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Abstract

Advanced measurement techniques and high-performance computing have
made large data sets available for a range of turbulent flows in engineering
applications. Drawing on this abundance of data, dynamical models that re-
produce structural and statistical features of turbulent flows enable effective
model-based flow control strategies. This review describes a framework for
completing second-order statistics of turbulent flows using models based
on the Navier–Stokes equations linearized around the turbulent mean ve-
locity. Dynamical couplings between states of the linearized model dictate
structural constraints on the statistics of flow fluctuations. Colored-in-time
stochastic forcing that drives the linearized model is then sought to account
for and reconcile dynamics with available data (that is, partially known statis-
tics). The number of dynamical degrees of freedom that are directly affected
by stochastic excitation is minimized as a measure of model parsimony. The
spectral content of the resulting colored-in-time stochastic contribution can
alternatively arise from a low-rank structural perturbation of the linearized
dynamical generator, pointing to suitable dynamical corrections that may ac-
count for the absence of the nonlinear interactions in the linearized model.
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1. INTRODUCTION

Turbulent flows are at the center of many key processes in nature and in engineering applications.
Energy dissipation caused by turbulent fluctuations around airplanes, ships, and submarines in-
creases resistance to motion (i.e., skin-friction drag) and fuel consumption and compromises the
performance of vehicles. This motivates the design of flow control strategies for the improved
performance of air and water vehicles and other systems that involve turbulent flows (1, 2).

Models that are based on the Navier–Stokes (NS) equations capture the dynamics and statis-
tical features of fluid flows. However, these models are given by 3-D nonlinear partial differential
equations and involve a number of degrees of freedom that is prohibitively large for analysis and
control synthesis (3, 4). Moreover, to this day, a detailed understanding of the mechanisms re-
sponsible for the dissipation of energy in turbulent flows is missing. As a result, traditional flow
control techniques are largely empirical, and they rely on physical intuition, numerical simula-
tions, and experiments. Even though these techniques provide invaluable insights, they are costly,
time-consuming, and not suitable for model-based controller design.

Direct numerical simulation (DNS) offers a computational approach to finding a solution to
the NS equations. At moderate Reynolds numbers, DNS provides important insight into struc-
tural and statistical features of turbulent flows, but the computational complexity increases roughly
as the cube of the Reynolds number, and DNS becomes prohibitively expensive in most flow
regimes that are encountered in engineering practice (3). An alternative to DNS has been to ei-
ther fully resolve large-scale 3-D turbulent flow structures and model the impact of smaller scales
or focus on statistical signatures of turbulent flows, i.e., the mean flow components and their
higher-order moments. The former approach gives rise to large-eddy simulation, which relies on
modeling the impact of small unresolved physical scales (5), and the latter forms the basis for the
statistical theory of turbulence (6).While large-eddy simulation accurately captures the large-scale
unsteady motions that dominate flows around air and water vehicles, its computational cost is still
too high for it to be incorporated into aerodynamic design (4). Since an exact set of dynamical
equations that govern the evolution of statistics of turbulent flows does not exist, the statistical
theory of turbulence aims to develop approximate mathematical models for turbulent flows (7).
Indeed, recent research suggests that conventional techniques can be significantly enhanced us-
ing low-complexity models that are convenient for real-time control design and optimization
(8).

In general, modeling can be seen as an inverse problem where a search in parameter space aims
to identify a parsimonious representation of data. For turbulent flows, the advent of advanced
measurement techniques and high-performance parallel computing has resulted in large data sets
for a wide range of flow configurations and speeds. Drawing on this abundance of data, one can
construct dynamical models to reproduce structural and statistical features of turbulent flows.

The prevalence of coherent structures in turbulent wall-bounded shear flows (9–12) has
inspired the development of data-driven techniques for reduced-order modeling of turbulent
flows (13–18). However, unreliable measurements and data anomalies challenge a sole reliance
on data because such models are agnostic to the underlying physics. Furthermore, control actu-
ation and sensing may significantly alter the identified modes in unpredictable ways. This com-
promises the performance of data-driven models in regimes that were not accounted for in the
training process and introduces nontrivial challenges for model-based control design (19, 20). A
promising alternative is to leverage the underlying physics in the form of a prior model that arises
from first principles, e.g., linearization of the NS equations around stable flow states. This re-
view highlights recent developments in combining data-driven techniques with systems theory
and optimization to enhance the predictive capabilities of physics-based dynamical models.
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Over the last three decades, important dynamical aspects of transitional and turbulent flows
have been captured by the analysis of the linearized NS equations. Specifically, the nonnormal-
ity of the linearized dynamical generator introduces interactions among exponentially decaying
normal modes (21, 22). This property has been used to explain high flow sensitivity in the early
stages of transition and to identify key mechanisms for subcritical transition to turbulence; even
in the absence of modal instability, bypass routes to transition can be triggered by large transient
growth (23–27) or large amplification of deterministic and stochastic disturbances (21, 28–32).
Similar amplification mechanisms have been observed for the linearized NS equations around the
turbulent mean velocity (30, 33–36). Additional insights into the geometric scaling of dominant
modes over various flow conditions have been provided by low-order representations resulting
from singular value decomposition of the associated frequency response operator (36–38).

The nonlinear terms in the NS equations play an important role in the growth of flow fluctu-
ations, transition to turbulence, and sustaining turbulent flow. Since these terms are conservative,
they do not contribute to the transfer of energy between the mean flow and velocity fluctuations,
but they do transfer energy between different spatiotemporal Fourier modes (7, 39). This feature
has inspired modeling of the effect of nonlinearity using additive forcing to the linearized equa-
tions that govern the dynamics of fluctuations. Early efforts in this direction focused on mod-
eling homogeneous isotropic turbulence (40–43). Stochastically forced linearized NS equations
were later used to model heat and momentum fluxes as well as spatiotemporal spectra in quasi-
geostrophic turbulence (44–46), while structural features of wall-bounded turbulent flows were
captured using the spatiotemporal frequency responses of the linearized NS equations (28–31, 36,
47–49). These studies used forcing to model exogenous excitation sources and uncertain initial
conditions, as well as to replicate the effects of the nonlinear terms in the full NS equations.

