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Abstract

This review surveys the current state of the art in the development of un-
manned aerial vehicles, focusing on algorithms for quadrotors. Tremendous
progress has been made across both industry and academia, and full vehicle
autonomy is now well within reach. We begin by presenting recent successes
in control, estimation, and trajectory planning that have enabled agile, high-
speed flight using low-cost onboard sensors. We then examine new research
trends in learning and multirobot systems and conclude with a discussion of
open challenges and directions for future research.
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1. INTRODUCTION

In the past decade, the field of aerial robotics has exploded. Tremendous progress has been made in
the design and autonomy of flight systems, which can roughly be categorized as either man-made or
bio-inspired. In the former class, fixed-pitch rotorcrafts have become particularly popular for their
mechanical simplicity, but several more complex vehicles have also been developed. For example,
decoupled rotational and translational degrees of freedom can be achieved with variable-pitch (1,
2) or omnidirectional (3) rotor configurations. Passive vehicle stability—the ability to fly stably
without active attitude control—can be accomplished with the addition of appropriately designed
cages (4), lowering vehicles’ energy consumption and increasing their robustness to failures of
inertial sensors.

Nonetheless, these mechanical designs are ultimately structurally rigid. Winged animals, by
contrast, can dynamically change their body shapes to switch between flapping and gliding flight
and to perform complex maneuvers such as perching and diving. As a result, designing bio-
inspired ornithopters has also become an active research area. Characterizing the complex, un-
steady aerodynamic flows around the wings of these vehicles, particularly during flapping flight, is
a challenging task. Such flows are especially difficult to characterize at insect scales, where robot
components and force variations can be on the orders of millimeters and micronewtons, respec-
tively. Nonetheless, several at-scale experiments studying fluid flow around small wings (5) and
characterizing various wing parameters (6) have quantified some of the effects, and these results
have enabled the successful development of insect-scale flying robots (7, 8).

For avian-scale vehicles, emulating animals’ complex wing structures presents an additional
challenge. For example, bats’ wings have more than 40 degrees of freedom. As mechanically
recreating each degree is impractical, principal component analysis has been used to identify
lower-dimensional vector spaces in which flapping actions can be represented and guide the design
of systems with fewer degrees of freedom (9). This technique has been used to design the Bat Bot
(B2) and to automate flying and diving maneuvers (10). Other platforms at similar scales have
emulated hummingbirds (11), ravens (12), and flies (13).

Fixed-wing aircrafts are mechanically simpler than ornithopters but are still able to glide and
execute birdlike maneuvers, such as perching (14). Compared with ornithopters, they are eas-
ier to model and are typically better able to carry onboard sensors, allowing for the successful
development of planning (15), perception (16), and formation control (17) algorithms.

Multirotor aircrafts, particularly quadrotors, have been the most capable vehicles in terms of
accessibility, maneuverability, capacity for onboard sensors, and applicability to a breadth of ap-
plications. Great research progress has been made across multiple areas, including the control
of agile maneuvers; planning and perception in unknown, unstructured environments; and col-
laboration in multiagent teams, sparking a surge of industry investment. The first half of 2017
saw $216 million in venture capital funding for drone companies (18), spanning such applications
as infrastructure inspection, rapid package delivery, precision agriculture, disaster response, and
choreographed performances.

Most significantly, there has been a major increase in the availability of off-the-shelf quadro-
tor platforms. Figure 1 illustrates several popular platforms and their relative sizes with respect
to large-scale industrial unmanned aerial vehicles. These commercial platforms are available in
a range of sizes, allowing for different sensor and computation payloads and operation in dif-
ferent indoor and outdoor environments, but they are all orders of magnitude smaller, lighter,
and more agile than industrial vehicles, which in turn has allowed researchers to develop novel
algorithms for autonomy. This progress motivated the 2015 launch of the Defense Advanced Re-
search Projects Agency (DARPA) Fast Lightweight Autonomy program, which sponsors research
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Figure 1
Examples of commercial and government unmanned aerial vehicle platforms.

teams to work toward fully autonomous quadrotor navigation at high speeds using only onboard
resources.

The research efforts of the government, industry, and academia have positioned quadrotors
to become one of the first flying platforms with full end-to-end autonomy between high-level
task specification and motor actuation. This review discusses research progress toward this vision,
focusing on advancements in the past five years (for a survey of earlier work, see 19). The first part
of the review focuses on high-impact successes in model-based techniques for single-quadrotor
systems: Section 2 describes mathematical modeling and control algorithms; Section 3 provides
an overview of methods for state estimation and perception; Section 4 presents computationally
efficient, real-time planning techniques; and Section 5 discusses applications of these techniques
to agile, high-speed flight. The remainder of the review discusses new research frontiers: Sec-
tion 6 presents methods for learning and adaptation, and Section 7 discusses the incorporation of
quadrotors into multiagent teams. Finally, Section 8 concludes with a discussion of open problems
and future challenges.

2. DYNAMICS AND CONTROL

The quadrotor (illustrated in Figure 2) is a vehicle with four propellers, each rigidly mounted at a
distance L from the center of mass. The front and back rotors rotate anticlockwise, while the left
and right rotors rotate clockwise. Modulating the rotor thrusts allows the vehicle to roll, pitch,
and yaw, which in turn induces translational motion.

Let I = {e1, e2, e3} be the inertial world frame. Let C = {c1, c2, c3} be an intermediate frame
after yaw rotation ψ and B = {b1, b2, b3} be a body frame fixed to the vehicle. Let xQ ∈ R

3

represent the position of the vehicle’s center of mass relative to I, R ∈ SO(3) represent the body-
to world-frame rotation matrix (the body-frame components of vector Bv can be translated into
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Figure 2
Mathematical model of a quadrotor. The front propeller is on the right.

world-frame components Iv, with Iv = RBv), and� ∈ R
3 represent the angular velocity expressed

in B. The system’s dynamics evolve on SE(3), with state

x =
[

x�
Q ẋ�

Q R ��
]�

, 1.

and the input is

u = [
f M�]� ∈ R

4. 2.

