

]
. 16b.

Thereby, the LQG design problem can be formulated as a special case of PO.
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It is possible to use other control parameterizations and enforcemore structures onK.This will
lead to PO formulations for general output feedback control. Such formulations are particularly
useful for decentralized control.

For all three cases, the PO formulation is nonconvex in the policy space (35, 76). This is in
contrast to convex reformulations of these problems. Next, we review the recently developed PO
theory for Cases I–III in Sections 3–5, respectively.

3. CASE I: GLOBAL CONVERGENCE AND COMPLEXITY OF POLICY
OPTIMIZATION FOR THE LINEAR QUADRATIC REGULATOR

LQR provides arguably the most fundamental optimal control formulation. A main challenge for
the PO formulation of LQR is that the stability constraints are nonconvex in the policy space.
The global convergence and complexity of PO methods for LQR have not been established until
very recently. We review such results in this section.

3.1. Background: Optimization and Complexity

Consider the constrained optimization problem minK∈K J(K ), with K being nonconvex. If the
feasible set K is open and the optimal value of J is achieved by some interior point K∗ in K, then
we have �J(K∗) = 0 (in this case, the Karush–Kuhn–Tucker condition reduces to the first-order
optimality condition for unconstrained problems), and it is possible to solve for K∗ by applying
an iterative gradient-based algorithm with the update rule K n+1 = K n − αF n, where K n denotes
the controller parameter at iteration n, and F n is some descent direction of the cost J. The most
common example of F n is the gradient direction �J(K n) at K n. Some other examples include
the natural gradient direction and Gauss–Newton (or other quasi-Newton) directions (for more
details, see Section 3.2).

It is important to know whether and how fast {K n} converges to K∗. We will introduce one
important optimization result for coercive and/or gradient-dominant function J(K).

Definition 1 (coercive and gradient dominant properties). We call a function J(K)
coercive on K if for any sequence {Kl }∞

l=1 ⊂ K we have

J(Kl ) → +∞
if either ‖Kl‖2 → +∞ or Kl converges to an element on the boundary ∂K. We call the
function μ-gradient dominant of degree p if it is continuously differentiable and satisfies

J(K ) − J(K∗) ≤ 1
2μ

‖∇J(K )‖pF , ∀K ∈ K, 17.

where μ is some positive constant, and K∗ is an optimal solution of J(K) over K.3

If J(K) is coercive, then it serves as a barrier function over the feasibility set K, and hence
projection is not needed for maintaining feasibility. In addition, gradient dominance is useful for
establishing global convergence. The following optimization result is fundamental and useful.

Theorem 1. Suppose J(K) is coercive. Assume further that J is twice continuously
differentiable over K. Then the following statements hold:

1. The sublevel set Kγ := {K ∈ K : J(K ) ≤ γ } is compact.

3This property (also referred to as the Polyak–Łojasiewicz condition) appears commonly in the optimization
literature (77–79) but is often used only locally.Here,we are interested in special problems where this property
holds globally.
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2. The function J(K) is L-smooth on Kγ , and the constant L depends on γ and the
problem parameters. Specifically, for any (K,K′) satisfying tK + (1 − t )K ′ ∈ Kγ �t�
[0, 1], the following inequality holds:

J(K ′) ≤ J(K ) + 〈∇J(K ), (K ′ − K )〉 + L
2

‖K ′ − K‖2F . 18.

3. Consider the gradient descent method

Kn+1 = Kn − α∇J(Kn). 19.

Suppose K0 ∈ K. Let γ 0 = J(K 0). Suppose L is the smoothness constant of J(K)
on Kγ0 . Then, for any 0 < α < 2

L , we have Kn ∈ K for all n. In addition, we have
�J(K n) → 0, and the following convergence rate bound holds with C = α − Lα2

2 >

0:

min
0≤l≤k

‖∇J(Kl )‖2F ≤ γ0

C(k+ 1)
. 20.

4. If the function J also satisfies the gradient dominance property with degree 2, then
we have the linear convergence

J(Kn ) − J(K∗) ≤ (1 − 2μα + μLα2)n(J(K0) − J(K∗)). 21.

Proof. This result is important, so a proof is included for illustrative purposes.
Statement 1 can be proved using the continuity and coerciveness of J(K) and is actually
a direct consequence of proposition 11.12 in Reference 80.

Since J is twice continuously differentiable, we know that the function ‖�2J(K)‖ (with
‖·‖ being the operator norm) is continuous. By the Weierstrass theorem, we know that
‖�2J(K)‖ has to be bounded on the compact set Kγ . We denote this uniform upper bound
as L, and hence J is L-smooth on Kγ . By the mean value theorem, Equation 18 holds as
desired. This proves Statement 2.

The proof of Statement 3 is based on smoothness, and we will use standard arguments.
Suppose we have chosen α = 2

L+ω
for some positive constant ω > 0. First, we need to show

that given K ∈ Kγ0 , the line segment connecting K and K′ = K − α�J(K) is also in Kγ0 . By
continuity of ‖�2J(K)‖ and J(K), there exists a small constant c > 0 such that ‖�2J(K)‖ ≤
L + ω for all K ∈ Kγ0+c. Denote the closure of the complement of Kγ0+c as S1. Obviously,
Kγ0 ∩ S1 is empty. Since Kγ0 is compact, we know that the distance between Kγ0 and S1
is strictly positive. We denote this distance as δ. Let us choose τ = min {0.9δ/‖�J(K)‖F,
2/(L + ω)}. Clearly, the line segment between K and (K − τ�J(K)) is in Kγ0+c. Notice that
‖�2J(K)‖ ≤ L + ω for all K ∈ Kγ0+c, and hence we have

J(K − τ∇J(K )) ≤ J(K ) + 〈∇J(K ),K − τ∇J(K ) − K〉 + L+ ω

2
‖K − τ∇J(K ) − K‖2F ,

which leads to J(K − τ∇J(K )) ≤ J(K ) + (−τ + (L+ω)τ2

2 )‖∇J(K )‖2F . As long as τ ≤ 2/(L +
ω), we have −τ + (L+ω)τ2

2 ≤ 0 and J(K − τ�J(K)) ≤ J(K) ≤ γ 0. Hence, we have
K − τ∇J(K ) ∈ Kγ0 . Actually, it is straightforward to see that the line segment betweenK and
(K − τ�J(K)) is in Kγ0 by varying τ .

The rest of the proof follows from induction.We can apply the same argument to show
that the line segment between (K − τ�J(K)) and (K − 2τ�J(K)) is also in Kγ0 . This means
that the line segment between K and (K − 2τ�J(K)) is in Kγ0 . Since τ > 0, we only need to
apply the above argument for finite times, and thenwill be able to show that the line segment
between K and (K− α�J(K)) is inKγ0 for α = 2

L+ω
. Now we can apply Equation 18 to show
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the convergence result. Since ‖�2J(K)‖ ≤ L for all K ∈ Kγ0 , we can use the mean value
theorem to show

J(K ′ ) ≤ J(K ) + 〈∇J(K ),K ′ − K〉 + L
2

‖K ′ − K‖2F = J(K ) +
(

−α + Lα2

2

)
‖∇J(K )‖2F ,

which can be summed over a finite window to get the desired convergence result.
Finally, we can combine the gradient dominance inequality with the above smoothness

inequality to show J(K′) − J(K) ≤ −(2μα − μLα2)(J(K) − J(K∗)). This immediately leads to
Equation 21, thus completing the proof. �
Next, we show that the convergence/complexity of the gradient descent method for LQR

follows as a consequence of the above result.