This review explains how stochastic dynamical models can enhance the linearized NS equa-
tions to accurately replicate observed statistical features of turbulent flows. This is accomplished
by bringing together tools from systems theory and convex optimization in order to suitably shape
the power spectrum of additive stochastic forcing into the dynamical equations.We focus on repli-
cating second-order statistics and cast the corresponding model identification as a convex opti-
mization problem. The resulting stochastic component can be linked to a structural (low-rank)
perturbation of the dynamical generator, suggesting suitable correction to account for the absence
of the nonlinear interactions.

The review is organized as follows. In Section 2, we provide the background on the NS equa-
tions and turbulence modeling. In Section 3, we introduce the stochastically forced linearized
NS equations and describe structural constraints on admissible state covariances and input power
spectra. In Section 4, we demonstrate the necessity for colored-in-time stochastic forcing and
formulate a convex optimization problem aimed at matching available and completing unavail-
able second-order statistics of turbulent flows via low-complexity stochastic dynamical models. In
Section 5, we apply the stochastic modeling approach of Section 4 to a turbulent channel flow,
verify its utility in linear stochastic simulations, and examine the resulting spatiotemporal spec-
trum. Finally, we provide concluding remarks in Section 6, which is followed by a summary of key
points and outstanding research issues.

2. THE NAVIER–STOKES EQUATIONS

Flows of incompressible Newtonian fluids are governed by the NS and continuity equations

∂tu + (u · ∇ )u = −∇P + 1
Re

�u,

0 = ∇ · u,
1.
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where u is the velocity vector that satisfies the no-slip and no-penetration boundary conditions
at a stationary solid surface; P is the pressure; ∇ and � = ∇ · ∇ are the gradient and Laplacian
operators, respectively; and ∂t is the partial derivative with respect to time. The NS equations
are nonlinear partial differential equations in spatial coordinates x and time t, and the continuity
equation reflects the static-in-time divergence-free requirement on the velocity field. The flow is
parameterized by the Reynolds number, which determines the ratio of inertial to viscous forces,
Re := ūh/ν, where ū and h are the characteristic velocity and length of the flow and ν is the kine-
matic viscosity. Spatial coordinates in Equation 1 are nondimensionalized by h, velocity by ū, time
by h/ū, and pressure by ρū2, where ρ is the fluid density.

2.1. Mean Flow Equations

When the flow becomes turbulent, it reaches a statistically stationary state in which variables
still vary in time but their statistics are time independent. To analyze the statistical properties
of the flow, the velocity and pressure fields are decomposed into the sum of the turbulent mean
components (ū, P̄) and fluctuations (v, p) around them:

(u,P) = (ū + v, P̄ + p), (ū, P̄) = (〈u〉, 〈P〉), (〈v〉, 〈p〉) = (0, 0),

where 〈·〉 denotes the time-average operator, e.g.,

〈u(x, t )〉 = lim
T→∞

1
T

∫ T

0
u(x, t + τ ) dτ.

Averaging Equation 1 yields the Reynolds-averaged NS equations (7, 39, 50)

∂t ū + (ū · ∇ ) ū = −∇P̄ + 1
Re

�ū − ∇ · 〈vvT 〉,
0 = ∇ · ū,

2.

which govern the evolution of the turbulent mean profiles (ū, P̄). Relative to Equation 1,
Equation 2 contains one additional term that depends on the second-order moment of the ve-
locity fluctuation vector v, 〈vvT 〉. This symmetric tensor arises from momentum transfer by the
velocity fluctuations and has a profound influence on the mean flow quantities and thereby on our
ability to predict the skin-friction drag (39).

2.2. The Closure Problem

For a 3-D flow, Equation 2 consists of four independent equations governing the dynamics of
the mean velocity and pressure fields (ū, P̄). However, these equations contain more than four
unknowns; in addition to ū and P̄, the Reynolds stresses 〈vvT 〉 are also unknown. This is a con-
sequence of a closure problem that cannot be resolved in the absence of additional information
about the second-order statistics of velocity fluctuations. Since theNS equations are nonlinear, the
nth velocity moment depends on the (n+ 1)th moment (39), making it challenging to determine
such second-order statistics.

Statistical theories of turbulence attempt to overcome the closure problem by modeling the
effect of the Reynolds stress tensor on the mean flow quantities rather than explicitly resolving the
nonlinear terms (7, 39, 50).This is typically achieved by expressing higher-ordermoments in terms
of the lower-order moments via a combination of physical intuition and empirical observations
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(a) Conventional turbulence models are used to compute second-order statistics that drive the mean flow
equations. (b) An alternative approach utilizes stochastically forced linearized dynamics around the turbulent
mean velocity to compute the second-order statistics of velocity fluctuations.

with rigorous approximation of the flow equations (see Figure 1a). For example, the turbulent
viscosity hypothesis seeks approximate solutions of Equation 2 by relating turbulent stresses to
mean velocity gradients via (50)

〈vvT 〉 − 1
3
trace

(〈
vvT

〉)
I = −νT

Re
(∇ū + (∇ū)T ),

where νT is the turbulent viscosity and I is the identity tensor. Unfortunately, a general-purpose
expression for νT does not exist, and turbulence models are required to relate it to other flow
quantities, e.g., second-order statistics of the velocity fluctuations.

With appropriate choices of velocity and length scales, turbulent viscosity can be expressed
as (50)

νT = cRe2(k2/ε ),

where k and ε denote the turbulent kinetic energy and its rate of dissipation, respectively, and c is
the constant. The k-ε model (51, 52) provides two differential transport equations for computing
k and ε and is widely used in commercial computational fluid dynamics codes and in engineer-
ing practice. Even though these equations are less complex than the NS equations, they are still
computationally expensive, produce reliable results only for certain flow configurations, and are
not convenient for control design and optimization (for additional details, see Reference 50). In
what follows, we describe an alternative approach to turbulence modeling that approximates the
Reynolds stresses using the second-order statistics of the stochastically forced NS equations lin-
earized around the turbulent mean flow (see Figure 1b). We also demonstrate how second-order
statistics resulting from DNS and experiments can be used to refine the predictive capability of
models that arise from first principles.

