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Abstract

Soft robotic systems are human friendly and canmimic the complex motions
of animals, which introduces promising potential in various applications,
ranging from novel actuation and wearable electronics to bioinspired robots
operating in unstructured environments. Due to the use of soft materials,
the traditional fabrication andmanufacturingmethods for rigidmaterials are
unavailable for soft robots. 3D printing is a promising fabrication method
for the multifunctional and multimaterial demands of soft robots, as it en-
ables the personalization and customization of the materials and structures.
This review provides perspectives on the manufacturing methods for vari-
ous types of soft robotic systems and discusses the challenges and prospects
of future research, including in-depth discussion of pneumatic, electrically
activated, magnetically driven, and 4D-printed soft actuators and integrated
soft actuators and sensors. Finally, the challenges of realizing multimaterial,
multiscale, and multifunctional 3D-printed soft robots are discussed.
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1. INTRODUCTION

In the past several decades, the development of traditional robots with rigid actuation and trans-
mission mechanisms has tremendously promoted economic growth, especially in the fields of
automated assembly and manufacturing in structured environments. Because these conventional
rigid robots are made from hard materials, they offer limited capabilities to perform complex
motions with compliance and adaptability, which restricts the applications for interaction with
humans or unstructured environments (1). Soft robotic systems, which have emerged more re-
cently, are made of soft materials that can generally sustain large deformation while inducing little
pressure or damage when maneuvering through confined spaces. Owing to the inherent compli-
ance of the soft materials, soft robotic systems are human friendly and can mimic the complex
motion of animals, which introduces promising potential in various applications, ranging from
novel actuation and wearable electronics to bioinspired robots and biohybrid robots operating in
unstructured environments (2).

Materials used in traditional robotic systems have moduli on the order of 109–1012 Pa. By
contrast, soft robotic systems are often composed of materials with moduli on the order of 104–
109 Pa, similar to those of natural organisms (3). Due to the use of these soft materials, the
traditional fabrication and manufacturing methods for rigid materials, such as machining, joining,
and shearing and forming, are unavailable for soft robots, creating challenges for the fabrication
and manufacturing of soft robots (4).

In the beginning, because the functions and structures of soft robots were simple, methods
such as molding, reinforcement, thin-film manufacturing, shape-deposition manufacturing, and
bonding were sufficient to fabricate soft robotic systems. As the functions of soft robots have
increased, however, researchers have needed to design and manufacture soft material structures
with multiple materials and different sizes. Recently, 3D printing has emerged as a novel manu-
facturing method that offers more freedom to design complex geometries compared with other
manufacturing methods (5).

3D printing is an additive manufacturing process, defined as “the process of joining mate-
rials to make objects from 3D model data, usually layer upon layer, as opposed to subtractive
manufacturing methodologies, such as traditional machining” (6, p. 389; see also 7). It can pro-
duce parts with sophisticated and complex geometries with no need for postprocessing, built
from custom-made materials and composites with near-zero material waste, while being appli-
cable to a diversity of materials, including smart materials such as shape-memory polymers and
other stimulus-responsive materials. Therefore, it offers increasing design freedom and allows
designers and engineers to create unique products that can be manufactured at low volumes in a
cost-effective way. Common 3D-printing techniques include fused deposition modeling (FDM),
direct ink writing (DIW), selective laser sintering (SLS), inkjet, and digital light processing (DLP).

The advantages of 3D printing make it a promising fabrication method for the multifunctional
and multimaterial demands of soft robots. For soft robots, it enables the personalization and cus-
tomization of the materials and structures. In the past few decades, there has been a significant
trend toward using 3D-printing technology to fabricate soft robots for various applications.There
have been several comprehensive review articles on 3D printing and soft robotics; the existing re-
views on soft robotics have focused mainly on the issues of materials, mechanics, and physics,
such as soft robots based on origami structure (8), untethered soft robots (9), stiffness-tunable soft
robots (10), magnetically driven soft robots (11, 12), and closed-loop control of soft robots (13).
The additive manufacturing of soft robots has also been reviewed; for example, reviews byWallin
et al. (3) and Gul et al. (14) focused on 3D-printing methods and the associated soft robots fab-
ricated by 3D-printing methods, reviews by Momeni et al. (15) and Khoo et al. (16) surveyed the
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3D-printed active materials and their applications in soft robotics, and reviews by Truby & Lewis
(5) and Bourell (17) presented 3D-printing methods for fabricating soft materials. However, there
is still a lack of reviews of effective additive manufacturing methods for manufacturing specific
soft robots. With the rapid development of soft robots, this topic may draw more attention from
researchers in the fields of robotics and automation.