The thrust magnitude, f , acts in the b3 direction, and the moment, M, acts about the body-frame
axes. These result from individual thrust forces from each rotor, fi :

[
f

M

]
=

⎡
⎢⎢⎢⎣

1 1 1 1
0 L 0 −L

−L 0 L 0
−μ μ −μ μ

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

f1

f2

f3

f4

⎤
⎥⎥⎥⎦, 3.

where μ is a constant representing the ratio of drag to lift force produced by each propeller.
Let mQ represent the vehicle’s mass, J represent its inertia tensor in B, and g represent the

positive gravity constant. The quadrotor’s equations of motion can then be derived:

ẋ =

⎡
⎢⎢⎢⎣

ẋQ
f

mQ
Re3 − ge3

R�̂
J−1 (M −�× J�)

⎤
⎥⎥⎥⎦. 4.

The hat operator, ·̂, maps a vector to a skew-symmetric matrix such that x̂y = x × y.
During autonomous operation, the quadrotor must track desired trajectories xdes(t). A sig-

nificant control challenge is handling the quadrotor’s nonlinear and underactuated dynamics.
Fortunately, it can be shown that the dynamics are differentially flat; that is, there exists a set
of flat outputs, x f , such that the model’s states and inputs can be written as functions of x f and
its higher derivatives (20). Mellinger & Kumar (21) showed that there exists a diffeomorphism
between Equations 1 and 2 and the vector:[

x�
Q ẋ�

Q ẍ�
Q

...
x�

Q
....
x �

Q ψ ψ̇ ψ̈
]�
. 5.

Thus, the flat outputs are

x f =
[

x�
Q ψ

]�
∈ R

4. 6.
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Figure 3
Architecture of a hierarchical quadrotor controller.

This is a powerful observation. When planning trajectories in the full state space x, Equation 4
must be included as nonlinear constraints. However, any sufficiently continuous trajectories in x f

can always be associated with a full state trajectory that satisfies Equation 4.
This facilitates the design of a hierarchical controller, illustrated in Figure 3. The super-

script “des” references desired values calculated by a trajectory planner, while the superscript “c”
(for “commanded”) references intermediate values calculated by the controller. The outermost
position controller is typically a traditional proportional–derivative controller:

F = −kx(xQ − xdes
Q ) − kv(ẋQ − ẋdes

Q ) + mQ(ẍdes
Q + ge3), 7.

where kx and kv are positive gain matrices. From this,

f = F · Re3. 8.

To derive Rc, the third body-frame vector can be defined as

bc
3 = F

‖F‖2
, 9.

and a desired direction for the intermediate frame axis, cc
1, can be defined with

cc
1 = [cos(ψdes) sin(ψdes) 0]

�
. 10.

Assuming R is a z–x–y rotation matrix, axes b1 and c1 are coplanar, and the remaining body-frame
vectors are

bc
2 = bc

3 × cc
1

‖bc
3 × cc

1‖2
, 11.

bc
1 = bc

2 × bc
3. 12.

Note that xb c
3 × cc

1 �= 0; that is, the thrust vector cannot be parallel to c1. The desired orientation
is then

Rc = [
bc

1 bc
2 bc

3

]
. 13.

From here, an attitude controller commands an input moment, M, to track Rc, and an in-
nermost controller calculates individual motor commands. In practice, each inner loop must run
significantly faster than its previous layer. Thus, the position control loop can optionally be exe-
cuted on an external base station, but the speeds demanded of the attitude and motor controllers
require them to run on onboard processors.

Proposed attitude controllers have commonly taken the form

M = −kReR(R, Rc) − k�e�(�,�c) + Mff , 14.

where kR and k� are positive gain matrices, eR and e� are error functions, and Mff is a feedforward
moment. In earlier works, the dynamics were linearized about the hover equilibrium and the
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attitude controller was implemented in Euler angles (22). This linearization performs well for
roll and pitch angles up to approximately 30◦, corresponding to linear velocities of approximately
1.5–2 m/s; however, nonlinear controllers have largely eliminated these limitations.

For example, in a proposed geometric controller (23),

eR(R, Rc ) = 1
2

((Rc)�R − R�Rc)∨, 15.

where ∨ is the map from a skew-symmetric matrix to its vector representation. This defines the at-
titude error directly on the manifold SO(3) (i.e., Equation 15 returns the axis-angle representation
of the rotation from R to Rc). Similarly, the angular velocity error is

e�(�,�c) = �− R�Rc�c, 16.

where

�c = (Rc)� Ṙc. 17.

Ṙc can be found by differentiating Equation 13 and substituting values calculated from differential
flatness equations. Finally, the feedforward moment is defined as

Mff = �× J�− J
(
�× R�Rc�c − R�Rc�̇c) , 18.

where �̇c can again be found through differential flatness. By expressing the control equations in a
coordinate-free, singularity-free manner, this controller can guarantee almost global exponential
attractiveness (23), and in practice, it can control the quadrotor at almost inverted orientations (24).
Yu et al. (25) presented a similar formulation but decomposed the attitude controller to track the
fast-response roll and pitch angles before the slow-response yaw angle, and Brescianini et al. (26)
presented a quaternion-based controller that also has singularity-free, globally asymptotic stability
properties.