3.2. Policy Optimization Theory for the Linear Quadratic Regulator

There are multiple ways to show the global convergence/complexity of the gradient descent
method for the LQR problem (35, 36, 62, 81). In this section, we review one proof that is based
on Theorem 1. Interestingly, the LQR cost is coercive, real analytic, and gradient dominant, so
that Theorem 1 can be directly applied, though the problem is nonconvex in the parameter K
(35, 76). Recall that the LQR cost can be computed as J(K ) = Tr(PK�0), where �0 = Ex0xT

0 and
PK satisfies (A− BK )TPK (A− BK ) + Q+ KTRK = PK . For simplicity, we assume here that Q � 0,
following Reference 35.4 The following result holds.

Lemma 1. The LQR cost satisfies the following properties: The cost function J is

1. real analytical and hence twice continuously differentiable;
2. coercive over the feasible set K; and
3. μ-gradient dominant, with μ = 2(σmin(Ex0xT

0 ))
2σmin(R)

‖�K∗ ‖ , where σmin and ‖·‖ denote the
smallest and largest singular values, respectively.

Proof. To prove Statement 1, notice that the analytical solution of the Lyapunov
equation can be calculated as vec(PK ) = (

I − (A− BK )T ⊗ (A− BK )T
)−1 vec(Q+ KTRK ).

Hence, PK is a rational function of the elements of K. Then we know that J is a ratio-
nal function of the elements of K. Therefore, J is real analytical and twice continuously
differentiable.

To prove Statement 2, one can apply the contradiction argument in Reference 36. We
refer readers to that work for details of this argument.

Finally, Statement 3 can be proved using the cost difference lemma (lemma 10 in
Reference 35). Lemma 11 in Reference 35 provides one such argument.5 �
It is worth mentioning that we can explicitly bound the smoothness constant L over any sub-

level set of J(K) in terms of problem parameters, which helps in establishing refined convergence
rates for the gradient descent method. We are now ready to state the global convergence result
for the gradient descent method for LQR.

Theorem 2. Consider the LQR PO problem with (Q,R) being positive definite, and apply
the gradient method with the update rule K n+1 = K n − α�J(K n). Suppose K0 ∈ K is stabi-
lizing. Then, with a step size satisfying 0 < α ≤ 1/LK0 , where LK0 denotes the smoothness

4The results can be generalized to the cases where Q � 0 and even where Q is indefinite (82).
5The constant coefficient used in lemma 11 of Reference 35 can be slightly tightened to match the exact value
of μ given in Lemma 1.
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constant of J(K) over the sublevel set of level J(K 0), we have that (a) for all n ≥ 1, K n sta-
bilizes the system [i.e., ρ(A − BKn) < 1], and (b) the sequence {K n} converges to the global
optimum of LQR at a linear rate as

J(Kn ) − J(K∗) ≤
(
1 − μα

)n(
J(K0) − J(K∗)

)
,

where μ is the gradient dominance coefficient given in Lemma 1.

The proof of Theorem 2 follows Theorem 1 and Lemma 1.The above result requires an initial
stabilizing controller K0 ∈ K. This is not an issue, since it is also known that one can obtain such
stabilizing policies using PO methods (45–47, 83).

3.2.1. Zeroth-order optimization. In many cases, the exact gradient �J(K) is not avail-
able, especially when the dynamical system model is unknown. In the optimization and learning
community, one method that has been actively studied is to estimate the gradient through the
cost value, J(K). For example, we can estimate the gradient using the following single-point
zeroth-order gradient estimator:

GJ(K; r, z) = d
r

J(K + rz) z, z ∼ Z. 22.

Here, r > 0 is a positive parameter called the smoothing radius. We slightly abuse the notation
by letting z denote the random perturbation, which is a d-dimensional random vector following
the probability distribution Z . Usually, Z is chosen to be either (a) the Gaussian distribution
N (0, d−1I ) or (b) the uniform distribution on the unit sphere Sd−1 := {z ∈ R

d : ‖z‖ = 1}, which
we denote by Unif (Sd−1). For this single-point estimator, it can be shown that Ez∼Z [GJ(K; r, z)] =
∇Jr (K ), where Jr is a smoothed version of J and the radius r controls the approximation accuracy.
Besides the single-point estimator given in Equation 22, multipoint gradient estimators can be
used to improve the convergence rate (84, 85).

The optimization and learning literature (e.g., 84, 86–89) has studied the properties and com-
plexity of the zeroth-order methods under different settings [convex or nonconvex J(·), stochastic
or deterministic optimization, etc.]. When using the zeroth-order methods for LQR, we need to
pay extra attention to the following issues:

1. Feasible initial K 0: As in the exact gradient case, the initial K 0 should be feasible, i.e., stabi-
lizing the system. If a system is unknown, this is challenging.Recent works have provided the
convergence/complexity theory for using PO-based discount annealing methods to obtain
initial stabilizing policies (45–47); the related issue of online regularizability from streaming
control/state pairs has also been examined (90).

2. Impact of bias and variance of zeroth-order estimation on the feasibility and convergence
of K n: Though Theorem 2 ensures feasibility for gradient descent iterations, zeroth-order
estimation introduces both bias and variance in the gradient evaluation. To address this, one
can tune the parameter r and use the average of several single-point estimators.

3. Feasibility of the perturbed controllerK n + rz:We need to ensure that the iterationK n + rz
is in K. This limits the choices of random exploration rz (e.g., K n should be at least strictly
feasible to allow perturbations).

4. Evaluation of J(K): When the cost is defined on the infinite time horizon (e.g., in the LQR
problem), it is challenging to evaluate in practice; often, one can obtain only a finite-time
truncated estimate for J(K). Handling the truncation requires care, as it also introduces bias
and variance in the estimator.
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5. Dependence of the sample complexity on system parameters: Fazel et al. (35) and Malik
et al. (37) showed that the sample complexity of LQR zeroth-order methods depends on the
system parametersA,B,Q, andR and the initial controllerK 0. If the system is ill conditioned,
then the number of samples can potentially be quite large, as discussed in a recent work
by Ziemann et al. (91). A concurrent survey by Tsiamis et al. (92) provided more general
discussions on the interplay between statistical learning theory and control.

Due to space limitations, we refer readers to References 35, 37, and 40 for details on how the
above issues were handled when implementing zeroth-order methods for LQR. There are also
other data-driven PG estimation methods, such as the policy gradient theorem (7, 8) and iterative
feedback tuning (93, 94); sample complexity for these methods is less understood.

3.2.2. Additional remarks. We end this section with a few remarks on other aspects of the
LQR PO theory:

1. LQR with stochastic noise: The above convergence result extends to more general forms
of LQR, e.g., with process noise as in Equation 4. The major change in the derivations is to
replace the matrix E(x0xT

0 ) with the covariance of the process noise.
2. Natural policy gradient (NPG): NPG is a standard RL algorithm that enforces a Kullback–

Leibler divergence constraint on the updated and the old policies (95). In the LQR setting,
the deterministic counterpart of NPG is given as follows:

Kn+1 = Kn − α∇J(Kn )�−1
Kn , 23.

where �Kn is the state correlation matrix for K n (for details, see 35). For a discounted
LQR problem with a stochastic Gaussian policy, the NPG update (which inverts the Fisher
information matrix) exactly reduces to the above iterative scheme. The NPG method in
Equation 23 also converges at a linear rate. If we denote Fn = ∇J(Kn )�−1

Kn , then we have
J(Kn ) − J(K∗) ≤ ‖�K∗ ‖

σmin(R)
Tr((Fn )TFn ), which can be combined with the cost difference lemma

(see lemma 10 in Reference 35) to show the linear convergence of NPG.
3. Policy iteration and Kleinman’s algorithm: An important variant of the gradient descent

method is the Gauss–Newton method with the following iterations:

Kn+1 = Kn − α(BTPKnB+ R)−1∇J(Kn )�−1
Kn , 24.

which is equivalent to Kn+1 = Kn − 2α
(
Kn − (BTPKnB+ R)−1BTPKnA

)
. If α = 1

2 , then this
algorithm reduces to the policy iteration algorithm in the RL literature (96) or, equivalently,
Kleinman’s algorithm in the control literature (97, 98).We can show that theGauss–Newton
method has a global linear convergence rate for any α ≤ 1

2 . In addition, when α = 1
2 , the

above method has a superlinear local rate. This explains why policy iteration is typically
fast on the LQR problem. Policy iteration can be implemented in a model-free manner
via least-squares techniques (99). There are also sample complexity results for approximate
policy iteration on the LQR problem (100).