3. STOCHASTICALLY FORCED LINEARIZED NAVIER–STOKES
EQUATIONS

The dynamics of small velocity and pressure fluctuations (v, p) around the turbulent mean profile
(ū, P̄) are governed by the linearized NS and continuity equations

∂tv + (∇ · ū) v + (∇ · v) ū = −∇ p+ 1
Re

�v + d,

0 = ∇ · v.
3.
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(a) Geometry of a pressure-driven turbulent channel flow between two parallel infinite walls. (b) Turbulent
mean velocity profileU (y) in a flow with friction Reynolds number Re = 186.

Here, d represents an additive zero-mean stationary stochastic input that triggers a statistical re-
sponse of the linearized dynamics. In what follows, we describe how available second-order statis-
tics of turbulent channel flows can be reproduced using the stochastically forced model repre-
sented by Equation 3 and a suitable choice of power spectrum for the input d. While we focus
on the turbulent channel flow, it is noteworthy that the reviewed methodology and theoretical
framework are applicable to other flow configurations.

In strongly inertial regimes, all flows transition to turbulence, and a channel flow with the ge-
ometry shown in Figure 2a is commonly used as a benchmark for modeling, analysis, and control
of wall-bounded turbulence. As illustrated in Figure 2b, the turbulent mean velocity in channel
flow contains only a streamwise component ū = [U (y) 0 0]T , and the linearized model that gov-
erns the dynamics of velocity fluctuations v := [u v w]T in the streamwise (x), wall-normal (y),
and spanwise (z) directions takes the form

∂tu + U (y) ∂xu + U ′(y) v = − ∂x p+ (1/Re)�u+ du,

∂tv + U (y) ∂xv = − ∂y p+ (1/Re)�v + dv ,

∂tw + U (y) ∂xw = − ∂z p+ (1/Re)�w + dw,

0 = ∂xu+ ∂yv + ∂zw.

4.

Here,U ′(y) := dU (y)/dy, and d := [du dv dw]T is the body-forcing fluctuation vector. By selecting
the channel half-height h and the friction velocity uτ as the proper scales, the flow is characterized
by the friction Reynolds number Re := uτh/ν.

The linearized dynamics in Equation 4 are time invariant and have constant coefficients in
the wall-parallel directions; thus, the Fourier transform in x and z can be used to obtain a 1-D
system of partial differential equations (in y and t) parameterized by the horizontal wavenum-
bers k := (kx, kz ). Furthermore, a standard conversion can be used to eliminate the pressure from
the equations and bring the descriptor form in Equation 4 into the form of an evolution model
in which the state is determined by the wall-normal velocity (v) and vorticity (η = ∂zu− ∂xw)
fluctuations (31, 53), with the boundary conditions v(y = ±1,k, t ) = ∂yv(y = ±1,k, t ) = η(y =
±1,k, t ) = 0.1 A pseudospectral technique (54) with N collocation points in y approximates the
underlying operators, and a change of variables described in appendix A of Reference 55 is used to

1The evolution model is obtained from Equation 4 as follows. Applying the divergence operator ∇ to the lin-
earized NS equations yields an expression for �p. The equation for v is obtained by acting with the Laplacian
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obtain a finite-dimensional state-space representation in which the energy of velocity fluctuations
at any k is determined by the Euclidean norm of the state vector ψ := [v η]T :

ψ̇(k, t ) = A(k)ψ(k, t ) + B(k)d(k, t ),
v(k, t ) = C(k)ψ(k, t ).

5.

Here,ψ(k, t ) ∈ C
2N , d(k, t ) ∈ C

3N is the input vector; v(k, t ) ∈ C
3N is the velocity fluctuation vec-

tor; the matrix A(k) determines dynamical interactions between the state variables; B(k) specifies
the way the input d(k, t ) enters into the evolution model; and the output matrix C(k) relates the
state vector ψ(k, t ) to the velocity fluctuation vector v(k, t ).

3.1. Algebraic Relations Between Input and State Statistics

In channel flow, the NS equations linearized around the turbulent mean flow are stable (56, 57),
i.e., all eigenvalues of A in Equation 5 are in the left half of the complex plane, and the steady-state
covariance matrix X (k) of the state vector in Equation 5,

X (k) = lim
t→∞

E(ψ(k, t )ψ∗(k, t )), 6.

satisfies the Lyapunov-like equation (58, 59)

A(k)X (k) + X (k)A∗(k) = −B(k)H∗(k) −H (k)B∗(k), 7.

where E is the expectation operator and ∗ denotes the complex conjugate transpose. For colored-
in-time d(k, t ), H (k) is a matrix that quantifies the cross-correlation between the input and the
state in Equation 5 in statistical steady state (appendix B of Reference 55):

H (k) = lim
t→∞

E(ψ(k, t )d∗(k, t )) + 1
2
B(k)	(k).

When the input d(k, t ) in Equation 5 is zero-mean and white-in-time with covariancematrix	(k),
i.e., E(d(k, t )) = 0 and E(d(k, t )d∗(k, τ )) = 	(k)δ(t − τ ), the matrix H (k) simplifies to H (k) =
(1/2)B(k)	(k), and Equation 7 reduces to the standard algebraic Lyapunov equation

A(k)X (k) + X (k)A∗(k) = −B(k)	(k)B∗(k). 8.

The steady-state velocity covariance matrix V (k) can be obtained from X (k):

V (k) = lim
t→∞

E(v(k, t ) v∗(k, t )) = C(k)X (k)C∗(k). 9.

Since the dynamics are parameterized by wavenumbers k, the entries ofV (k) determine two-point
correlations of velocity fluctuations in the wall-normal direction y (see Reference 60).

3.2. Spatiotemporal Correlations

At any k, the matrix V (k) determines two-point correlations in the wall-normal direction of ve-
locity fluctuations in statistical steady state, and the lagged covariance matrix

Rvv (k, τ ) := lim
t→∞

E(v(k, t ) v∗(k, t + τ )) 10.

� on the second equation in Equation 4 and utilizing the expression for �p to eliminate the pressure p. The
equation for η is obtained by taking the curl of the linearized NS equations. This yields two partial differential
equations that govern the evolution of v and η and involve only v, η, and d.
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captures spatiotemporal correlations. Furthermore, the application of the temporal Fourier trans-
form yields the spectral density matrix Svv (k,ω) of the output v(k, t ),

Svv (k,ω) =
∫ +∞

−∞
Rvv (k, τ ) e−iωτdτ , 11.

which parameterizes two-point velocity correlations across wavenumbers k and temporal frequen-
cies ω. The matrix Svv (k,ω) can be expressed in terms of the spectral density matrix Sdd(k,ω) of
the input d(k, t ):

Svv (k,ω) = Tvd(k,ω)Sdd(k,ω)T ∗
vd(k,ω),

whereTvd(k,ω) is the spatiotemporal frequency response of the linear time-invariant (LTI) system
in Equation 5,

v(k,ω) = Tvd(k,ω)d(k,ω) = C(k)(iωI − A(k))−1B(k)d(k,ω). 12.