In this review, we provide perspectives on the manufacturing methods for various types of
soft robotic systems and discuss the challenges and prospects of future research. We provide in-
depth discussion of pneumatic, electrically activated, magnetically driven, and 4D-printed soft
actuators and integrated soft actuators and sensors. Figure 1 shows a timeline of milestones in
the development of 3D printing of soft robots, starting with a pneumatically driven, multigait
soft robot manufactured using a printed mold in 2011, and then extending to soft robots driven
by electrical, magnetic, temperature, and chemical fields and soft robots 3D printed using FDM,
inkjet, DLP, stereolithography (SLA), DIW, and multimaterial 3D-printing methods. Figure 2
plots the cumulative distributions of the 3D printing of soft robots based on the year and the
printing methods. It can be observed that the development of 3D printing of soft robots is still in
the early stage.

This article is organized as follows. Section 2 summarizes the various types of 3D-printing
methods. The existing 3D-printing fabrication methods for soft robots are summarized in Sec-
tion 3. Section 4 discusses multiscale 3D-printing and novel printing methods for soft robots.
Discussion and conclusions are given in Section 5.

2. 3D-PRINTING METHODS

This section describes various 3D-printing methods used to manufacture soft robots, including
FDM,DIW, SLS, inkjet and DLP. These methods are illustrated in Figure 3, and their precision,
advantages, and disadvantages are summarized in Table 1.

In FDM, a solid thermoplastic filament is extruded through a heated nozzle to melt or soften
the filament, then deposited on a build tray to fabricate 3D structures layer by layer. FDM is the
most common 3D-printing technology because of its simplicity and low cost.However, compared
with other 3D-printing technologies, it has a longer operation time and lower resolution. More-
over, only a few thermoplastic polymers, such as acrylonitrile butadiene styrene and polylactic
acid, are commercially available for FDM 3D printing.

DIW is another widely used 3D-printingmethod to fabricate pneumatic soft actuators. ADIW
printer uses a print head similar to that of an FDM printer. Instead of a solid thermoplastic mate-
rial, a DIW printer deposits a viscoelastic ink or paste. During printing, the nozzle moves across
the build platform and extrudes the viscoelastic ink under pressure to fabricate the desired 3D
object layer by layer.

In SLS, a bed of solid thermoplastic powder is selectively heated by a scanning laser. The
irradiation causes localized melting and fusion of the material. The powder is then cast to recoat
the bed, and the process is repeated. SLS can be used to fabricate complex structures without
external support and is suitable for mass production.

Inkjet is a noncontact printing technology that deposits tiny droplets of low-viscosity ink on a
build tray using thermal or piezoelectric technology. Inkjet printers often combine ink nozzles and
aUV light source in one platform.The photocurable liquid resin is polymerized immediately after
being sprayed on the build tray by illumination with a UV light source. Jetting and solidification
are iteratively repeated until the entire object is built. The commonly used materials in inkjet are
commercial materials: a soft, rubbery material (Tango or Agilus), with a modulus of ∼10MPa, and
a rigid material (Vero), with a modulus of∼1GPa at room temperature. Inkjet can be used to print
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Figure 1 (Figure appears on preceding page)