4. Further extensions: The above LQR PO theory can also be extended to cover (a) time-
varying/nonlinear systems, such as Markovian jump linear systems (56–59) and Lur’e
systems (60); (b) more complicated RL algorithms, such as actor–critic (42, 43); and (c) dif-
ferent settings, including the continuous-time setting (38, 44, 81, 101), the multiplicative
noise setting (50), and the finite-horizon setting (41).
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3.3. Technical Challenges for Settings Beyond the Linear Quadratic Regulator

The global convergence of LQR PO relies heavily on several important properties of the cost
function and feasible set. Here, we summarize the importance of four properties: (a) coerciveness
of cost, (b) gradient dominance (Polyak–Łojasiewicz property) of cost, (c) smoothness of cost, and
(d) the connectivity of the feasible set.

First, a key factor in LQR results is the coerciveness of the objective, as stated in Lemma 1.
Coerciveness ensures that as long as the cost function value decreases, the controller K n remains
stabilizing, i.e., feasible. Furthermore, coerciveness ensures that the sublevel sets of the cost func-
tion are compact, which, together with the real analytical property of the cost, implies that the
gradient of the cost is globally Lipschitz over any finite level set (i.e., the cost is globally smooth
over its sublevel sets). This smoothness property serves as one of the pillars in nonconvex opti-
mization analysis in determining the step size that sufficiently decreases the cost (see, e.g., 102).
The coercive property makes the cost function a valid barrier function that explicitly regularizes
the iterations to be feasible during the optimization processes.However, the cost is not necessarily
coercive for other control problems, and only decreasing the cost value thus may no longer ensure
the feasibility of the iterations.

Second, convergence to the global minimum of PG methods for LQR, especially with a linear
convergence rate, relies heavily on the benign landscape property of gradient dominance (see
Lemma 1). Together with the smoothness of the objective, the gradient dominance property (of
degree 2; see Definition 1) naturally leads to a global convergence rate that can be linear (78). This
benign property is a blessing for certain control problems (see Section 6) and does not necessarily
hold in general.

Third, sometimes the cost may not be differentiable over the entire feasible set. For example,
for optimal H∞ control, the cost function can be nondifferentiable at stationary points (28, 103).
The lack of smoothness causes difficulty for such PO problems.

Finally, another key to the success of LQR PO, as a local search approach, is that the feasible
set, though nonconvex in general, is connected. This is important since local search algorithms
typically cannot jump between connected components, and a single connected component must
include the global optimum. Unfortunately, such connectivity is lost when extending PO to
partially observable control systems, creating additional challenges toward establishing global
convergence.

Next, we study several control problems where some (if not all) of these desired properties are
lacking, and more careful and advanced analyses are needed in order to obtain global convergence
guarantees for PO methods.

4. CASE II: POLICY OPTIMIZATION FOR RISK-SENSITIVE
AND ROBUST CONTROL

In this section, we review the global convergence results of PO methods for the mixed H2/H∞
control problem and the state-feedbackH∞ optimal control problem. For the mixed design prob-
lem, the main issue is the lack of coerciveness—i.e., the cost function close to the boundary of the
feasible set may not approach infinity. For the H∞ synthesis problem, the main difficulty is the
lack of smoothness—i.e., the cost function may be nondifferentiable over some important points
in the feasible set.We discuss how to modify PO algorithms to mitigate these issues and provably
achieve global convergence. It is worth emphasizing that the idea of applying RLmethods to solve
H∞ control is not new (104–106). This section focuses mainly on the recently developed global
convergence theory for PO methods for such robust control tasks (48, 49, 54).
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4.1. Policy Optimization for Mixed H2/H∞ Design: Implicit Regularization

Recall the formulation of linear risk-sensitive and mixed design problems in Case II in Section 2.
For simplicity, we use one common objective of the problem, which we restate as follows:

min
K

J(K ) := Tr(PKDDT ) 25.

subject to K ∈ K in Equation 9 and

(A− BK )T(PK + PKD(γ 2I −DTPKD)−1DTPK )(A− BK ) +CTC + KTRK − PK = 0.

The above cost function J(K) is known to be differentiable over the feasible set. One may wonder
whether the analysis for the LQR case can be tailored to establish the global convergence of the
gradient descent method on the above mixed H2/H∞ design problem. However, the following
lemma reveals the less desired landscape properties of the cost function.

Lemma 2 (nonconvexity and no coerciveness). The feasible set for the mixed H2/H∞
design problem in Equation 25 is nonconvex. Moreover, the cost function given in
Equation 25 is not coercive. In particular, as K → ∂K, where ∂K is the boundary of the
constraint set K, the cost J(K) does not necessarily approach infinity.

The difference between the landscapes of LQR and mixed H2/H∞ control is illustrated in
Figure 1. The cost function for mixedH2/H∞ control is not necessarily coercive and hence can-
not serve as a barrier function over the feasible set by itself (for further discussion, see 48). The
lack of coerciveness for the mixed design problem calls for a more careful analysis on maintain-
ing the feasibility of the iterations during optimization. Zhang et al. (48) adopted the concept
of implicit regularization to address this issue. Specifically, a PO algorithm is referred to as being
implicitly regularized if the iterations {Kn} generated by the algorithm remain in K without using
projection. The implicit regularization property has been investigated in nonconvex optimization
and machine learning, including training neural networks (107), phase retrieval (108), and matrix

K'

K

K'

K

a   Landscape of LQR

Figure 1

Comparison of the landscapes of LQR and mixed H2/H∞ control design. The dashed lines represent the
boundaries of the constraint sets K. For (a) LQR,K is the set of all linear stabilizing state-feedback
controllers; for (b) mixed H2/H∞ control,K is the set of all linear stabilizing state-feedback controllers
satisfying an extra H∞ constraint. The solid lines are the contour lines of the cost J(K). K and K′ denote the
control gains of two consecutive iterations; � denotes the global optimizer. Abbreviation: LQR, linear
quadratic regulator. Figure adapted from Reference 48 with permission from SIAM.
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completion (109, 110).We emphasize that implicit regularization is a feature of both the problem
and the algorithm. Next, we discuss two PO algorithms that are guaranteed to stay in the feasible
set and achieve global convergence, thanks to the implicit regularization property.

4.1.1. Algorithms. For ease of exposition, we introduce the following notation:

P̃K :=PK + PKD(γ 2I −DTPKD)−1DTPK , EK := (R+ BTP̃KB)K − BTP̃KA, 26.

�K :=
∞∑
t=0

[
(I − γ −2PKDDT )−T(A− BK )

]tD(I − γ −2DTPKD)−1DT 27.

[
(A− BK )T(I − γ −2PKDDT )−1]t .

Then we have the explicit gradient formula ∇J(K ) = 2((R+ BTP̃KB)K − BTP̃KA)�K , and we can
show that the following two PO methods enjoy the implicit regularization property (48):

NPG: Kn+1 =Kn − η∇J(Kn )�−1
Kn = Kn − 2ηEKn , 28.

Gauss–Newton: Kn+1 =Kn − η(R+ BTP̃KnB)−1∇J(Kn )�−1
Kn

= ′Kn − 2η(R+ BTP̃KnB)−1EKn , 29.

where η > 0 is the step size. The updates resemble the PO updates for LQR, as discussed in
Section 3.2, but with PK replaced by P̃K . The natural PG update is related to the gradient over
a Riemannian manifold, while the Gauss–Newton update can be viewed as a special case of the
quasi-Newton update.