The steady-state output covariance matrix V (k) is related to the spectral density matrix Svv (k,ω)
via

V (k) := Rvv(k, 0) = 1
2π

∫ +∞

−∞
Svv (k,ω) dω. 13.

Finally, for white-in-time input d(k, t ) in Equation 5, the lagged output covariancematrixRvv(k, τ )
can be expressed as a linear function of the steady-state covariance matrix X (k):

Rvv (k, τ ) = C(k)X (k) eA∗ (k)τC∗(k). 14.

3.3. Summary

For the LTI dynamics in Equation 5, the algebraic constraint in Equation 7 determines admissi-
ble steady-state covariancematricesX (k).Among all positive semidefinitematrices, this constraint
identifies those that qualify as state covariances for a state-space representation with matricesA(k)
and B(k). As shown by Georgiou (58, 59), the structure of state covariances is an inherent prop-
erty of the linear dynamics. The sidebar titled Admissible Covariances describes necessary and
sufficient conditions for a positive-definite matrix X (k) to qualify as a steady covariance matrix of

ADMISSIBLE COVARIANCES

The matrix X = X ∗ 
 0 is the stationary covariance matrix of the state of the LTI system in Equation 5 with
controllable pair (A,B) and suitable input process d if and only if

rank

[
AX + X A∗ B

B∗ 0

]
= rank

[
0 B
B∗ 0

]

or, equivalently, if and only if the matrix equation

BH∗ +H B∗ = −(AX + X A∗ )

has a solutionH (58, 59). The rank condition implies that any positive-definite matrixX is admissible as a stationary
covariance of the state of an LTI system if the input matrix B is full row rank.
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Figure 3

(a) The cascade connection of the linearized dynamics with a spatiotemporal linear filter that is designed to
account for partially available second-order statistics of turbulent channel flow. (b) An equivalent reduced-
order representation of the cascade connection in panel a. Figure adapted from Reference 55 with
permission.

the state ψ(k, t ) in Equation 5. These conditions amount to the solvability of Equation 7 for the
matrix H (k) or, equivalently, the rank condition in the sidebar. We next build on such structural
constraints on admissible covariances and formulate convex optimization problems for character-
izing the statistical properties of stochastic excitations to LTI systems that account for partially
available statistics in turbulent channel flow.

4. COMPLETION OF PARTIALLY AVAILABLE FLOW STATISTICS

The algebraic relations described in Section 3.1 can be used to compute the steady covariance
matrix X (k) of the stochastically forced LTI system in Equation 5 based on the linearized model
[i.e., the matrices A(k) and B(k)] and the input statistics. In stochastic dynamic modeling of tur-
bulent flows, however, the converse is of interest: Starting from the covariance matrix X (k) and
the dynamic matrix A(k) in Equation 5, the objective is to identify the directionality of the distur-
bance [i.e., the matrix B(k) in Equation 5] and the power spectrum of the stochastic input d(k, t )
that generate such state statistics. As illustrated in Figure 3a, this amounts to designing a linear
filter that is driven by white noise and produces input d(k, t ) that generates the desired covariance
matrix X (k) for the LTI system in Equation 5. In high-Reynolds-number flows, experimental and
computational limitations often lead to only partial knowledge of flow statistics. For example, in
experiments, an array of probes may provide only a limited subset of spatiotemporal correlations
for velocity fluctuations, and in numerical simulations, certain regions of the computational do-
main may be poorly resolved. In this section, we formulate the problem of completing partially
known state correlations in a way that is consistent with the hypothesis that perturbations around
the turbulent mean velocity are generated by the linearized NS equations. To accomplish this ob-
jective, we seek stochastic forcing models of low complexity, where complexity is quantified by the
number of degrees of freedom that are directly influenced by stochastic forcing in the linearized
evolution model.

4.1. The Necessity of Colored-in-Time Stochastic Forcing

The right-hand side of the standard algebraic Lyapunov equation shown in Equation 8 is sign
definite, i.e., B(k)	(k)B∗(k) � 0. By contrast, the right-hand side of the Lyapunov-like equation
shown in Equation 7 is in general sign indefinite, and unless the input d(k, t ) in Equation 5 is
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Positive eigenvalues of the matrix A(k)Xdns(k) + Xdns(k)A∗(k) for channel flow with Re = 186 and
k = (2.5, 7), indicating that turbulent velocity covariances cannot be reproduced by the linearized
Navier–Stokes equations with white-in-time stochastic forcing (see Equation 8). Figure adapted from
Reference 55 with permission.

white-in-time, the matrix

Z(k) := −(A(k)X (k) + X (k)A∗(k)) = B(k)H∗(k) +H (k)B∗(k) 15.

can have both positive and negative eigenvalues. Figure 4 shows the eigenvalues of the matrix
A(k)Xdns(k) + Xdns(k)A∗(k) for a channel flow with Re = 186 and k = (2.5, 7), where A(k) de-
notes the generator of the dynamics in Equation 5 obtained by linearization around the turbulent
mean velocity profile and Xdns(k) is the steady-state covariance matrix resulting from numerical
simulations of the nonlinear NS equations. The presence of both positive and negative eigen-
values indicates that the second-order statistics of turbulent channel flow cannot be reproduced
by the linearized NS equations with white-in-time stochastic excitation. The modeling and opti-
mization framework that was recently developed by Zare et al. (55, 61) overcomes this limitation
by departing from the white-in-time restriction on stochastic forcing.