Development of soft actuators and robots manufactured by printed mold, SLA, SLS, FDM, inkjet, DLP, DIW and MM3D methods.
(2011) Multigait soft robot, adapted with permission from Reference 18. (2013) Soft machine, adapted with permission from
Reference 20. (2014) Assembled soft robot, adapted with permission from Reference 19; elastomeric structure, adapted with permission
from Reference 21. (2015) Combustion soft robot, adapted with permission from Reference 165; 4D-printed box, adapted from
Reference 135 (CC BY 4.0); integrated sensor and actuators, adapted with permission from Reference 175. (2016) 4D-printed Eiffel
Tower, adapted from Reference 133 (CC BY 4.0); reversibly actuating components, adapted from Reference 127 (CC BY 4.0);
4D-printed bird, adapted with permission from Reference 130. (2017) Soft artificial muscle, adapted from Reference 55 (CC BY 4.0);
hydrogel gripper, adapted with permission from Reference 42; origami by frontal photopolymerization, adapted from Reference 140
(CC BY 4.0). (2018) Soft pneumatic gripper, adapted with permission from Reference 44; shape-morphing hydrogel, adapted with
permission from Reference 124; silicone soft actuator, adapted from Reference 29 (CC BY 4.0). (2019) Stiffness-tunable soft actuator,
adapted with permission from Reference 40; ferromagnetic robot, adapted with permission from Reference 91; self-morphing
structure, adapted from Reference 117 (CC BY 4.0); liquid crystal elastomer actuator, adapted with permission from Reference 146.
(2020) Multimodal magnetic soft robot, adapted with permission from Reference 101; bistable high-speed soft robot, adapted from
Reference 24 (CC BY 4.0); programmable 4D-printed metamaterial, adapted with permission from Reference 198; multimaterial soft
crawling robots, adapted with permission from Reference 39. (2021) Fluidic circuitry soft robots, adapted from Reference 48 (CC BY
4.0); swimming biobot, adapted with permission from Reference 203; multimaterial hydrogel, adapted from Reference 50 (CC BY 4.0);
electrically responsive PVC gel, adapted with permission from Reference 204. Abbreviations: DIW, direct ink writing; DLP, digital
light processing; FDM, fused deposition modeling; MM3D, multimaterial 3D printing; PVC, polyvinyl chloride; SLA,
stereolithography; SLS, selective laser sintering.

complex structures with high resolution, but the failure strains of the two materials are relatively
low—generally less than 200% for the soft, rubbery material and less than 20% for Vero.

In DLP, a bath of liquid photopolymer is selectively exposed to light. The liquid resin poly-
merizes into a solid layer in response to photoirradiation. The object is then translated, and liquid
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Figure 2

Cumulative distributions of 3D-printed soft actuators and robots based on year and printing methods. The
data are provided in Supplemental Table 1. Abbreviations: DIW, direct ink writing; DLP, digital light
processing; FDM, fused deposition modeling; SLA, stereolithography; SLS, selective laser sintering.
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Figure 3

Common additive manufacturing methods. (a) In FDM, a solid thermoplastic filament is extruded through a
heated nozzle to melt or soften the filament, then deposited on a build tray to fabricate 3D structures layer
by layer. (b) A DIW printer deposits a viscoelastic ink or paste to fabricate the desired 3D object layer by
layer. (c) In SLS, a bed of solid, thermoplastic powder is selectively heated by a scanning laser. (d) Inkjet is a
noncontact printing technology that deposits tiny droplets of low-viscosity ink on a build tray using thermal
or piezoelectric technology. (e) In DLP, the liquid resin polymerizes into a solid layer in response to
photoirradiation. Abbreviations: DIW, direct ink writing; DLP, digital light processing; FDM, fused
deposition modeling; SLS, selective laser sintering.

recoats the interface. The next layer is similarly exposed. Like inkjet, DLP can provide high print-
ing resolutions, but it allows the use of customized materials. SLA is a technique similar to DLP
that uses a UV laser instead of a digital light projector, leading to a slower build speed.

3. 3D PRINTING OF SOFT ACTUATORS AND ROBOTS

This section presents different additive manufacturing methods for soft actuators. We review
3D-printing methods for various soft actuators, including pneumatic, electrically activated, mag-
netically driven, and 4D-printed soft actuators. We also review 3D-printed soft actuators with
integrated soft sensors.
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Table 1 Precision, advantages, and disadvantages of 3D-printing methods

Printing method Precision Advantages Disadvantages
FDM 100 µm (22) Lower initial investment cost

High surface finish
Ease of making complex shapes

Slow process
Poor accuracy and precision

DIW 1–100 µm (5) Ability to use various materials Slow process
Poor resolution and surface finish

SLS 100 µm (3) Does not require any external support
Suitable for mass production

High cost of manufacturing
Requires postprocessing

Inkjet 50 µm (205) Ease of multimaterial printing
Fast process
Good accuracy

High cost of manufacturing

DLP 1–50 µm (206–208) Fast process
High resolution

High cost of manufacturing
Enables less materials to be used

Abbreviations: DIW, direct ink writing; DLP, digital light processing; FDM, fused deposition modeling; SLS, selective laser sintering.