4.1.2. Global convergence guarantees. The natural PG and Gauss–Newton updates in
Equations 28 and 29 enjoy the implicit regularization property, formalized as below.

Theorem 3 (implicit regularization). For any iteration K = Kn ∈ K [i.e., ρ(A − BK) <

1 and ‖(C − EK)(zI − A + BK)D‖∞ < γ ], suppose that the step size η satisfies
(a) η ≤ 1/(2‖R+ BTP̃KB‖) for NPG in Equation 28 and (b) η ≤ 1/2 for Gauss–Newton
in Equation 29. Then the next iteration K′ = K n+1 obtained from Equations 28 and 29 also
lies in K.

The proof ofTheorem3 can be found in section 5 of Reference 48,which has a deep connection
with the bounded real lemma (73, 111, 112).Theorem 3 shows that the robustness of the controller
is preserved when certain policy search directions are used. Intuitively, the natural PG and Gauss–
Newton methods somehow exploit the information of PK to avoid the directions that may lead to
infeasibility. This implicit regularization property is due to a combination of a certain nonconvex
objective (mixed H2/H∞ control) and certain algorithms (natural PG and Gauss–Newton).With
this property in hand, we are ready to state the global convergence result.

Theorem 4 (global convergence and local faster rates). Suppose that K0 ∈ K and
‖K 0‖ < ∞. Then, under the step-size choices6 as in Theorem 3, updates in Equations 28
and 29 both converge to the global optimumK∗ = (R+ BTP̃K∗B)−1BTP̃K∗A, in the sense that∑N

n=1 ‖EKn‖2F/N = O(1/N ). Moreover, if DDT > 0, then under the same step-size choices,
both updates converge to the optimalK∗ with a locally linear rate—i.e., the objective {J(K n)}

6For natural PG, it suffices to require the step size η ≤ 1/(2‖R+ BTP̃K0B‖) for the initial K 0.
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converges to J(K∗) with a linear rate. In addition, if η = 1
2 , then the Gauss–Newton update

in Equation 29 converges to K∗ with a locally Q-quadratic rate.

The proof of Theorem 4 can be found in section 5 of Reference 48. The theorem shows that
although the problem is nonconvex and noncoercive, certain POmethods can still find the globally
optimal solution of mixed H2/H∞ control at globally sublinear and locally superlinear rates. The
global rate is sublinear, in contrast to the linear one for LQR, as the global gradient dominance
property does not necessarily hold here.

Finally, we remark that, interestingly, Zhang et al. (48) also numerically compared the compu-
tation efficiency of PO methods and existing solvers for mixed H2/H∞ control (see, e.g., 33). It
has been shown that PO methods can indeed be much faster than these existing solvers (though
note that these solvers can handle more general cases, such as the output feedback case), especially
for large-scale dynamical systems. This justifies the desired scalability of PO methods for control
synthesis (for more numerical examples, see 48).

4.1.3. Model-free implementations: connections to dynamic games and adversarial rein-
forcement learning. There is a fundamental connection between mixed H2/H∞ control and
linear quadratic dynamic games (111). This connection will not only allow us to implement the
PO algorithms using model-free adversarial RL techniques, but also enable the development of
PO methods for solving these dynamic games.

As LQR can be viewed as the benchmark for single-agent RL in continuous space, linear
quadratic dynamic games serve as the benchmark for studying multiagent RL. Indeed, zero-sum
linear quadratic games have been investigated as fundamental settings in multiagent RL (82,
113–117). Specifically, consider a zero-sum dynamic game with linear dynamics xt+1 = Axt +
But + Dwt. The objective of player 1 (player 2) is to minimize (maximize) the value function
C := Ex0∼D

[∑∞
t=0(x

T
t Qxt + uT

t R
uut − wT

t R
wwt )

]
, where x0 ∼ D for some distribution D, and (Q,

Ru, Rw) are positive definite matrices. It is known that the Nash equilibrium—the solution con-
cept for the problem—can be achieved with state-feedback policy classes; that is, there exists a pair
(K∗, L∗) such that the Nash equilibrium satisfies u∗

t = −K∗xt and v∗
t = −L∗xt (111, 118). Hence,

one can parameterize the controllers using matrices (K,L) and solve for minK maxL C(K ,L), where
C is the accumulated cost under this pair (K, L). This leads to a multiagent PO problem.

Intriguingly, the Nash equilibrium to the game is provided by the solution to a specific mixed
H2/H∞ control problem (111).With this connection, the natural PG andGauss–Newtonmethods
in Equations 28 and 29 can be equivalently transformed into provably convergent double-loop PO
algorithms for the above linear quadratic game. Related algorithmic developments have been doc-
umented by Zhang et al. (114) and Bu et al. (119).The game formulation formixedH2/H∞ control
is powerful in that these double-loop variants of the natural PG and Gauss–Newton methods can
be implemented in a model-free manner. Zhang et al. (51, 114) and Keivan et al. (55) provided
detailed discussions of model-free implementations and related sample complexity results.

An important issue in RL is the simulation-to-real gap. One common remedy is to use robust
adversarial RL algorithms that jointly learn a protagonist and an adversary, where the former
learns to robustly perform the control tasks under the disturbances created by the latter (120, 121).
Policy-based robust adversarial RL methods can be viewed as model-free variants of multiagent
PO methods for dynamic games. Therefore, the PO theory for mixedH2/H∞ control can also be
applied to study the properties of robust adversarial RL algorithms in the linear quadratic setting.
Zhang et al. (49) provided more details about this connection and results.

Remark 1. The inner-loop subroutine in both zero-sum dynamic games and robust adver-
sarial RL reduces to a generalized LQR problem whose state cost matrix Q is not positive
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semidefinite. The formulation of the indefinite LQR is similar to that in Section 2, except
that the Q and Rmatrices are symmetric but indefinite. Then the cost may not be coercive,
and the descent of the cost does not ensure the stability of the iterations (82). Nevertheless,
global convergence of PO methods can be established (see 82).

4.2. Policy Optimization for H∞ State-Feedback Synthesis:
Nonsmoothness and Convergence

In this section, we consider the state-feedback H∞ optimal control problem. Classical convex
approaches for this task require reparameterizing the problem into a higher-dimensional convex
domain (22, 73, 122). By contrast, we view this problem as a benchmark of PO for robust control.
Here, we discuss how to provably find the optimal H∞ controller in the policy space directly.

Recall that for the PO formulation of H∞ state-feedback synthesis, the cost function J(K) is
given by Equation 10, and the feasible setK is specified by Equation 3. A main technical challenge
here is that this H∞ cost can be nondifferentiable at some important feasible points, e.g., the
optimal points (28, 32, 33, 103). From Equation 10, we can see that this cost function is subject to
two sources of nonsmoothness: The largest eigenvalue for a fixed frequency ω is nonsmooth, and
the optimization step over ω � [0, 2π ] is also nonsmooth.We also know that the feasible set from
Equation 3 is nonconvex. Hence, the resultant PO problem for H∞ state-feedback synthesis is
nonconvex and nonsmooth. A large family of nonsmoothH∞ policy search algorithms have been
developed based on the concept of the Clarke subdifferential (28, 32, 33, 103).However, the global
convergence theory of PO methods for theH∞ state-feedback synthesis was not established until
very recently. Next, we review such global convergence results from Guo & Hu (54).