4.2. Covariance Completion via Convex Optimization

For the dynamical generator A resulting from linearization of the NS equations around the tur-
bulent mean velocity, the steady-state covariance matrix X satisfies

AX + XA∗ + Z = 0, 16a.

where

Z := BH∗ +H B∗ 16b.

quantifies the contribution of stochastic excitation. For notational convenience, we omit the de-
pendence on the wavenumber k in this section. We assume that a subset of entries of the output
covariance matrix V, namely Vi j for a selection of indices (i, j) ∈ I, is available. This yields an
additional set of linear constraints for the matrix X :

(CXC∗ )i j = Vi j , (i, j) ∈ I. 16c.
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Structure of the output covariance matrix V. The available one-point correlations of the velocity vector v in
the wall-normal direction at various wavenumbers k are marked by the orange lines. Figure adapted from
Reference 55 with permission.

For example, such known entries may represent one-point correlations in the wall-normal direc-
tion (see Figure 5). At any k, the diagonals of the submatrices Vuu(k),Vvv (k), and Vww (k) denote
the normal Reynolds stresses in turbulent channel flow, e.g.,

diag(Vuu(k)) = diag
(
lim
t→∞

E(u(k, t ) u∗(k, t ))
)
,

and the main diagonal of the submatrices Vuv (k), Vuw (k), and Vvw (k) denote the shear stresses,
e.g., diag(Vuv (k)) = diag (limt→∞ E (u(k, t ) v∗(k, t ))).2 It is noteworthy that while the covariance
matrix X is not allowed to have negative eigenvalues, the matrix Z can be sign indefinite. Our
objective is to identify suitable choices of X and Z that satisfy the above constraints and yield a
low-complexity model for the stochastic input that explains the observed statistics.

The contribution of the stochastic excitation enters through the matrix Z, which is of the form
given by Equation 16b, where the directionality of the input and its time correlations are reflected
by the choices of matrices B and H . As discussed in the sidebar titled Admissible Covariances,
when the input matrix B is full rank, any positive semidefinite X qualifies as the steady-state co-
variance of the stochastically forced linearized NS equation shown as Equation 5. However, as
demonstrated by Zare et al. (55), in this case a forcing model that cancels the linearized dynamics
and obscures important aspects of the underlying physics becomes a viable option. It is thus impor-
tant to minimize the number of degrees of freedom that can be directly influenced by stochastic
forcing. This minimization can be accomplished via suitable regularization, e.g., by minimizing
the rank of the matrix Z in Equation 16a (61, 62).3

This regularization gives rise to the following optimization problem, where the objective func-
tion provides a trade-off between the solution to themaximum-entropy problem and the complex-
ity of the forcing model, and the positive regularization parameter γ reflects the relative weight of
the nuclear norm objective. The convexity of the optimization problem follows from the convex-
ity of its objective function and the linearity of its constraint set, thereby implying the existence
of a globally optimal minimizer.

Problem 1 (covariance completion problem). Given matrices A and C, the available
entries Vi j of the output covariance matrix V, and the positive regularization parameter γ,

2In statistical steady state, turbulent kinetic energy is determined by the sum of traces of matrices Vuu, Vvv ,
and Vww , and skin-friction drag depends on the shear stress diag(Vuv ).
3The rank of the matrix Z bounds the number of independent input channels or columns in matrix B; for
details, see Reference 61.
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determine the Hermitian matrices X and Z that solve the convex optimization problem

minimize
X ,Z

−log det(X ) + γ ‖Z‖�

subject to AX + XA∗ + Z = 0, 17.

(CXC∗ )i j = Vi j , (i, j) ∈ I.

The first constraint reflects the requirement that the second-order statistics be consistent
with a stochastically forced linearized model, and the second constraint requires that the
available elements of the matrixV be exactly reproduced. Minimizing the logarithmic bar-
rier function ensures the positive definiteness of the covariance matrix X (63) and results
in a maximum-entropy stochastic realization (64). On the other hand, the nuclear norm
regularizer—i.e., the sum of singular values of the matrix Z, ‖Z‖� = ∑

i σi(Z)—is intro-
duced to restrict the rank of Z (65, 66) and thereby reduce the complexity of the forcing
model.

4.2.1. Power spectrum of stochastic input and filter design. The solution of the covariance
completion problem—i.e., the Hermitian matrices X (k) and Z(k)—can be used to obtain a dy-
namical model for colored-in-time stochastic input to the linearized NS equations. Zare et al. (55,
61) recently developed a class of generically minimal linear filters that have the same number of
degrees of freedom as the finite-dimensional approximation of the linearized model.

Since channel flow is translationally invariant in the wall-parallel dimensions, the dynamics in
Equation 5 and the optimization problem in Equation 17 are decoupled over the wavenumbers
k = (kx, kz ). At each k, the filter dynamics that account for X (k) are given by

φ̇(k, t ) = (A(k) − B(k)K (k))φ(k, t ) + B(k)w(k, t ),

d(k, t ) = −K (k)φ(k, t ) + w(k, t ),
18.

where φ(k, t ) is the state of the filter and w(k, t ) is a zero-mean white-in-time stochastic process
with covariance 	(k). On the other hand,

K (k) =
(
1
2
	(k)B∗(k) −H∗(k)

)
X −1(k) 19.

for matrices B(k) and H (k) that correspond to the factorization Z(k) = B(k)H∗(k) +H (k)B∗(k)
(for details, see Reference 61). The linear filter represented by Equation 18 generates a colored-
in-time stochastic input d(k, t ) to the linearized NS equations shown in Equation 5, and the re-
sulting cascade connection reproduces the available second-order statistics of turbulent flow (see
Figure 3a). The spectral density of d(k, t ),

Sdd(k,ω) = Tdw(k,ω)	(k)T ∗
dw(k,ω),

determines the spectral content of the input to the LTI system, where

Tdw(k,ω) = −K (k)(iωI − A(k) + B(k)K (k))−1B(k) + I

is the spatiotemporal frequency response of the linear filter in Equation 18.
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4.2.2. Minimal realization. The state-space representation corresponding to the cascade con-
nection of the linear filter in Equation 18 with the linearized NS dynamics in Equation 5 is given
by

[
ψ̇(k, t )
φ̇(k, t )

]
=

[
A(k) −B(k)K (k)
0 A(k) − B(k)K (k)

] [
ψ(k, t )
φ(k, t )

]
+

[
B(k)
B(k)

]
w(k, t ),

v(k, t )= [C(k) 0]

[
ψ(k, t )
φ(k, t )

]
. 20.