The design of the innermost motor controller is also crucial. This controller typically involves
two steps. In the first step, the calculated inputs f and M must be translated into individual thrusts
fi . Assuming that fi can be achieved almost instantaneously, Equation 3 can simply be inverted.
This assumption has proven practical for slow-moving vehicles; for high-speed flight, however,
incorporating a first-order dynamic model for fi can noticeably improve performance (27). Fur-
thermore, in many works, when the calculated fi exceeds a set maximum, the thrust is simply
clipped to fi = fmax. However, this can result in unpredictable tracking errors. Thrust-mapping
methods that deliberately reassign fi according to set criteria (e.g., prioritizing achieving the de-
sired roll and pitch over yaw) can result in more robust behavior (27, 28). Faessler et al. (27) further
showed that modeling μ as a variable dependent on fi also improves performance. Alternatively,
nonlinear model predictive control schemes can be used to directly obtain outputs fi to track
the desired Rc and �c (29). Here, an optimal control problem is solved in a receding-horizon
fashion to yield the motor thrusts at each time step. This formulation has the advantage that
thrust and angular velocity limits can be directly incorporated into the optimization, but it is more
computationally expensive.

In the second step, motor commands ωr ,i must be computed from forces fi . A basic model
relates

fi = kFωr ,i , 19.

where kF is a motor constant found through calibration. Recently, however, researchers have
begun to adopt a polynomial model (27, 30):

fi = k2ω
2
r ,i + k1ωr ,i + k0. 20.
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Bangura & Mahony (31) further proposed a hierarchical motor controller that explicitly models
aerodynamic effects.

A final challenge is maintaining safety and stability in the presence of unexpected disturbances.
Small aerodynamic effects that are usually rejected as unmodeled disturbances become significant
near surfaces (e.g., the ground or obstacle walls) and other vehicles (32). In these cases, the effects
must be explicitly modeled through techniques such as experimental identification of drag con-
stants (33) or numerical calculation using a computational fluid dynamics solver (34). Alternatively,
Yao et al. (35) predicted future disturbances from past observations in flight, and Bartholomew
et al. (36) predicted aerodynamic effects around obstacles using observed depth images and prior
training data. For safety in the presence of mechanical failures, Mueller & D’Andrea (37) experi-
mentally demonstrated controllers that enable stable flight even following the loss of one or two
propellers.

These sophisticated models and nonlinear control strategies have enabled quadrotors to per-
form maneuvers that fully utilize the systems’ entire range of motion, such as perching on vertical
surfaces (38), a feat that would not be feasible with previous linearized controllers.

3. STATE ESTIMATION AND PERCEPTION

Early implementations of aggressive maneuvers with nonlinear controllers were demonstrated
solely in motion-capture spaces. Enabling robots to execute such motions in real-world environ-
ments additionally requires accurate and robust state estimators, and in cluttered environments,
the robots must also construct maps of their surroundings. These tasks are particularly challenging
for aerial robots. Unlike ground vehicles, which are constrained to a plane, quadrotors operate in
a full three-dimensional workspace. To achieve high accelerations, vehicles need high thrust-to-
weight ratios, and to guarantee safe stopping from high speeds, they need large perception ranges.
Their maximum velocities are therefore limited by the weight, range, and accuracy of their sen-
sors and the computational speed of their perception and estimation algorithms. Unfortunately,
information-rich, three-dimensional sensors have relatively limited fields of view, as in the case of
RGB-D (red, green, and blue plus depth) sensors, or are excessively heavy, as in the case of 3-D
lidars.

In this light, the combination of one or more cameras with an inertial measurement unit
(IMU) has become an attractive low-cost, lightweight, low-power sensor suite for quadrotors.
These two sensors offer several complementary capabilities. Camera images are typically used
to extract position and velocity information, while IMU measurements report rotational velocity
and linear acceleration; image processing offers accurate measurements at slower rates, while IMU
readings provide high-frequency measurements; and vision-based tracking is more precise at lower
velocities, while inertial measurements have lower uncertainties at high velocities.

The development of visual odometry and visual–inertial odometry methods has progressed
in both the computer vision and robotics communities. In this section, we focus on algorithms
validated on quadrotor platforms. We refer readers to References 39 and 40 for a tutorial on visual
odometry, References 41 and 42 for an introduction to visual–inertial odometry, Reference 43 for a
comparison of current open-source visual–inertial odometry implementations, and References 44
and 45 for details on related algorithms.

A formal observability analysis shows that, under proper vehicle motions, a single camera and
IMU are sufficient to estimate a vehicle’s position, velocity, and roll and pitch orientation (46).
Many works have achieved accurate estimation with this minimal sensor suite. Feature-based
visual odometry estimates position by tracking chosen features between image frames; Troiani
et al. (47) showed that pose estimates can be derived from a single camera frame viewing only three
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features and that outlier rejection can be achieved by viewing only one or two features. However,
feature tracking becomes difficult in the presence of motion blur and in textureless environments,
causing other researchers to turn to direct methods that operate on image pixel intensities. Such
techniques are typically computationally expensive, but advances in processor capabilities have
allowed successful onboard implementations of more robust direct visual odometry methods (48).
Hybrid algorithms that leverage the advantages of both approaches have also been successful (49,
50).

Vision data can be fused with IMU measurements using graph-based (51–54) or filtering-based
approaches (55). For Gaussian filters, the quadrotor’s non-Euclidean configuration space and non-
linear dynamics must be handled carefully. Goodarzi & Li (56) showed that tracking performance
in an extended Kalman filter can be improved by defining variations on the appropriate config-
uration manifold during linearization. An alternative to the Taylor series approximation of the
extended Kalman filter is the unscented Kalman filter (57), which uses the unscented transform
to approximate the nonlinear transformation of the belief state between updates. This transform
and the unscented Kalman filter itself are generalizable to Riemannian manifolds (58) and Lie
groups (59). Loianno et al. (60) successfully used an unscented Kalman filter in the configuration
space SE(3) for accurate, singularity-free state estimation. In particular, they demonstrated that,
unlike Euler angle–based parameterizations, this formulation on the manifold is robust to extreme
motions, such as a 360◦ rotation about the camera axis.