3.1. Pneumatic Soft Actuators

Pneumatic soft actuators, consisting of an elastomer structure with embedded chambers, are pop-
ular because they are lightweight, safe, low cost, and easy to fabricate (18, 19). The soft actuators
can extend, contract, bend, or twist in response to pressurized fluid depending on the structural
design. Many 3D-printing methods have been used to fabricate pneumatic soft actuators (20, 21)
with different material properties, actuation forces, and magnitudes of strains, including FDM,
DIW, inkjet, and DLP.

Pneumatic soft actuators fabricated by FDM show relatively small deformation because mate-
rials generally exhibit small failure strains. For example, a soft gripper has been 3D printed using
thermoplastic elastomer with FDM technology (22) (Figure 4a). The soft gripper can grasp and
lift heavy objects with a high payload-to-weight ratio that results from the thermoplastic elas-
tomer’s relatively large modulus, whereas the soft gripper’s deformation is relatively smaller as it
is easy to break. Using sequenced soft bending mechanisms, Xie et al. (23) 3D printed a robot that
can climb pipes with various diameters, inclinations, and curvatures. Tang et al. (24) developed
spine-inspired high-speed and high-force soft robots by leveraging tunable snap-through bista-
bility, which demonstrates the abilities of high-speed locomotion (2.68 body lengths per second)
and high-speed underwater swimming (0.78 body lengths per second). Pneumatic soft actuators
for locomotion or assisted elbow flexion have also been printed using the FDM method (25, 26).

Pneumatic soft robots that were made with the DIW method and based on silicone elas-
tomer generally show a larger deformation (27–33). For example, Schaffner et al. (29) developed
pneumatic silicone actuators exhibiting programmable bioinspired architectures and motions
(Figure 4b). These actuators consist of an elastomeric body and reinforcing stripes with a well-
defined lead angle. Elongation, contraction, or twisting motions can be achieved by varying the
lead angle. Plott & Shih (28) demonstrated a sphere-like balloon exhibiting a diametric expansion
of up to 200% and a pneumatic finger actuator that can fully articulate more than 30,000 circles
before failure due to the silicone elastomer’s excellent performance. However, complex structures
are difficult to achieve using the DIW method.

Inkjet can fabricate pneumatic soft actuators with high resolution and complex structures (34,
35). Pneumatic soft robots made with the inkjet method are easier to break than those made with
silicone elastomers. Drotman et al. (36) used the inkjet method to 3D print soft robots with bel-
lowed soft legs capable of navigating unstructured terrain. Zhang et al. (37) used the inkjet method
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Figure 4

3D-printed pneumatic soft actuators. (a) A soft gripper made using the FDM method. Panel adapted with permission from
Reference 22. (b) Pneumatic silicone actuators exhibiting programmable bioinspired architectures and motions, printed by DIW. Panel
adapted from Reference 29 (CC BY 4.0). (c) A caterpillar-inspired soft crawling robot that is directly 3D printed with multiple materials
and without a complex assembly process. Panel adapted with permission from Reference 39. Abbreviations: DIW, direct ink writing;
FDM, fused deposition modeling; PDMS, polydimethylsiloxane.

to 3D print pneumatic modularized rigid–flexible integrated soft finger actuators that can be di-
rectly assembled into an anthropomorphic hand.MacCurdy et al. (38) used the inkjet method with
multimaterial 3D printing to create a functional hexapod robot. Taking advantage of the multi-
material printing capability, Sheng et al. (39) 3D printed a caterpillar-inspired soft crawling robot
with multiple materials and without a complex assembly process (Figure 4c). Zhang et al. (40) de-
veloped a stiffness-tunable soft actuator 3D printed using inkjet and DIW methods (Figure 5a).
The body was printed using the inkjet method, and the conductive Joule-heating circuit inside
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3D-printed pneumatic soft actuators. (a) A stiffness-tunable pneumatic soft actuator made with a combination of the inkjet and DIW
methods. Panel adapted with permission from Reference 40. (b) A miniature pneumatic soft actuator made with a high-resolution
multimaterial DLP method. Panel adapted with permission from Reference 45. Abbreviations: DIW, direct ink writing; DLP, digital
light processing; PTFE, polytetrafluoroethylene; SMP, shape-memory polymer.
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was written using the DIW method to induce stiffness changes under an electric–thermal stim-
ulus. The stiffness-tunable gripper can grasp and lift objects with arbitrary shapes and various
weights spanning from less than 10 g to 1.5 kg.