This realization has twice as many states as the spatial discretization of the linearized NS model
in Equation 5 but is not controllable and therefore not minimal. As shown by Zare et al. (61),
removal of the uncontrollable states yields the minimal realization of the mapping from the input
w(k,ω) to the output v(k,ω), v(k,ω) = Tvw(k,ω)w(k,ω),

Tvw(k,ω) = C(k) (iωI − A(k) + B(k)K (k))−1B(k), 21.

as

ψ̇(k, t ) = (A(k) − B(k)K (k))ψ(k, t ) + B(k)w(k, t ),

v(k, t ) = C(k)ψ(k, t ).
22.

This system has the same number of degrees of freedom as the system in Equation 5, and the
corresponding algebraic Lyapunov equation in conjunction with Equation 19 yields

(A(k) − B(k)K (k))X (k) + X (k)(A(k) − B(k)K (k))∗ + B(k)	(k)B∗(k)
= A(k)X (k) + X (k)A∗(k) + B(k)	(k)B∗(k) − B(k)K (k)X (k) − X (k)K∗(k)B∗(k)
= A(k)X (k) + X (k)A∗(k) + B(k)H∗(k) +H (k)B∗(k) = 0.

This demonstrates that the state-space realization in Equation 18 generates a stochastic input
d(k, t ), which is consistent with the steady-state covariance matrix X (k).

Remark 1. From Equation 19, we haveH (k) = 1
2B(k)	(k) − X (k)K∗(k), and substitution

of this expression into Equation 7 yields the standard algebraic Lyapunov equation

(A(k) − B(k)K (k))X (k) + X (k)(A(k) − B(k)K (k))∗ = −B(k)	(k)B∗(k).

Since the pair (A(k),B(k)) is controllable, so are (A(k) − B(k)K (k),B(k)) and (A(k) −
B(k)K (k),B(k)	1/2(k)). The stability of the modified dynamical generator A(k) −
B(k)K (k) follows from the positive semidefiniteness of B(k)	(k)B∗(k) via standard
Lyapunov theory.

The minimal realization (given by Equation 22) of the cascade connection described by
Equation 20 is advantageous from a computational standpoint and allows for an alternative
interpretation of the stochastic realization of colored-in-time forcing. First, time-domain simu-
lations require numerical integration of the system in Equation 22, which has half the number
of states of the system in Equation 20, thereby offering a computational speedup. On the other
hand, the structure in Equation 22 suggests that the colored-in-time forcing realized by the LTI
filter in Equation 18 can be equivalently interpreted as a white-in-time excitation together with
a dynamical modification to the linearized equations in the form of state-feedback interactions
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A feedback connection of the linearized dynamics with a static gain matrix K that is designed to account for
the sampled steady-state covariance matrix X .

(see Figure 3b). This interpretation provides an alternative viewpoint that is closely related to
a class of stochastic control (67–70) and output covariance estimation (71, 72) problems (for
details, see section II.C of Reference 61). Based on this viewpoint, we next describe an alternative
formulation of the covariance completion problem as a state-feedback synthesis that is optimal
with respect to a different design criterion (73, 74).

4.3. Minimum-Control-Energy Covariance Completion

As described by Zare et al. (73, 74), the challenge of establishing consistency between statistical
measurements and a linearized model can be alternatively cast as the problem of seeking a com-
pletion of the missing entries of a covariance matrix X along with a perturbation � of the system
dynamics subject to white-in-time input w:

ψ̇ = (A+ �)ψ + w,
v = C ψ.

For� := −BK , a covariance completion problem can be formulated as an optimal control problem
aimed at designing a stabilizing state-feedback control law f = −Kψ (Figure 6). The choice of B
may incorporate added insights into the strength and directionality of possible couplings between
state variables. While a full-rank matrix B that allows the perturbation signal Kψ to manipulate
all degrees of freedom can lead to the complete cancellation of the original dynamics A, it is
also important to impose a penalty on the average quadratic size of signals Kψ. This gives rise
to the following convex optimization problem, where the objective function provides a trade-off
between the minimum-control-energy problem and the number of feedback couplings that need
to be introduced to modify the dynamical generator A and achieve consistency with available
data (73, 74).

Problem 2 (minimum-energy covariance completion problem). Given matrices A, B,
C, R, and 	; the available entries Vi j of the output covariance matrix V ; and the positive
regularization parameter γ , determine the matrices K andX that solve convex optimization
problem

minimize
K ,X

trace (K∗RKX ) + γ

n∑
i=1

wi‖e∗
i K‖2

subject to (A− BK )X + X (A− BK )∗ + 	 = 0,
(CXC∗ )i j = Vi j , (i, j) ∈ I,
X 
 0.

23.
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The algebraic constraint on K and X ensures closed-loop stability (see Remark 1) and con-
sistency with the state covariance matrix X , and the second equality constraint requires that
the available elements of the matrix V be exactly reproduced. The positive-definite matrix
R specifies a penalty on the control input, while the weighted-norm regularizer promotes
sparsity on the rows of the matrix K . Here, wi are given positive weights, ei is the ith unit
vector in R

m, and 	 � 0 is the covariance matrix of white noise input w.

Remark 2. As demonstrated by Zare et al. (61, 74, 75), the covariance completion prob-
lems represented by Equations 17 and 23 can be cast as semidefinite programs. Small- and
medium-size problems can be solved efficiently using standard solvers (63, 76, 77). To deal
with the large problem dimensions that arise in fluid dynamics, Zare et al. (61, 74) have
developed customized algorithms.

4.4. Completion of Spatiotemporal Correlations

The covariance matrix V (k) provides information about spatial correlations of velocity fluctu-
ations in statistical steady state. As described in Section 3.2, the temporal dependence of such
statistics is captured by the spectral density matrix Svv (k,ω). This matrix can be used to pro-
vide real-time estimates of the flow state (78), and recent efforts have been directed at estimating
Svv (k,ω) by matching individual entries at either specified temporal frequencies (79–81) or the
spectral power (82), trace(Svv (k,ω)). Either way, it should be independently considered whether
the colored-in-time forcingmodels constructed in this way preserve important aspects of the orig-
inal linearizedNS dynamics.For additional discussion on parsimoniousmodels and how thesemay
reflect underlying physics, see Section 4.2.