First, we introduce a few concepts related to subdifferential of nonconvex functions. A function
J : K → R is locally Lipschitz if for any bounded S ⊂ K there exists a constant L > 0 such that
|J(K) − J(K′)| ≤ L‖K − K′‖F for all K,K′ � S. Based on Rademacher’s theorem, a locally Lipschitz
function is differentiable almost everywhere, and the Clarke subdifferential is well defined for
all feasible points. We define the Clarke subdifferential as ∂CJ(K ) := conv{limi→∞ ∇J(Ki ) : Ki →
K , Ki ∈ dom(∇J) ⊂ K}, where conv denotes the convex hull. For any given direction V (which
has the same dimension as K), the generalized Clarke directional derivative of J is defined as

J°(K ,V ) := lim
K ′→K

sup
t↘0

J(K ′ + tV ) − J(K ′)
t

. 30.

By contrast, the (ordinary) directional derivative is defined as follows (when it exists):

J′(K ,V ) := lim
t↘0

J(K + tV ) − J(K )
t

. 31.

In general, the Clarke directional derivative can be different from the (ordinary) directional
derivative,whichmay not even exist for some feasible points.The objective function J(K) is subdif-
ferentially regular if for everyK ∈ K, the ordinary directional derivative always exists and coincides
with the generalized one for every direction, i.e., J′(K, V) = J°(K, V). The following result holds
for the H∞ objective function.

Proposition 1. Let K be nonempty. Then the H∞ objective function defined by
Equation 10 is locally Lipschitz and subdifferentially regular over the stabilizing feasible
set K.

The above result is well known (for further explanation, see 54). Consequently, the Clarke
subdifferential for the H∞ objective function is well defined for all K ∈ K. We say that K† is a
Clarke stationary point if 0 � �CJ(K†). The subdifferentially regular property guarantees that the
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directional derivatives at any Clarke stationary points J′(K†,V) are always nonnegative. Since K is
open, the global minimum has to be a Clarke stationary point. Searching Clarke stationary points
provably requires advanced subgradient algorithms, since generating a good descent direction
for nonsmooth optimization is nontrivial. The concept of the Goldstein subdifferential (123) is
relevant and stated below.

Definition 2 (Goldstein subdifferential). Suppose J is locally Lipschitz. Given a point
K ∈ K and a parameter δ > 0, the Goldstein subdifferential of J at K is defined to be the
following set:

∂δJ(K ) := conv
{∪K ′∈Bδ (K )∂CJ(K ′ )

}
, 32.

where Bδ (K ) denotes the δ-ball around K. It is implicitly assumed that Bδ (K ) ⊂ K.

Importantly, the minimal norm element of the Goldstein subdifferential generates a good de-
scent direction. The minimal norm element in �δJ(K), denoted as F, will satisfy J(K− δF/‖F‖F) ≤
J(K) − δ‖F‖F, if we have ∂δJ(K ) ⊂ K. This fact has inspired the developments of Goldstein’s sub-
gradient method (123) and related variants for nonsmooth H∞ control (32, 33, 103). Recently,
Guo & Hu (54) proved that Goldstein’s subgradient method can be guaranteed to find the global
minimum of the H∞ state-feedback synthesis problem despite the nonconvexity of the feasible
set. We summarize this result as follows.

Theorem 5. Suppose that (Q, R) are positive definite and the pair (A, B) is stabilizable. Let
J∗ = minK∈K J(K ). For H∞ state-feedback synthesis, the following statements hold:

1. The H∞ objective function defined by Equation 10 is coercive over K.
2. For any K ∈ K satisfying J(K) > J∗, there exists V � 0 such that J′(K, V) < 0.
3. Any Clarke stationary points of the H∞ objective function are global minima.
4. The sublevel set Kγ is always compact. There is a strict separation between Kγ

and Kc (which is the complement of the feasible set K). In other words, we have
dist(Kγ ,Kc ) > 0.

5. Suppose K0 ∈ K. Denote �0 := dist(KJ(K0 ),Kc ) > 0. Choose δn = 0.99�0
n+1 for all n.

Then Goldstein’s subgradient method K n+1 = K n − δnF n/‖F n‖F, with F n being the
minimum norm element of ∂δnJ(Kn ), is guaranteed to stay in K for all n. In addition,
we have J(K n) → J∗ as n → ∞.

The coerciveness can be proved using the positive definiteness of (Q, R). Statement 2 follows
from the convex parameterization for H∞ state-feedback synthesis, and we further discuss this
point in Section 6. Statement 3 can be proved by combining Statement 2 and the subdifferential
regular property. Statement 4 is a consequence of Statement 1.Then one can combine the descent
property of Goldstein’s subgradient method and Statement 4 to prove the convergence result in
Statement 5. Due to some subtlety of nonsmooth nonconvex optimization, the sample complexity
of PO on nonsmoothH∞ synthesis remains unknown.Guo &Hu (54) have also discussed model-
free implementations and related issues.

Remark 2. It is worth mentioning that PO has also been investigated in control problems
with robustness and risk-sensitivity concerns other than the LEQG/H∞ settings discussed
in this survey (see 50, 52, 55, 115, 124–129).

5. CASE III: POLICY OPTIMIZATION WITH PARTIAL OBSERVATIONS

In this section, we examine the more challenging case of control with partial observation. When
the system’s state is not directly measured, there is an intricate balance between the achievable
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control performance and the class of controllers used in PO. Depending on the policy parame-
terization, the optimization landscape can become quite different. We first survey several recent
results on the optimization landscape of LQG PO, and then point out some of the subtle aspects
for more general output feedback and structured synthesis problems.

5.1. Policy Optimization for Linear Quadratic Gaussian Control:
The Optimization Landscape

To characterize the performance of PO algorithms such as PG methods for LQG control, it is
necessary to understand the landscape of the associated PO formulation in Equation 1, with the
cost function given in Equation 15 and the feasible set given in Equation 14. Following the stan-
dard setup in the literature, we assume that the pairs (A, B) and (A,W

1
2 ) are controllable and that

the pairs (C,A) and (Q
1
2 ,A) are observable. It has been shown that with these assumptions, the set

of stabilizing controllers K is nonempty, open, and unbounded and can be nonconvex. Moreover,
the cost function J(K) is real analytic on the underlying set K.

However, beyond these properties, until recently little was known about the geometric and
analytical properties of the PO formulation of LQG control. We will mainly summarize results
on the optimization landscape of LQG control from Zheng et al. (63), especially with respect to
the connectivity of the stabilizing set K and the structure of the stationary points; several related
extensions can be found in other works (64–67). Before introducing the results, we discuss a
special structure for LQG control with the state-space dynamical controller parameterization in
Equation 11.

It is known that the optimal feedback controller is unique in the frequency domain (73,
theorem 14.7). However, in the time domain, this controller is not unique: Consider the simi-
larity transformation for the state-space form of the controller, and note that the two controller
parameterizations,

K =
[
0 CK
BK AK

]
and T (T ,K ) :=

[
0 CKT−1

TBK TAKT−1

]
,

where T is an invertible matrix, have identical input–output behavior regardless of the choice of T.
Thus, the cost is invariant with respect to this similarity transformation. Besides this invariance,
when a controller K is nonminimal [i.e., (AK, BK) is not controllable or (AK,CK) is not observable],
one can use model reduction to remove the uncontrollable/unobservable modes while keeping
the cost the same.

We will now summarize the main results from Zheng et al. (63). First, we have the following
theorem on the connectivity of K.

Theorem 6. The set K has at most two path-connected components. When K has
two connected components, these components are diffeomorphic under the similarity
transformation T (T , ·) for any invertible matrix with detT < 0.

On a conceptual level, the proof is based on a convex reparameterization of the LQG problem.
Figure 2 shows two examples for K, with one or two connected components.

For PG algorithms and other local search methods, the connectivity of the domain (the set
of stabilizing controllers) is important since there are no jumping iterations between different
connected components. Nevertheless, in light of Theorem 6 and the fact that the similarity trans-
formation does not change the input–output behavior of a controller, it makes no difference
to search over either path-connected component in K even if K is not path-connected. In fact,
one can further show that any strict sublevel sets of the LQG PO problem have very similar
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Two examples of the feasible set K for LQG control: (a) a disconnected feasible set and (b) a connected
feasible set. Abbreviation: LQG, linear quadratic Gaussian.

connectivity properties (67). Such observations are encouraging for devising gradient-based local
search algorithms for LQG control.