A major drawback of monocular camera configurations, however, is the need for an initialization
phase before key parameters (such as scale) can be reliably estimated. This becomes particularly
problematic when visual tracking is lost midflight. Faessler et al. (61) proposed a fallback method
with which a quadrotor that has lost tracking can still self-stabilize and reinitialize its estimator.
B-splines have been proposed for robust initialization at high altitudes (62). Alternatively, Ref-
erences 52 and 63–65 showed that integrating the terms of the IMU propagation equations in
the appropriate frame (often referred to as IMU preintegration) allows the initialization phase to
be eliminated. Stereo (66) and other multicamera configurations (67), which do not require an
explicit initialization step, have also been proposed.

These state estimation advances represent significant progress toward maneuvering in obstacle-
free, GPS-denied environments. However, to navigate cluttered spaces, robots must further main-
tain, update, and orient themselves with respect to a map. Recent work has shown that obstacle
detection for reactive collision avoidance is possible at high speeds on a CPU (68) running on-
board a fixed-wing aircraft traveling at up to 14 m/s. However, maintaining a complete map for
longer-range planning is computationally expensive, and as a result, most mapping algorithms
have been executed using either offboard resources (50) or onboard specialized hardware, such
as GPUs (53) or field-programmable gate arrays (69). These mapping algorithms can be com-
bined with trajectory-generation methods to enable autonomous navigation through cluttered
environments (49, 53, 68).

Several challenges remain. While autonomous navigation to operator-assigned goals has been
successful, autonomous exploration, in which robots intelligently determine new goals to navi-
gate to, has not been achieved. In addition, knowledge of the relative transformations between
mounted cameras and inertial sensors is often required, motivating the development of self-
calibration methods (63, 70–72). Furthermore, the performance of estimation algorithms depends
heavily on robots’ motions. For example, for monocular sensor suites, hovering and constant-
velocity flight do not allow observation of metric scale (46). Thus, recent works have proposed
trajectory-generation algorithms that incorporate measures of system observability (73, 74). As
another example, robots must often keep obstacles in their sensors’ fields of view (75). This
has led to the emergence of active perception, or active vision, where perception constraints
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are explicitly considered in planning strategies. Section 4 further discusses trajectory-generation
techniques.

4. TRAJECTORY GENERATION

The trajectory-generation problem can be stated as follows: Find a trajectory xdes(t) that brings
the vehicle from its current state, x0, to a desired goal state, x1. This problem poses three main
challenges. First, the trajectory must be dynamically feasible (i.e., there must be a solution to
Equation 4) and satisfy motor and actuator constraints (i.e., the upper and lower thrust bounds
and maximum angular velocity). Second, the trajectory-generation method must be real time, that
is, able to be replan trajectories in milliseconds to respond to events. Finally, the trajectory must
be safe and not lead to collisions with obstacles in the environment.

Traditional search (e.g., A* or D* search) and sampling-based planners (e.g., rapidly exploring
random trees) have generally performed poorly for quadrotors, while optimization-based ap-
proaches have proven to be well suited to handling the vehicle’s complex, nonlinear constraints
and high-dimensional state space. The trajectory-generation problem can be formulated as an
optimal control problem (76):

min
u∈Ufes

∫ T

0
L(t, x(t), u(t))dt + K(T , x1)

subject to Dynamic constraints: ẋ = f (x(t), u(t)),

State constraints: x(t) ∈ Xfes ∀t ∈ [0, T],

Initial constraints: x(0) = x0,

Final constraints: x(T) = x1. 21.

f (x, u) is given by Equation 4. Xfes represents the space of feasible states where the robot is not
in collision with an obstacle or in violation of the angular velocity maximum. Ufes represents the
space of feasible thrust inputs. The trajectory end time, T , can be fixed or free. Equation 21 is
not directly solvable, and the remainder of this article focuses on approximations and abstractions
that reformulate Equation 21 to facilitate real-time computation of solutions.

4.1. Computation of Dynamically Feasible Trajectories

To begin, assume an obstacle-free space. A common abstraction assumes a fast attitude con-
troller and models the system input as ũ = [

f (�c)�
]�. This abstracted system has states

x̃ = [
x�

Q ẋ�
Q R

]�. For agile flight, the goal is often to find time-optimal trajectories:

min
ũ∈Ũfes

∫ T

0
dt

subject to Dynamic constraints: ˙̃x = f (x̃(t), ũ(t)),

Initial constraints: x̃(0) = x̃0,

Final constraints: x̃(T) = x̃1. 22.

While the Hamilton–Jacobi–Bellman equation gives a partial differential equation for the glob-
ally optimal solution, it typically cannot be solved analytically. As a result, Pontryagin’s minimum
principle—a necessary (but not sufficient) condition for optimality posed as an ordinary differen-
tial equation—is often used instead. Using Roxin’s theorem, Hehn et al. (77) showed that, in the
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absence of obstacles, a unique solution to the minimum-principle conditions always exists between
two desired states. The optimal input trajectories can be found numerically with a switching-time
optimization technique. Unfortunately, executing this optimization for even a two-dimensional
dynamic model requires significant computation time (77) and is impractical for real-time
implementation.

In this light, Hehn & D’Andrea (78) proposed an approximation to decouple the translational
degrees of freedom. The dynamics in each dimension are approximated as simple third-order
systems with states s = [s ṡ s̈ ]� and inputs us , where s ∈ {x, y , z}. The problem in each dimension
becomes

min
us ≤umax, s

∫ T

0
dt

subject to Dynamic constraints: ṡ =

⎡
⎢⎣ 0 1 0

0 0 1
0 0 0

⎤
⎥⎦s +

⎡
⎢⎣ 0

0
1

⎤
⎥⎦us ,

State constraints: amin, s ≤ s̈ ≤ amax, s ,

Initial constraints: s(0) =
[

s 0 ṡ 0 fs (R0)
]�

,

Final constraints: s(T) = s1. 23.