5. CASE STUDY: TURBULENCE MODELING IN CHANNEL FLOW

In this section, we investigate the completion of partially known second-order statistics of a
turbulent channel flow using the framework presented in Section 4.2. The mean velocity profile
and one-point velocity correlations in the wall-normal direction at various wavenumber pairs k
are obtained from DNS of a turbulent channel flow with friction Reynolds number Re = 186 (53,
83–85) (see Figures 2b and 5). We also show how the modified dynamics of Section 4.2.1 can
be used as a low-dimensional model that is simulated in time to generate velocity fluctuations
whose second-order statistics are consistent with numerical simulations of the nonlinear NS
equations.

5.1. Reproducing Available and Completing Unavailable Second-Order Statistics

As demonstrated by Zare et al. (55), Problem 1 is feasible at all wavenumbers k. Thus, regardless
of the value of the regularization parameter γ , all available one-point correlations of turbulent
channel flow can be reproduced by a stochastically forced linearized model.Figure 7 displays per-
fect matching of all one-point velocity correlations that result from integration over wall-parallel
wavenumbers. Since Problem 1 is not feasible for Z(k) � 0 at all k, this cannot be achieved with
white-in-time stochastic forcing.

In addition to matching available one-point correlations, we next demonstrate that the solution
to Problem 1 provides good recovery of two-point correlations. These are not used as problem
data in the covariance completion problem and correspond to off-diagonal entries in Figure 5.
While the diagonal entries of V determine the kinetic energy and affect the mean momentum
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Correlation profiles of (a) normal and (b) shear stresses resulting from direct numerical simulation of
turbulent channel flow with Re = 186 (lines) and from the solution to Problem 1: diag(Vuu ) (circles), diag(Vvv )
(squares), diag(Vww ) (triangles), and −diag(Vuv ) (diamonds). Profiles are integrated over the wall-parallel
wavenumbers k. Figure adapted from Reference 55 with permission.

transfer in the turbulent flow, the off-diagonal two-point correlations are indicators of coherent
flow structures that reside at various locations away from the wall (11, 86). The premultiplied
energy spectrum in channel flow with Re = 186 peaks at k = (2.5, 7) (e.g., see figure 12a in Refer-
ence 87). Figures 8a and 8c display, respectively, the streamwiseVuu and streamwise/wall-normal
Vuv covariance matrices resulting from DNS at these flow conditions; Figures 8b and 8d show
the same covariance matrices that are obtained from the solution to Problem 1 (for a detailed
examination of wall-normal and spanwise covariance matrices, see Reference 55). The quality of
recovery depends on the choice of the regularization parameter γ , and for γ = 300, approximately
60% of the DNS-generated covariance matrix Vdns can be recovered based on a relative Frobe-
nius norm measure, ‖V −Vdns‖F/‖Vdns‖F . Here,V = CXC∗ represents the two-point correlation
matrix of velocity fluctuations resulting from Problem 1. The high-quality recovery of two-point
correlations is attributed to the structural constraint in Equation 16a, which keeps physics in the
mix and enforces consistency between data and the linearized NS dynamics.

5.2. Stochastic Linear Simulations

Stochastic simulations of the modified LTI dynamics in Equation 22 can be used to verify the
theoretical predictions resulting from the modeling and optimization framework of Section 4.2.
For a spatial discretization with N = 127 collocation points in the wall-normal direction, at each
wavenumber k, the LTI system in Equation 22 has 254 states. For k = (2.5, 7) and γ = 104, the
matrix Z that solves Problem 1 has eight nonzero eigenvalues (six positive and two negative) (see
Figure 9a). As shown by Zare et al. (61), the maximum number of positive or negative eigenvalues
of the matrix Z bounds the number of inputs into the linearized NS model given by Equation 5.
This implies that partially available statistics can be reproduced with six colored-in-time inputs,
and as a result, the dynamical modification BK in Equation 22 is of rank 6.

Proper comparison with DNS or experiments requires ensemble averaging, rather than com-
parison at the level of individual stochastic simulations. To this end, we conducted 20 simulations
with different realizations of white-in-time input w(k, t ) in Equation 22. The total simulation
time was 400 viscous time units. Figure 9b shows the time evolution of the energy (variance) of
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Covariance matrices resulting from (a,c) direct numerical simulation of turbulent channel flow with Re = 186
and (b,d) the solution to Problem 1 with γ = 300. Panels a and b show streamwise Vuu covariance matrices
for k = (2.5, 7); panels c and d show streamwise/wall-normal Vuv covariance matrices for the same k. The
one-point correlation profiles that are used as data in Problem 1 are marked by black lines along the main
diagonals. Figure adapted from Reference 55 with permission.

velocity fluctuations resulting from these 20 simulations. Even though the responses of individual
simulations differ from each other, the average of 20 sample sets asymptotically approaches the
correct value of turbulent kinetic energy in statistical steady state, trace (V (k)).Figure 10 displays
the normal and shear stress profiles resulting from DNS and from stochastic linear simulations.
The averaged output of the 20 simulations agrees well with DNS results. This agreement can be
further improved by running additional simulations and by increasing the total simulation times.

5.3. Spatiotemporal Energy Spectrum

To analyze the spatiotemporal aspect of dynamical models resulting from the framework of
Section 4.2, we examine the power spectral density and energy spectrum of velocity fluctuations.
The power spectral density of the LTI system in Equation 22 is determined by the sum of squares
of the singular values of the frequency response matrix in Equation 21:

�v (k,ω) = trace (Tvw(k,ω)T ∗
vw(k,ω)) =

∑
i

σ 2
i (Tvw(k,ω)).
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(a) Singular values of the solution Z to Equation 17 in turbulent channel flow with Re = 186, k = (2.5, 7),
and N = 127 for γ = 104. (b) Time evolution of fluctuations’ kinetic energy for 20 realizations of the
stochastic input to the resulting modified linearized dynamics in Problem 1. The thick black line shows the
energy averaged over all simulations. Figure adapted from Reference 55 with permission.
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Normal stress profiles in (a) the streamwise direction, (b) the wall-normal direction, and (c) the spanwise
direction, along with (d) the shear stress profile resulting from direct numerical simulation of turbulent
channel flow with Re = 186 at k = (2.5, 7) (line) and stochastic linear simulations (circles). Figure adapted
from Reference 55 with permission.
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(a) Power spectral density �v (k,ω) resulting from direct numerical simulation of turbulent channel flow
with Re = 186 at k = (2.5, 7) (purple), the linearized Navier–Stokes model in Equation 5 (black), an
eddy-viscosity-enhanced linearized model (blue), and the modified linear time-invariant dynamics in
Equation 22 for γ = 300 (red). (b) Premultiplied energy spectrum of the modified dynamics in Equation 22
for turbulent channel flow with Re = 186 resulting from the integration of ω diag (Tvw (k,ω)T ∗

vw (k,ω)) over
wavenumbers k.