Though the LQG problem has a nice property in terms of the connectivity of K (given in
Equation 14), its optimization landscape is otherwise more complicated than cases we saw earlier.
Figure 3 shows two examples for the LQG cost J(K). First, it is easy to see from the figure that
LQG control has nonunique and nonisolated global optima in the state-space form. This feature
often adds difficulty in establishing the convergence of POmethods. Second, it is also straightfor-
ward to show that the LQG cost is noncoercive. One way to see this is to consider the similarity
transformation using λI. By letting λ → ∞, we see that |BK| → ∞, but the cost remains unchanged.
Noncoerciveness makes it challenging to establish convergence even to stationary points. Lastly,
LQG control could have saddle points that are not optimal. Moreover, if K is a stationary point,
then all of its similar controllers T (T ,K ) are also stationary points for any nonsingular T. Also,
if K ∈ K is a nonminimal stationary point, then its minimal reduction could generate an infinite
number of additional stationary points. Consequently, it is nontrivial to find an optimal controller,
or even certify an optimal controller, through PG methods. Nevertheless, there is one clean case
for the certification of the globally optimal points.

Theorem 7. All minimal stationary points7 K ∈ K in the LQG problem in Equation 15
are globally optimal, and they are related to each other by a similarity transform.

The above results indicate that when running the PG methods, if the iterations converge to
a minimal stationary point, then a globally optimal controller has been found. However, if the
stationary points are nonminimal, then one cannot say much about the optimality of these sta-
tionary points. Indeed, Zheng et al. (63) provided examples showing the existence of LQG saddle
points. Though there have been recent developments in perturbed gradient methods that can
be guaranteed to escape strict saddle points (saddle points with an indefinite Hessian—i.e., an es-
cape direction exists in the second order), there exist LQG instances with saddle points whose

7Here, the term minimal refers to being both observable and controllable as a dynamical system.
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Nonisolated and disconnected globally optimal LQG controllers. In both cases, we set Q = 1, R = 1, V = 1,
andW = 1. (a) LQG cost for the system in Figure 2a when fixing AK = −0.07318, for which the set of
globally optimal points {(BK, CK)�BKCK = −0.13684} has two connected components. (b) LQG cost for the
system in Figure 2b when fixing AK = −0.67360, for which the set of globally optimal points {(BK, CK) �
BKCK = −1.18113} has two connected components. Abbreviation: LQG, linear quadratic Gaussian.

Hessian is degenerate. These observations pose challenges in analyzing the performance of PG
methods applied to LQG control.

A recent work by Zheng et al. (130) introduced a novel perturbed policy gradient method that
is capable of escaping various bad stationary points (including high-order saddles). Based on the
specific structure of LQG control, this paper uses a reparameterization procedure that converts
the iterate from a high-order saddle to a strict saddle, fromwhich the standard randomly perturbed
gradient descent method can escape efficiently. It also characterizes the high-order saddles that
the proposed algorithm can escape; however, there is still a lack of an end-to-end theorem to
characterize the iteration complexity of the algorithm. It remains an open challenge to analyze
the performance of PG methods on LQG control by (a) establishing conditions under which
the algorithms will converge to, at least, stationary points; (b) designing effective ways to escape
nonoptimal stationary points (at least saddle points); (c) characterizing the algorithm complexity
of the designed algorithms; and (d) developing sample-based methods and analyzing the sample
complexity. It is also worth mentioning that Umenberger et al. (68) proved the global convergence
of PO for a simpler estimation problem. This topic is discussed further in Section 6.

5.2. Output Feedback and Structured Control

We now shift our attention to another class of synthesis problems with partial observations,
namely, output feedback and structured control. First, we would like to point out that policy
synthesis on partially available data (not necessarily the underlying state) is of great interest in
applications, particularly for large-scale systems. For example, in decentralized control, stabilizing
feedback with a particular sparsity pattern is desired; in the output feedback case, one aims to
design a stabilizing policy that can be factored with its right multiplicand as the observation
map. These problems can be conveniently formalized in the form of Equation 1, where K
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becomes a subset of stabilizing (static or dynamic) feedback policies: For both output feedback
and structured synthesis, K is a linearly constrained subset of stabilizing feedback gains. The
PO perspective adopted in this survey then immediately offers an algorithm for these problems,
namely, a projected first-order update.8 A natural question is whether such an intuitive gener-
alization has any theoretical guarantees of convergence; the short answer, however, is negative.
We now summarize some of our current understanding of why this is the case, intermingled with
some more encouraging results.

A major obstacle in guaranteeing convergence to the global optimum is due to the geometry
of the corresponding set K—and not only its nonconvexity inherited from the set of stabilizing
controllers. Rather, due to the intricate geometry of this set, its intersection with linear subspaces
can result in disconnected sets; an analogous phenomenon in the case of LQG control was exam-
ined in the previous section. This is a known fact from classical control in the context of output
feedback and the root locus method, where the (scalar) feedback gain can undergo intervals of
being stabilizing or not; an example is shown in Figure 4a. However, it is surprising that, even for
single-input, single-output systems, the number of such connected components was not explicitly
characterized until recently. A PO perspective on control synthesis only makes this observation
more compelling.

Theorem 8. The set of stabilizing output feedback gains for an n-dimensional single-
input, single-output system, when nonempty, has at most �n/2� connected components.

Bu et al. (131) provided the proof of this result (as well as its analogue for the continuous-
time case) and the precise characterization of these intervals. Less is known about the number
of connected components for multi-input, multi-output feedback, knowledge of which could be
useful for initializing PO algorithms. Nevertheless, some topological characterizations of these
sets, including sufficient conditions for the connectedness of structured stabilizing gains, have
been obtained in the literature (61, 131, 133).

The above topological insights are important in the context of policy search updates when they
are required to stay stabilizing. As such, for general structured (including output feedback) synthe-
sis, it is judicious to instead examine convergence to local optima or stationary points. Bu et al. (36)
made the first observations in this direction, showing that projected gradient descent has a sub-
linear convergence to the (first-order) stationary point of structured LQR synthesis; Fatkhullin
& Polyak (62) have reported analogous results for output feedback synthesis. Li et al. (40) exam-
ined sample-based learning methods for reaching a first-order stationary point using zeroth-order
methods for structured synthesis. The sublinear convergence to a stationary point—the moment
we impose a linear constraint on the set of stabilizing feedback gains—only hints at the fact that
we are not fully utilizing the underlying geometry of the feedback synthesis problem.

These observations have motivated a new line of work on structured synthesis that is also in
line with the natural gradient iteration and quasi-Newton method for LQR presented earlier. The
key missing insight pertains, of course, to the Hessian and the Riemannian geometry of the set of
stabilizing feedback gains as well as their linearly constrained subsets. As it turns out, LQR PO is
closely related to iterative approaches for solving the Riccati equation that have subsequently been
adopted for data-driven setups. In particular, it can be shown that what is known as the Hewer
algorithm for LQR (98) is really a realization of a quasi-Newton update for a particular choice of
a step size. In our desire to understand the fundamental limitation of PO for control synthesis,

8The projection is used to enforce sparsity/structure patterns. The projection does not involve
stability/robustness concerns.
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(a) The largest modulus root of a (discrete-time) feedback system, with the blue and red segments corresponding to the stabilizing
intervals. (b) The geometry of output feedback synthesis (feedback gains shown along each axis) with respect to two distinct classes of
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100 random instances of the static output feedback problem. Talebi & Mesbahi (132) reported similar results for structured synthesis.
Abbreviation: QRNPO, quasi-Riemannian Newton policy optimization. Panel a adapted from Reference 131 with permission from
IEEE.

it is thus relevant to characterize the Newton update on the set of stabilizing feedback gains as
well as its linearly constrained subset. This more geometric question is still relevant in the context
of first-order methods, as it provides fundamental insights into how to recover a linear (or even
quadratic) rate of guaranteed convergence to stationary or even locally optimal points for PO
methods for structured synthesis.