The function fs (R0) maps the initial orientation to an initial acceleration in each dimension. Ac-
celeration and jerk constraints approximate the original thrust and angular velocity constraints,
respectively. Equation 23 is a linear, one-dimensional optimal control problem that can be solved
quickly. Hehn & D’Andrea (78) demonstrated that, for computing trajectories to rest (i.e., s1 = 0),
Equation 23 reduces the computation time to microseconds. This method can replan trajec-
tories at high frequencies and can even be used as a model predictive control–like position
controller.

Mueller et al. (79) further considered a modified cost functional with predefined end time T :

min
us

∫ T

0
u2

s dt. 24.

In the absence of state and input constraints, the differential equation posed by the minimum
principle can be solved analytically to yield a fifth-order polynomial, which can then be quickly
checked for conformity to state and input constraints. This analytical solution can be computed
and checked up to 20 times faster than Equation 23 can be solved.

Equation 24 can alternatively be interpreted as a calculus of variations problem. Recall that the
quadrotor’s differential flatness guarantees that sufficiently continuous trajectories for xQ(t) and
ψ(t) can be translated into a dynamically feasible state trajectory x(t). Thus, it is possible to optimize
the position and yaw trajectories without consideration of dynamic constraints (21). The original
x0 and x1 can be related to initial and final states for the set { dk1

dtk1
xQ , dk2

dtk2
ψ | k1 ∈ [0, 3], k2 ∈ [0, 1]}

through differential flatness. We can then construct the optimization problem:

min
xQ ,ψ

∫ T

0

(
‖x(n1)

Q ‖2
2 + ‖ψ (n2)‖2

)
dt

subject to

Initial constraints:
dk1

dtk
1

xQ(0) = dk1

dtk
1

x0
Q ∀k1 ∈ [0, 3],

dk2

dtk2
ψ(0) = dk2

dtk2
ψ0 ∀k2 ∈ [0, 1],

Final constraints:
dk1

dtk1
xQ(T) = dk1

dtk1
x1

Q ∀k1 ∈ [0, 3],
dk2

dtk2
ψ(T) = dk2

dtk2
ψ1 ∀k2 ∈ [0, 1]. 25.
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Equation 25 can be solved using variational calculus techniques. The Euler–Lagrange equations
give the following necessary conditions:

x(2n1)
Q = 0,ψ (2n2) = 0. 26.

Integrating Equation 26 shows that the optimal position and yaw trajectories are polynomials
of orders 2n1 − 1 and 2n2 − 1, respectively. Note that when n1 = 3, xQ becomes a fifth-order
polynomial, corroborating the analytical result for Equation 24. This substantiates the popular
choice of using polynomial trajectories for quadrotors.

Like Equation 24, Equation 25 does not explicitly incorporate input or state constraints. How-
ever, these constraints can be checked by calculating the relevant values from differential flatness
equations. If any constraints are violated, a coordinate change t′ = T ′t

T , where T ′ is a new trajec-
tory duration T ′ > T , will yield trajectories xQ(t′) and ψ(t′), which retain the same path but have
smaller higher-derivative values. The trajectory time T ′ can be iteratively varied until a suitable
solution is found.

Using differential flatness, the moment input, M, can be expressed as a function of x(4)
Q and

ψ̈ (21). Thus, minimum-snap trajectories (n1 = 4) are often chosen for xQ(t), and minimum-
acceleration trajectories (n2 = 2) are chosen for ψ(t). Conceptually, this approximates the cost
functional of Equation 24 by seeking to indirectly minimize the system input. Furthermore, the
minimum-snap and minimum-acceleration trajectories are of degrees 7 and 3, respectively, and
the number of specified boundary constraints allows their coefficients to be found analytically
with a simple matrix inversion. In practice, lower values of n1 and n2 also produce reasonable
trajectories. However, to ensure a continuous state trajectory x(t), xQ(t) should be at least four
times and ψ at least twice differentiable; this is fulfilled for any n1 ≥ 3 and n2 ≥ 2.

While single trajectory segments are sufficient for short, motion-primitive-like paths, they can-
not adequately span large spatial distances. To address this, many works use piecewise-polynomial
trajectories. In this formulation, xQ(t) is given by

xQ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑N
i=0 ci ,0Pi (t) t0 ≤ t ≤ t1∑N
i=0 ci ,1Pi (t) t1 < t ≤ t2

. . .∑N
i=0 ci ,m−1Pi (t) tm−1 < t ≤ tm

, 27.

where N is the polynomial degree, m is the number of segments, and Pi is any set of polynomial
basis functions (e.g., Legendre polynomials). Times t0, t1, . . . , tm are preselected break times. To
ensure sufficient differentiability, continuity constraints are added to Equation 25:

dk1

dtk1

(
N∑

i=0

ci , jPi (tj+1)

)
= dk1

dtk1

(
N∑

i=0

ci , j+1Pi (tj+1)

)
∀ j ∈ [1, m − 1], k1 ∈ [0, 3]. 28.

To solve this optimization problem, consider the following vector of coefficients:

c = [
c0,0 c1,0 c2,0 . . . cN ,m−1

]�
. 29.

The position term of the cost functional in Equation 25 is positive semidefinite and quadratic
with respect to c, while all constraints, including Equation 28, are linear with respect to c. The
trajectory optimization can be reformulated as

min
c

cT Qc

subject to Ac = b . 30.
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Equation 30 is a quadratic program with linear constraints, which can be solved analytically. Exact
constraints on the quadrotor’s position or higher derivatives can be placed instead of the continuity
constraints. An analogous process can solve for the yaw trajectory.