DLP is another 3D-printing method that can fabricate pneumatic soft actuators with pho-
topolymerization. For example, soft pneumatic actuators can be 3D printed using UV-curable
elastomers (41, 42), commercial photopolymers (43), or TangoPlus (44). Adding ethylene acrylic
acid into the TangoPlus resin decreases the Young’s modulus of the printed material and increases
the failure strain, which has been used to 3D print pneumatic soft actuators (45) (Figure 5b).
Silicone networks can be printed that participate in orthogonal cross-linking mechanism–
photocurable thiol-ene reactions and condensation reactions, which show simultaneously large
ultimate strain (∼400%), low elastic modulus (<700 kPa), and high toughness and strength (46).
Combining DLP and DIWmethods enables soft pneumatic actuators to be 3D printed to achieve
programmable deformation (47). Soft robots comprising fully integrated fluidic circuitry have also
been fabricated via PolyJet 3D printing (48).

Overall, many 3D-printing methods have been used to fabricate pneumatic soft actuators, de-
pending on the necessary material properties, actuation forces, and strain magnitudes. DIW has
been widely used to manufacture pneumatic soft actuators based on soft silicone elastomers, show-
ing a large stretchability. Printing processes based on the melting of solids, such as FDM, are
usually used to print thermoplastic polyurethane material. The fabricated pneumatic soft actua-
tors show relatively less deformation because polyurethanes are stiff and their failure strains are
low, and they are therefore unlikely to meet high deformation demands. Inkjet and DLP methods
have been used to manufacture high-resolution soft actuators with complex structures. However,
there is a need to develop UV-curable materials that are highly deformable and fatigue resistant
to remove the obstacles to fabricating high-resolution pneumatic soft actuators for engineering
applications (49, 50).

3.2. Electrically Activated Soft Actuators

Electrical actuation is a common soft actuation method. Electrically driven soft actuators are usu-
ally composed of electroactive polymers, such as ionic polymer–metal composites (IPMCs) and
dielectric elastomer actuators (DEAs).

IPMCs generally consist of a solvent swollen ionic polymermembrane (typicallyNafion, plated
with a noble metal) laminated between two thin electrodes (such as gold–carbon nanotubes) (51,
52). When an electric potential is applied to the electrodes, the negatively charged side attracts
cations, causing it to swell. The swelling of one side generates a bending motion in the IPMC.
Due to their advantages of large bending deformation and low driven voltage, IPMCs have shown
promising applications in underwater soft robots.

IPMCs have usually been fabricated using sputtering deposition, solution casting, or elec-
troplating, all of which are unsuitable for forming complex 3D structures (53). 3D-printing
techniques have been introduced to fabricate complex IPMCs.For example,Carrico et al. (54) used
the FDM method to create electroactive polymer structures for applications in soft robots and
bioinspired systems. The process begins with extruding a precursor material into desired struc-
tures, followed by a chemical functionalized process and an electroless plating process.To fabricate
electrically driven soft actuators with high strain (up to 900%), high stress (up to 1.3 MPa), and
low density (0.84 g cm−3), Miriyev et al. (55) used FDM to 3D print a composite consisting of
polydimethylsiloxane-based silicone elastomer as a matrix material and ethanol as the active fluid
(Figure 6a). The artificial muscle can be electrically actuated using a thin resistive wire and low-
power characteristics (8 V, 1 A), exhibiting significant expansion–contraction ability. Carrico et al.
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3D-printed electrically driven soft actuators. (a) A sleigh robot and its locomotion, powered at 8 V and 1 A. The robot consists of a
PDMS-based silicone elastomer as a matrix material and ethanol as the active fluid. Panel adapted from Reference 55 (CC BY 4.0). (b) A
caterpillar-inspired IPMC soft crawling robot fabricated with FDM. The robot contains two legs and two body sections with electrical
connections. Panel adapted from Reference 56 (CC BY 4.0). (c) Multimaterial DEAs 3D printed using multicore-shell 3D printing.
Panel adapted with permission from Reference 74. (d) 3D printing of a compliant electrode using DIW. Panel adapted with permission
from Reference 68. (e) A fully 3D-printed soft jellyfish mimetic robot that actuates through voltage application to rheological fluid in its
joints and cavities. Panel adapted with permission from Reference 84. Abbreviations: DEA, dielectric elastomer actuator; DIW, direct
ink writing; FDM, fused deposition modeling; IPMC, ionic polymer–metal composite; PDMS, polydimethylsiloxane.