Talebi & Mesbahi (132) have thoroughly analyzed these topics, including proper construction
of the Hessian for the LQR problem through the intrinsic Riemannian connection, how to extend
thisHessian to linearly constrained subsetsK, and how to choose the step size in the corresponding
iterations to remain stabilizing. The results of this analysis include the following.
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Theorem 9. Suppose that K∗ is a nondegenerate local minimum of LQR on the linear
constrained subset K. Then there is a neighborhood around K∗ and a positive scaling for
which the scaled Riemannian Newton policy update remains stabilizing and converges to
K∗ at a linear and, eventually, quadratic rate.

Figure 4c shows a representative scenario for the output feedback problem. Ensuring stability
during the course of these iterations, which is particular to control synthesis, often makes the
analysis of these algorithms more intricate.

6. THE ROLE OF CONVEX PARAMETERIZATION

There is a large body of literature on the reparameterization of various control problems to rep-
resent them as convex problems (22, 24). In this section, we discuss the connections between such
convex approaches and PO, showing that linear matrix inequality formulations for control design
lead to desired landscape properties for PO.

We have seen successful applications of PO to a range of control problems in the previous
sections, in many cases achieving the globally optimal policy. A natural question is whether there
is a unified approach to determining when stationary points for PO are global minima. In this
section, we revisit the gradient dominance property given in Definition 1 and provide a unified
framework to show that some related inequality holds for a large family of PO problems, despite
the nonconvexity of the cost J(K) as a function of K. This viewpoint gives insights into the myste-
rious emergence of gradient dominance (or the Polyak–Łojasiewicz property) in various control
problems that are nonconvex in K, providing a general tool to determine when stationary points
for nonconvex PO problems are actually global minima.

Intuitively, the gradient dominance property implies that J(K) is close to the optimal value
for any K with small gradient norm, from which one can directly conclude nice optimization
landscape/convergence properties.9 Our goal in this section is to show how to use the existence of
convex parameterizations, together with important additional assumptions about themap between
the variables in the nonconvex and convex problems, to establish such a desired property or some
closely related variant for the nonconvex J(K).

We begin by considering an abstract description of the following pair of problems:

min
K

J(K ) subject to K ∈ K, 33.

min
L,P,Z

f (L,P,Z) subject to (L,P,Z) ∈ S, 34.

where K describes the set of desired controllers (typically the set of stabilizing controllers), and S
captures the appropriate constraint sets (typically characterized by some linearmatrix inequalities),
which are determined for each problem case (see examples below). The following key assumption
about the pair of problems in Equations 33 and 34 is critical for Theorem 10.

Assumption 1. The feasible set S is a convex set, and the function f (L, P, Z) is convex,
bounded, and differentiable over S.We assume that any feasible point (L,P,Z) ∈ S satisfies
P � 0. In addition, we assume that for all K ∈ K, we can express J(K) as follows:10

J(K ) =min
L,P,Z

f (L,P,Z)

subject to (L,P,Z) ∈ S, LP−1 = K.

9Convergence rates will depend on the values of the degree p (for more properties, see 79). In particular, p =
1 gives a sublinear convergence rate, and p = 2 gives a linear rate.
10Note that this assumption needs to hold for all feasible points in the two domains, not only at the optima.
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Proof illustration. We can map any policy K to (L, P, Z), and then map the direction (L∗, P∗, Z∗) − (L, P, Z)
and the gradient �f (L, P, Z) back to the original K space. Since the problem in (L, P, Z) space is convex,
〈�f (L, P, Z), (L∗, P∗, Z∗) − (L, P, Z)〉 is less than or equal to 0.We then show that a similar relation holds for
the nonconvex problem. Figure adapted from Reference 134 with permission from IEEE.

Recall that J′(K, V) denotes the directional derivative of J(K) along the direction V. When J
is differentiable, it holds that J′(K ,V ) = trace(V T∇J(K )).We have the following result (modified
from Reference 134 to also allow nondifferentiable points).

Theorem 10. Consider the problem pair in Equations 33 and 34. Suppose Assumption
1 holds, and J(K) is either differentiable or subdifferentially regular in K. Let K∗ denote a
global minimizer of J(K) in K. For any K satisfying J(K) > J(K∗), there exists nonzero V in
the descent cone of K at K, such that the following inequality holds:

0 < J(K ) − J(K∗) ≤ −J′(K ,V ). 35.

Consequently, any stationary points of J will be global minima.

The above theorem gives a unified sufficient condition ensuring that stationary points of non-
convex PO problems are global minima. The main idea of the proof is illustrated in Figure 5.
For special problems such as LQR, it is possible to further bound ‖V‖F and apply ‖∇J(K )‖F ≥∣∣∣∇J(K )[ V

‖V ‖F ]
∣∣∣ to show the gradient dominance property with degree p = 1 for Equation 17. Now

suppose the convex parameterization requires a set of parameters P1, . . . , Pm; it is possible to de-
velop a more general version of Theorem 10, following the ideas described by Sun & Fazel (134),
that allows a mapK= �(P1, . . . ,Pm) as long as� has nicely behaved first-order derivatives.Umen-
berger et al. (68) recently proposed a more involved version of similar constructions as a general
framework of differentiable convex lifting.

6.1. Examples

We now provide three examples of the concepts discussed above.

6.1.1. Example 1: discrete-time, infinite-horizon linear quadratic regulator. Consider
minimizing the LQR cost J(K) in Equation 5 subject to K ∈ K, the set of all stabilizing controllers.
This problem has the following well-known convex parameterization:

min
L,P,Z

f (L,P,Z) := trace(QP) + trace(ZR)

subject to P � 0,

[
Z L
L� P

]
� 0,

[
P − � AP + BL

(AP + BL)T P

]
� 0.

36.

To check Assumption 1, we add the constraint K = LP−1 or KP = L to the problem shown in
Equation 36 and simplify the linear matrix inequalities to conclude that the minimum value of
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this problem equals J(K) for all feasible K (134). Thus, Theorem 10 applies and can be tailored to
show the gradient dominance property for the corresponding nonconvex cost J(K), which allows
us to recover the results seen earlier in Section 3.2 (on convergence to a global minimizer) for
LQR PO.

The constant in the gradient dominance inequality, Equation 17, can also be bounded in terms
of problem matrices, the initial policy cost J(K 0), and a notion of the problem condition number
(see 35, 134; for the continuous-time counterpart, see 81, 101). In fact,Mohammadi et al. (81) were
the first to leverage existing linear matrix inequality conditions to study the global convergence
properties of PO methods, specifically for the continuous-time LQR.

6.1.2. Example 2: H∞ state-feedback synthesis. As described in Section 2, this problem can
be formulated as PO with J(K) given by Equation 10 and K given by Equation 3. Under the
positive definiteness assumption on (Q, R), the nonstrict version of the bounded real lemma can
be used to show that this problem has the following convex parameterization:

min
L,P,γ

f (L,P, γ ) := γ

subject to P � 0,

⎡
⎢⎢⎢⎢⎢⎣

−P 0 P (AP − BL)T LT

0 −γ I 0 I 0
P 0 −γQ−1 0 0

AP − BL I 0 −P 0
L 0 0 0 −γR−1

⎤
⎥⎥⎥⎥⎥⎦ � 0,

where γ is the closed-loop H∞ norm. Then, based on Theorem 10 and the subdifferentially reg-
ular property of the H∞ cost function, we can immediately conclude that any Clarke stationary
points for this problem are global minima (54). Then, with the help of coerciveness, Goldstein’s
subgradient method can be guaranteed to find the global minimum of this problem.