For large N and m, Equation 30 can become numerically unstable. This instability can be
mitigated by parameterizing trajectory segments in terms of a nondimensionalized time τ ∈
[0, 1] (80). Furthermore, Richter et al. (81) showed that the quadratic program becomes more
stable when reformulated using the polynomial’s position and higher-derivative values as decision
variables. Time allocation along the trajectory (i.e., choosing the break times) is also a crucial
design decision. If the break times are chosen poorly, then the optimal trajectory will display large
excursions between waypoints (80). Mellinger & Kumar (21) and Richter et al. (81) proposed
numerical methods for break-time optimization, but break-time optimization remains an open
challenge.

To summarize, trajectory-generation problems can be formulated to solve for the optimal
maneuver time and control inputs or optimal flat output trajectories. The latter formulation
results in a large gain in computational efficiency at the expense of time optimality, although
many works have shown that heuristically choosing trajectory times works well enough for practical
applications. We also note that, while optimal control formulations typically yield inputs f and
�c, a differential flatness formulation yields flat variable inputs to the position controller, allowing
trajectories to be replanned at a lower rate (1–10 Hz). Finally, Section 4.2 shows that Equation 25
allows for the incorporation of convex obstacle-avoidance constraints.

4.2. Convex Optimization for Safe Navigation in Cluttered Environments

Most successes in real-time planning among obstacles have introduced additional obstacle-
avoidance constraints to the quadratic-program formulation given in Equation 25. Note that
the quadrotor is symmetric about the b3 axis and that a change in ψ along a trajectory will not
induce new collisions with obstacles. Thus, for the remainder of this section, we assume without
lost of generality that ψ(t) is held constant.

Consider the navigation problem presented in Figure 4a, where the robot must navigate from
one point to another while avoiding multiple obstacles. Constraining a three-dimensional point
inside a convex polytope can be done with a set of linear inequality constraints (82). Leveraging this
observation, the method described by Landry et al. (83) first identifies a set of convex polytopes
inside of which the quadrotor is guaranteed to be safe (Figure 4b). A subset of overlapping
polytopes is then chosen using a mixed-integer second-order cone program as a flight corridor
(Figure 4c). Finally, a semidefinite program that restricts the trajectory to the inside of this corridor
can be solved to obtain the quadrotor trajectory.

a b c d

Figure 4
Formulation of the trajectory-generation problem as a quadratic program on an example problem. (a) Problem statement. The robot
must navigate from a starting point (black circle) to an end point (black star) while avoiding multiple obstacles ( gray circles). (b) Convex
decomposition of the free space into polytopes inside of which the quadrotor will be safe (colored regions). (c) Identification of a subset of
overlapping polytopes that create a flight corridor between the start and end points. (d ) Generation of the specific trajectory within the
chosen flight corridor (black line).
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While this method guarantees safety, it is not fast enough for real-time computation, even
using commercial software. Many works have thus focused on speeding up the steps for free-
space decomposition and flight-corridor identification. A breakthrough idea was to use search-
or sampling-based planners to first find a nominal path from the start to the goal. Rather than
decomposing the entire free space, this method enables overlapping convex polytopes to be quickly
found in the immediate vicinity of the path (84, 85). Chen et al. (86) showed that an A* planner can
be used instead of an optimization problem to identify a flight corridor through octo-tree cells.
Similarly, Gao & Shen (87) used a sampling-based search algorithm to identify a flight corridor
through cells of a k-D tree. Many works also define time allocation (84) or polytope adjustment (88)
heuristics to further improve the trajectory.

These techniques allow trajectories to be replanned in fractions of a second in a receding-
horizon manner as the maps are updated. It is particularly important for algorithms to account for
failures to find quadratic-program solutions, as a failure to replan when the quadrotor is already
operating at a high velocity can lead to a collision. To address this, Watterson & Kumar (89)
proposed a dual-horizon planning scheme. In a short-range planning policy, two trajectories are
planned at each replanning iteration. The first trajectory makes incremental progress toward the
desired goal, while the second safely brings the robot to a stop from its current state. Executing
the latter trajectory in emergencies allows the robot to return to hover and replan using a more
exhaustive long-range planning policy. This paradigm is safe and complete and has enabled many
successes in high-speed quadrotor flight (84, 85, 89).

5. APPLICATIONS FOR AGILE, HIGH-SPEED FLIGHT

In this section, we review representative applications demonstrating the impact of the research
presented in Sections 2–4. Many works have successfully demonstrated autonomous navigation
in unknown workspaces using completely onboard mapping, estimation, planning, and control
pipelines (53, 66, 85, 86, 90). Notably, Ling et al. (66) demonstrated flight with translational
velocities of up to 4.2 m/s and rotational velocities of up to 245◦/s using a stereo camera and
IMU in an obstacle-free environment. Lin et al. (53) presented a quadrotor equipped with a
monocular camera and IMU that can reach average speeds of 1.1 m/s and top speeds of 2.2 m/s
in cluttered indoor and outdoor spaces. Schmid et al. (90) demonstrated similar capabilities with
a stereo camera configuration. The University of Pennsylvania’s platform for the DARPA Fast
Lightweight Autonomy challenge (49, 85), which uses a stereo camera and IMU for estimation
and a laser sensor for mapping, can reach speeds of 7 m/s. Figure 5 illustrates identified safe
trajectories from a single start position to multiple goals throughout a space.

In these methods, quadrotors encounter mainly naturally occurring, vertically oriented obsta-
cles (e.g., walls). Falanga et al. (75) and Loianno et al. (91) further demonstrated the ability to
detect, plan, and fly through a narrow window oriented at various pitch and roll angles using a
single camera and IMU as primary sensors. This task requires robots to reach angular velocities
of 400◦/s and recover from losses of state estimation and large attitude angles (up to 45–90◦).