(56) also used FDM to fabricate another IPMC-based soft crawling robot inspired by a caterpillar
(Figure 6b).

Unlike IPMCs, DEAs are usually composed of a dielectric elastomer membrane coated on
both sides with compliant electrodes.When a high voltage is applied, the Maxwell stress between
the electrodes squeezes the dielectric elastomer membrane, leading to an expansion in area and a
decrease in thickness (57). Based on this working principle, different DEA configurations (such as
rolling, conical, and folded) have been proposed to transfer the planar deformation into multiple
actuation modes, including elongation, bending, and rotation (58). Due to their large strain, fast
response, and high energy density, DEAs have shown huge potential in soft robotics (59–61).

DEAs aremademainly of commercial dielectric membranes (such as VHB 4910/4905 or Silpu-
ran film 2030) and electrodes (such as carbon grease and carbon nanotubes).Commercial materials
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have the advantage of accessibility and low cost, but the limitations on size are also apparent. To
this end, some fabrication processes have been proposed, including blade casting (62), spin coating
(63), and pad printing (62, 64). These processes are usually accompanied by issues related to ef-
ficiency, geometry flexibility, and scalability. The development of 3D printing creates compelling
opportunities for DEAs to achieve fast and effective fabrication. However, there are some special
requirements to develop 3D printing of DEAs: (a) to decrease the applied voltage, the printed
dielectric elastomer membrane needs to be thin (<100 µm); (b) to increase the fault tolerance
of DEAs, the printed dielectric elastomer membrane must be uniform, smooth, and reliable; and
(c) fabricating DEAs requires multimaterial 3D-printing technologies.

Recently, several early attempts to 3D print DEAs have been reported. The first work on 3D
printing DEAs was from 2009 and used an inkjet printing method to fabricate a dielectric elas-
tomer membrane (acrylic-based photopolymer materials) with a thickness of 90 µm (65).McCoul
et al. (66) used a piezoelectric inkjet system to 3D print a silicone-based dielectric elastomer mem-
brane with a thickness of 2 µm, generating a 6.1% area strain. The FDM method has also been
utilized to print thermoplastic polyurethane–based dielectric elastomer membranes that can cause
4.73% strain in all directions, and the effects of the printing path have been analyzed, demonstrat-
ing preferential deformation direction (67).To fabricate DEAs with in-plane contractile actuation,
Chortos et al. (68) used a DIW printing method to print interdigital electrodes and then created
3D DEAs by encapsulating these electrodes with polyurethane acrylate, generating a 9% actua-
tion strain (Figure 6d). In addition, the supporting frames of DEAs can be printed using an FDM
method, enabling them to achieve large deformation and multiple functions (69). Multimaterial
3D-printing methods such as SLA (70), the aerosol-jet-printing method (71), DIW (72, 73), and
multicore-shell 3D printing (74) have also been adopted to fabricateDEAs (Figure 6c).DEAswith
a membrane-based structure can be manufactured using 2D-based pad-printing methods (75).