6.1.3. Example 3: output estimation problem with regularization. For lack of coerciveness
of the objective in many other control problems beyond LQR, some explicit regularization tech-
niques can help ensure the global convergence of POmethods (which is different from the implicit
regularization discussed in Section 4.1). Specifically, the recent work by Umenberger et al. (68)
studied continuous-time output estimation (i.e., the filtering problem,which is a fundamental sub-
routine for LQG control and partially observable control) and established the global convergence
of the PG method by regularizing the output estimation objective.

Intriguingly, the regularization is inspired by the convex reformulation of the output esti-
mation problem (135) and ensures that the convex reformulation map (i.e., the map from the
domain of the convex parameters to that of the policy parameter) is surjective. This way, the con-
vex parameterization provably leads to a gradient dominance property in the policy parameter
domain, of degree 1. Hence, PO with rebalancing on the regularized output estimation objective
enjoys a sublinear convergence rate to the global optimum. This example not only reinforces the
power of convex parameterization and its connection to gradient dominance, but also calls for
more attention to ensure the nondegeneracy of the reformulation map and actually unleash such
power.

6.2. Discussion

Under the framework of convex parameterization for control, the properties of the map between
the convex and nonconvex domains, for both costs and feasible sets, are crucial. Even in the uncon-
strained case, if the map from the convex function to the nonconvex one introduces new stationary
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points, new tools will be needed to analyze whether a first-order algorithm can avoid these spurious
saddle points.

This leads to a question: What are the most general conditions on this map that preserve
the stationary points of the convex function and introduce only additional strict saddles or other
benign stationary points? This is an interesting question for future work, for which the LQGprob-
lem would provide an interesting case study (see discussion in Section 5.1). It is also interesting
to further explore the power of explicit regularization (as in Reference 68 for output estimation
problems). Convex parameterizations are also helpful for exploring other properties; for example,
the convex parameterization for LQG control can be used to establish landscape properties of the
PO with partial observation, such as the connectivity properties of feasible/sublevel sets (63, 67).

7. CHALLENGES AND OUTLOOK

In this article, we have revisited the theoretical foundation of PO for control and surveyed a num-
ber of results that highlight properties of PO algorithms on benchmark control problems. Our
survey has been inspired by the recent success and wide range of applications of RL. PO provides
a bridge between control and RL and can give new insights into the design trade-offs between as-
sumptions and data, as well as model-based and model-free synthesis. Theoretical developments
in PO for control can help create a renewed interest in the control community to examine the
synthesis of dynamical systems from this perspective, which, in our view, is more integrated with
machine learning.

We close our discussion with an outlook on challenges and open questions related to bridging
the gap between PO theory and real-world control applications. As an exhaustive list is impossible,
we discuss a few challenges and open questions that, naturally, reflect our perspectives.

First, from our discussion, it is evident that the development of PO theory requires further con-
nections between modern optimization theory (which focuses on the convergence and complexity
of iterative algorithms) and control theory (which rigorously addresses the notions of optimality,
stability, robustness, and safety for closed-loop dynamical systems). For example, it is natural to
ask whether leveraging results in nonconvex optimization on the complexity of escaping saddle
points (136–138) can give similar guarantees for PO with control-theoretic constraints.

Next, further work is needed on regularization for stability, robustness, and safety. In this ar-
ticle, we have covered only H∞ robustness constraints, but there is an extensive system-theoretic
literature on how to enforce other types of robustness and safety guarantees for controller design.
For example,more general robustness constraints can be formulated via passivity (139), dissipativ-
ity (140), or integral quadratic constraints (141). In addition, safety can be induced by modifying
the cost function. It is important to investigate how to provably pose similar robust/safety guaran-
tees for direct policy search via either explicit regularization (on the cost/constraints) or implicit
regularization (via algorithm selection).

Further work is also needed on nonlinear systems, deep RL, and perception-based control.We
have focused on reviewing the PO theory centered around linear systems, and it is our hope that
the insights from such study can be used to guide the algorithmic/theoretical developments of
POmethods for nonlinear control. Conceptually, nonlinear control design can still be formulated
as minK∈K J(K ), and convergence to stationary points can still be established given coerciveness.
However, how to characterize the feasible set K in the nonlinear control setting is unclear in the
first place.Quite often, the stability/robustness constraints hold only locally for nonlinear systems.
It is crucial to investigate how to define and characterize feasible policies for nonlinear control
problems. An important class of PO problems arise in deep RL for end-to-end perception-based
control. The theoretical properties of POmethods for such problems remain largely unknown. In
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this case, the geometry of the feasible set can become even more complicated due to the presence
of the perception modality.

An additional challenge relates to decentralized control of multiagent systems, which has a
long history in control theory (142, 143) and also connects to the partially observable setting,
since each single agent cannot observe the full system state. PO theory for such control tasks re-
quires further investigation. There has been some recent progress (39, 40, 61). For example, Feng
& Lavaei (61) showed that there can be an exponential number of connected components for the
feasible set; Furieri et al. (39) then established the global convergence and sample complexity un-
der the quadratic invariance condition (144). It would be interesting to explore other conditions as
well as algorithm design principles that admit the global convergence of PO methods for decen-
tralized control. It is especially imperative to develop PO methods that scale with a large number
of agents. PO has also been studied in multiagent game-theoretic settings, including general-sum
linear quadratic dynamic games (145), with negative nonconvergence results, and linear quadratic
mean-field games (146–149), where the number of agents is very large and approximated by in-
finity. It would be interesting to further explore the PO theory in other dynamic game settings
with control implications.

The integration of model-based and model-free methods will also be an important future di-
rection. Both approaches are important for control design (92): On the one hand, there has been
a recent trend of research examining the LQR problem as a benchmark for learning-based con-
trol, starting with the work of Dean et al. (150), and it has been shown that model-based methods
can be more sample efficient in this case from an asymptotic viewpoint (151); on the other hand,
model-free methods can be more flexible for complex tasks, such as perception-based control. In-
tegrating the two will help achieve the best of both worlds, especially for controlling systems that
are only partially understood or parameterized. It is also expected that such an integrated approach
will lead to developments in new settings that further connect learning and control theory, such
as online control with regret guarantees (152–156).

Finally, we note that many new tasks arising in machine learning for control can also be
formulated as PO. For example, imitation learning for control can be formulated as PO with
control-theoretic constraints (157–160). Similarly, transfer learning for linear control can be stud-
ied as PO if wemodify the cost function properly (161). In the context of control, PO conveniently
provides a general paradigm for formulating imitation learning and transfer learning tasks. It
will be interesting to investigate the convergence theory of gradient-based algorithms for such
problems.

SUMMARY POINTS

1. Thanks to the coerciveness and gradient dominance properties, policy optimization (PO)
for the linear quadratic regulator (LQR) leads to a nonconvex problem that can still be
provably solved using the gradient method.

2. In the state-feedback setting, advanced POmethods can be guaranteed to achieve global
convergence on linear risk-sensitive/robust control tasks.

3. In the partial observation setting, the optimization landscape provides important clues
for the performance of PO methods.

4. There are fundamental connections between the convex formulations of optimal/robust
control tasks and the PO landscape.
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FUTURE ISSUES

1. Many new results on the complexity of escaping saddles and finding stationary points
for unconstrained optimization may be extended to PO.

2. Advanced regularization techniques are needed for robustness and safety in general.

3. PO theory for nonlinear or perception-based control remains largely open.

4. Scalability is an important issue for PO in multiagent decentralized control.

5. More study is needed to integrate model-based and model-free methods.

6. There are new PO problems in machine learning for control (e.g., imitation/transfer
learning).
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