Following these successes, many researchers have been interested in enabling quadrotors to
move beyond navigation to further interact with their environments. Thomas et al. (38) demon-
strated perching on surfaces inclined at up to 90◦, where a nonlinear controller (23) stably controls
the quadrotor even at almost vertical orientations. Other maneuvers have included landing (92),
hanging from branch-like structures (93), and object catching (94). Aerial manipulation has been
an area of particular interest. Thomas et al. (95) proposed a geometric controller and trajectory-
generation algorithm for high-speed avian-inspired grasping of stationary objects. In these ma-
neuvers, a quadrotor grabs an object at 3 m/s in a single swooping motion (Figure 6a). Similarly,
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ba

Figure 5
Optimized safe trajectories through (a) an outdoor and (b) an indoor environment. Adapted from Reference 85 with permission.

quadrotors can manipulate payloads via a cable-suspension mechanism (Figure 6b). In contrast
to traditional strategies that aim to eliminate payload motions, a more optimal strategy deliber-
ately plans safe payload swings for energy optimality. An almost globally exponentially attractive
controller allows control of the payload position even at large angles from the vertical configu-
ration (96). Trajectory generation for the system’s flat variables—the payload position and robot
yaw—can be formulated as a mixed-integer quadratic program (97). Notably, the optimization
is able to generate trajectories that would not be possible if the system were constrained to be
swing free, such as swinging a payload through a narrow window with a height shorter than the
cable length or performing pickup and release maneuvers where the vehicle is not directly above
the payload. An alternate formulation without differential flatness yields a nonlinear optimization
problem (98). In these works, however, trajectories are planned using global information about
obstacle locations and executed using motion-capture feedback. The implementation of fully

ba

Figure 6
Aerial manipulation via (a) an attached gripper (e.g., 95) and (b) a cable-suspension mechanism (e.g., 97).
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onboard perception, planning, and control for maneuvers of this increased level of complexity
remains an active research area.

6. LEARNING

Implementing the model-based algorithms described above presents several challenges. First,
algorithms often involve many parameters, from control gains to noise covariance matrices to
trajectory break times. Tuning these variables is time consuming, and it is practically impossible
for humans to find optimal parameters. Second, models are idealized approximations, and many
significant effects, such as drag forces and wind disturbances, are often omitted or cannot be
accurately modeled.

As a result, many works have proposed learning and adaptation methods. For parameter turn-
ing, a well-posed Bayesian optimization problem can be used to find locally optimal controller
gains (99) with a relatively small number of iterations. To account for modeling inaccuracies, iter-
ative learning control (ILC) can refine the reference or input signals of a desired maneuver based
on data from previous executions. This mimics the way that humans refine their skills through
practice. Given planned trajectory inputs u0 and assuming that unmodeled dynamics are a linear
additive term to the state equation d , each ILC iteration can be decomposed into two steps: distur-
bance estimation (where a Kalman filter finds the current estimate of the disturbance, d̂k) and input
update (where an improved quadrotor input, uk+1, is found). The input can be abstracted at any
level, from robot thrust and angular velocities (100) to the trajectory’s position commands (101,
102). Experiments show that even a small number of iterations (on the order of 10–20) is enough
to characterize repeatable disturbances and improve tracking performance.

A major drawback of ILC is that the controller is retrained for each desired maneuver. Sev-
eral efforts have therefore been made to generalize learned knowledge by executing high-speed
trajectories after learning at slower speeds (102) or navigating through arbitrary obstacle courses
after learning from a single configuration (103). Robots can also potentially use training data gen-
erated by other identical agents (104). However, this is more difficult in practice, as vehicles are
never completely identical, and overestimating robots’ similarities when sharing training data can
counterproductively degrade performance (105).

Alternatively, some works have proposed eliminating explicit dynamic models altogether. For
example, rather than imposing a linear structure on the disturbance term, as in ILC, a neural
network can be trained to directly map from observed tracking performance to a modified de-
sired trajectory (106). This idea can be applied to other modules as well. Instead of a traditional
proportional–integral–derivative (PID) control design, a network can map from a robot’s state
to motor commands (107). More ambitiously, some works have mapped directly from camera
inputs to motor commands (108–110) and demonstrated navigation through indoor hallways and
forests. These results suggest that robots could potentially learn general, end-to-end policies for
autonomy without relying on task- or application-specific modeling techniques.

However, learning end-to-end policies is extremely difficult. Model-free methods require
many more training iterations (on the order of thousands) before reasonable performance can be
achieved, and many iterations yield inputs that would lead to vehicle crashes. As a result, training
is typically done completely or partially on recorded data from expert-piloted flights (108, 110) or
in simulated environments (109). Training onboard real vehicles is complicated by the fact that
quadrotors are inherently unstable, and a characterization of the set of safe inputs or a fallback
model-based controller is required to avoid damaging the vehicle. As a result, many researchers
are studying methods to use dynamic models to guide learning algorithms (111). These types
of end-to-end learning approaches have been able to achieve impressive results in vehicle
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stabilization from aggressive throws (107), navigation through indoor environments (109), and
reactive collision avoidance through forests (108, 110) and are an exciting new research frontier.

7. MULTIROBOT SYSTEMS

The successes in single-robot autonomy have led to growing interest in the development of co-
operative multirobot systems. To this end, several academic test beds have been constructed
from either custom-built vehicles (112) or commercial platforms, such as the AscTec Humming-
bird (113) and the Bitcraze Crazyflie (114). Currently, the largest academic test bed consists of
49 Crazyflie robots (114), and the largest industry system consists of 500 Intel Shooting Star
drones (115).