Integration of �v (k,ω) over the temporal frequencies yields the square of the H2 norm of the
system in Equation 22 or, equivalently, the k-parameterized energy spectrum (31):

E(k) = 1
2

∫ ∞

−∞
�v(k,ω) dω = 1

2
trace (V (k)).

For a turbulent channel flow with Re = 186 and k = (2.5, 7), Figure 11a compares the power
spectral densities of the linearized NS model given by Equation 5, the eddy-viscosity-enhanced
modification of the linearized NS equations (48, 88–91), and the dynamical model given by
Equation 22 resulting from the framework presented in Section 4.2 with the result of DNS. For
the first two models, the input matrix B(k) excites all degrees of freedom in the state equation,
and for the modified dynamics, the input matrix B(k) comes from the framework presented in
Section 4.2 with the regularization parameter γ = 300. All three models are driven by spatially
and temporally uncorrelated inputs.

The temporal frequency at which the power spectral density peaks is similar for the linearized
NS equations and themodified dynamics (ω ≈ 45) and is closer to the result of DNS (ω ≈ 37) than
the frequency associated with the eddy-viscosity-enhanced model (ω ≈ 27).We also see that both
the eddy-viscosity enhancement and the data-driven low-rank modification attenuate the ampli-
fication of disturbances at all temporal frequencies. The uniform damping of the power spectral
density ensures that theH2 norm of the system in Equation 22matches the energy spectrum of the
turbulent channel flow (red and purple curves in Figure 11a). For the modified dynamics given by
Equation 22, Figure 11b shows the premultiplied spatiotemporal energy spectrum as a function
of the wall-normal coordinate and temporal frequency in inner (viscous) units, i.e., y+ := (1 + y)Re
and ω+ := ω/Re. This spectrum is computed by integrating ω diag (Tvw(k,ω)T ∗

vw(k,ω)) over k and
is concentrated around y+ ≈ 15within a frequency bandω+ ∈ (0.01, 1),which is in agreement with
the trends observed in DNS-generated energy spectra (81). Improving the accuracy in matching
the temporal correlations resulting from DNS may require closer examination of the role of pa-
rameter γ or the addition of extra constraints in Problem 1 and is a subject of ongoing research.
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6. CONCLUDING REMARKS

This review has discussed a framework that combines tools from systems theory and optimization
to develop low-complexity models of turbulent flows that are well suited for analysis and con-
trol synthesis. The goal is to embed partially known statistical signatures obtained via numerical
simulation of the NS equations or experimental measurements into first-principles models that
arise from linearization around the turbulent mean velocity. This amounts to identifying the spec-
tral content of stochastic excitation into the linearized equations such that turbulent statistics can
be reproduced. The review focused on the completion of second-order statistics, and while the
methodology and theoretical framework are applicable to a wide range of scenarios, a channel
flow configuration was used to solidify the discussion. On par with the dramatic upswing in the
fields of machine learning and optimization in leveraging big data for modeling, the proposed
methodology utilizes data to refine the predictive capability of a dynamical model that arises from
first principles and offers a new perspective on tackling issues of robustness and generalizability.

SUMMARY POINTS

1. Data from numerical simulations and experiments can be used to refine the predic-
tive power of models that arise from first principles, e.g., the linearized Navier–Stokes
equations.

2. White-in-time stochastic input to the linearizedNavier–Stokes equations cannot explain
second-order statistics of turbulent wall-bounded flows.

3. Colored-in-time stochastic input that excites all degrees of freedom can completely can-
cel the original dynamics and yield a model that does not generalize well.

4. A suitably regularized solution to covariance completion problems can ensure that im-
portant features of spatiotemporal responses are captured via low-complexity stochastic
dynamical models.

5. The effect of colored-in-time stochastic input can be equivalently interpreted as a struc-
tural perturbation of the linearized dynamical generator, which can be used to identify
important state-feedback interactions that are lost through linearization.

6. Combining tools and ideas from systems theory and convex optimization can pave the
way for the systematic development of theory and techniques that combine data-driven
with physics-based modeling.

FUTURE ISSUES

1. Modeling of flow disturbances plays an important role in obtaining well-posed esti-
mation gains (92, 93). Stochastic dynamical models that are obtained via covariance
completion fit nicely into a Kalman filtering framework for turbulent flows and have the
potential to open the door for a successful output-feedback design at higher Reynolds
numbers than current feedback (8, 94, 95) and sensor-free (87, 96–99) strategies allow.
The efficacy of such an approach and its interplay with real-time estimation and feedback
control are yet to be examined.
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2. Turbulence modeling for complex fluids and flows in complex geometries (100–107)
requires dealing with a large number of degrees of freedom. Since improving upon cur-
rent algorithms that require O(n3) computations for a model with n states is challenging,
a possible direction is to examine physical approximations (108–111) and model reduc-
tion techniques (13, 15–17).

3. The regularization terms in Problems 1 and 2 are used as convex surrogates for rank
and cardinality. For problems with structural constraints, such surrogates do not enjoy
standard probabilistic guarantees (112), and the utility of more refined approximation
techniques—e.g.,manifold optimization (113), low-rank-inducing norms (114, 115), and
nonconvexmatrix completion (116–118)—in low-complexity stochastic dynamical mod-
eling remains largely unexplored.

4. Higher-order turbulent flow statistics often play an important role in characterizing
quantities of interest in engineering applications; e.g., fourth-order statistics are relevant
in acoustic source modeling for high-speed jets (119, 120). The importance of matching
higher-order statistics calls for a generalized theory for the stochastic realization of state
statistics that are currently limited to second-order correlations.

5. The output of the stochastically forced linear model can be used to drive the mean flow
equations in time-dependent stochastic simulations. It is important to identify conditions
under which the feedback interconnection in Figure 1b converges.
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97. Jovanović MR. 2008. Turbulence suppression in channel flows by small amplitude transverse wall oscil-
lations. Phys. Fluids 20:014101
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