While research on multirobot planning dates back to the 1980s, much progress is still needed
to bridge the gap between the planning and quadrotor communities. The literature on multirobot
planning traditionally models robots with first-order kinematic models and allows trajectories with
instantaneous velocity changes. Many methods further discretize the workspace into graph-based
representations and return paths with arbitrarily sharp turns between vertices. Such trajectories are
not dynamically feasible for quadrotors, and extending existing multirobot planning algorithms
to high-order, high-dimensional, underactuated systems is nontrivial.

In some applications, robots must travel in formation to selected goal positions. Early works
incorporated interrobot distance constraints into a mixed-integer quadratic program for trajectory
generation (80). This approach allows for the simultaneous optimization of the team’s formation
and individual robot trajectories. Unfortunately, because this method concatenates all robots’
trajectory coefficients into a single decision vector, it is impractical for large teams (more than
20 robots). This problem can be made more computationally tractable by requiring the team to
select from a set of predefined formations (116).

In other instances, each vehicle must independently navigate to a desired goal position. In
unlabeled problems, robots are considered identical; each goal in a set must be reached by some
robot, but it does not matter which one. This abstraction can be used in surveillance tasks, where
robots must distribute themselves among given locations from which to gather information (117,
118). Here, the task-allocation and trajectory-generation problems must be simultaneously solved.
Paradoxically, the ability to assign goals reduces the problem’s computational complexity, and a
cleverly chosen cost function for goal assignment can directly guarantee trajectory safety (119, 120).
In labeled problems, by contrast, robots must visit predefined, noninterchangeable goal positions.
This collision-avoidance problem can be solved with reactive approaches (121) or optimization-
based methods (122, 123). Recent work has further considered the case in which each quadrotor is
carrying a suspended payload and must safely navigate through a shared workspace for a delivery
task (124).

Many open questions remain in this area. Many planning works assume the existence of a central
base station with global information, limiting the teams’ range of operation and presenting a single
point of failure. It is much more beneficial to adopt a decentralized architecture, where robots
require only communication with (or sensing of ) their most immediate neighbors. Decentralized
methods have been successful for small teams of robots operating at low speeds (121, 125); however,
a safe, complete, scalable method for high-speed flight has not yet been found.

Modules other than trajectory generation still need to be developed for multirobot scenarios.
Higher-level planning methods are needed to derive individual robot tasks from team-level task
specifications. Perception modules must be able to accurately sense the states of other moving
vehicles. In some scenarios, robots might even become physically coupled, and as a result, they
require novel control schemes. For example, Oung & D’Andrea (126) described a distributed
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flight array in which individual single-rotor hexagonal modules can interconnect to create arbi-
trarily large multirotor vehicles. Ritz & D’Andrea (127) and Sreenath & Kumar (128) addressed
cooperative carrying of suspended payloads. These systems are significantly more complex than
the first- or second-order models typically assumed in multirobot planning and pose challenging
new research questions.

8. CONCLUSIONS

There have been many tremendous successes in the development of autonomous quadrotors.
Nonlinear controllers have enabled precise control of maneuvers that exploit the vehicle’s full
range of motion. Computationally efficient computer vision and filtering techniques have allowed
onboard perception and state estimation with low-cost, lightweight sensors. And techniques for
approximating the system’s dynamics and geometrically representing the environment have al-
lowed on-the-fly trajectory planning.

However, many compelling research avenues remain. Robots are often still dependent on
humans to provide task specifications, such as desired goal positions, and further work needs
to be done to realize autonomy from high-level task commands (such as “monitor this area”
or “deliver these packages”). In the multirobot domain, estimation, perception, and real-time
planning schemes must be extended to account for teammates operating in a shared workspace.

There are also many challenges in developing vehicles that can quickly adapt to complex,
changing environments. Currently, learning algorithms such as ILC that converge within a few
iterations improve only a limited aspect of the vehicle’s behavior (e.g., reducing the tracking error
for a specific trajectory). End-to-end solutions that offer more generalized capabilities are often
difficult to train, tune, and characterize. In particular, while algorithms for image or text process-
ing can easily be trained on large quantities of samples given enough computational resources,
algorithms for quadrotors must be trained in a way that guarantees the stability and safety of the
physical system. This typically requires a nominal model of the system for simulation-based train-
ing or a characterization of unsafe system inputs. The best way to combine traditional model-based
methods with learning techniques in order to train robots to operate robustly across a breadth
of real-world environments (e.g., in various daylight and weather conditions) remains an open
problem.

Finally, quadrotor platforms used in research often incorporate expensive sensors and proces-
sors and can cost on the order of tens of thousands of dollars. Bringing the same level of agility
and autonomy to vehicles with consumer-grade electronics is difficult. Fortunately, the rapid de-
velopment of sensor-rich and computationally powerful communication devices has opened up
the potential for plug-and-play interfaces between smartphones, such as the Google Tango (129)
and the Samsung Galaxy S5 (130), and off-the-shelf quadrotor frames. This would allow the de-
velopment of algorithms on standardized sensor suites that are easily accessible to consumers. A
related goal is to develop small yet capable quadrotor systems. Smaller vehicles have the potential
to be more agile and safer for use in close proximity to humans, but they also have lower payload
capacities for sensing and computation resources. Several works have proposed designs for small
vehicles (131) and rapid, repeatable fabrication methods for their production (132); however, these
prototypes rely on offboard resources, and many challenges remain before platforms that are small,
lightweight, and affordable can be produced.

We believe that continued research in these areas will lead to the development of fully autono-
mous, intelligent quadrotor systems. This will in turn affect a breadth of industries, including
manufacturing and construction, entertainment, inspection and surveillance, and precision agri-
culture, and will undoubtedly be transformative for our technological future.
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