Electrical fields can also be coupled with magnetic or thermal fields to actuate soft actu-
ators (76). Shape-memory alloys are widely used in electrical–thermal soft actuators. Various
3D-printing methods have been used to fabricate different matrices (77–81). For example, Gul
et al. (81) used DIW with epoxy and polyurethane to develop a spider-mimicking three-legged
soft robot, which was able to achieve a maximum forward speed of 2.7 mm s−1 with an input
voltage of 3 V and 250 mA on a smooth surface. A soft robot inspired by highly deformable an-
imal caterpillars was 3D printed using inkjet; shape-memory-alloy coils were embedded into the
robot to act as structural elements and actuators under the stimulus of electricity, which can gen-
erate complex, robust gaits on different inclines (82, 83). Zatopa et al. (84) used the inkjet method
to fabricate a soft, octopus-like robot driven by an electrorheological fluid valve that can stop
the fluid flow, build pressure in the robot, and actuate six soft, tentacle-like bending actuators
(Figure 6e). Phamduy et al. (85) also used the inkjet method to develop an electromagnetically
driven untethered robotic fish propelled by customized solenoid actuators.

3.3. Magnetically Driven Soft Actuators

Pneumatic, hydraulic, tendon-driven, and shape-memory-alloy-based actuators often become
complicated with sophisticated direction control; with external power sources and additional
tethers for actuation, robots actuated by these methods have limited regions of applicability in
sophisticated environments. Magnetic actuation can circumvent these issues.

Magnetic materials can be roughly classified into two categories: soft magnetic and hard mag-
netic. Soft-magnetic materials, such as iron-, nickel-, and silicon-based alloys, are characterized by
high magnetic susceptibility and saturation magnetization but relatively low remanence and coer-
civity.These materials are strongly attracted to a magnet. By contrast, hard-magnetic materials are
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generally obtained by embedding hard-magnetic particles (e.g., neodymium–iron–boron alloy)
into a soft polymeric matrix (e.g., silicone rubber or gels). Hard-magnetic materials exhibit a large
coercivity, enabling the realization of complex shape transformations under magnetic actuations
(86). Untethered, reversible, rapid, and programmable actuations—which are essential for per-
forming soft robotic functions such as grasping, walking, swimming, jumping, and transporting—
can be induced by manipulating the internal magnetization profiles and external magnetic
field.

However, knowledge gaps exist in developing multimodal soft robots with small sizes in terms
of functionality, fabrication, and actuation efficiency. In recent years, multimaterial 3D-printing
techniques have provided a practical solution to address several challenges associated with the sim-
ple and precise manufacturing of magnetically driven soft actuators. Magnetically responsive soft
actuators have been fabricated mainly using the DIW and DLP methods. In both methods, the
magnetically responsive particles are dispersed in the resin and uniformly magnetized to have pro-
grammed magnetic polarities during the printing process. Under an external magnetic actuation,
the printed structures deform accordingly.

DIW is widely used for printing hard-magnetic soft actuators (11, 87–89). For example, 3D-
printed programmable hard-magnetic soft actuators that enable fast transformations between
complex 3D shapes via magnetic actuation have been developed (90–92). This approach is based
on DIW of an elastomer composite containing ferromagnetic microparticles. Diverse functions
derived from complex shape changes can be achieved, including reconfigurable soft electronics,
jumping mechanical metamaterials, and soft robots that can crawl, roll, catch fast-moving objects,
and transport a pharmaceutical dose.Wu et al. (93) developed biomimetic crawling and swimming
robots that allow asymmetric multimodal actuation of the hard-magnetic particles. Through co-
operative thermal and magnetic actuation, Ma et al. (94) demonstrated a series of pop-up designs
with multiple deformation modes using a magnetic multimaterial DIW system (Figure 7a). Mul-
tiple shape manipulations in one material system have been realized by embedding hard-magnetic
particles in a shape-memory-polymer matrix (95) (Figure 7b). Several methods have been pro-
posed to design hard-magnetic soft active materials, such as models based on mechanics (96–98)
and voxel-encoding printing guided by an evolutionary algorithm (99).

Both DLP and DIW have been used to 3D print soft-magnetic soft actuators. For example, a
magnetically actuated, multimaterial, and multifunctional soft monolithic robot with biaxial loco-
motion capability has been 3D printed using particle–polymer composites loaded with magnetic
nanoparticles (100, 101).Magnetically responsive polymer materials with tunable mechanical and
magnetic properties have been DLP printed and exhibited morphing motions (102) (Figure 7c).
The locally programmed magnetic particle distributions are a result of its magnetic actuation in-
telligence, allowing several locomotion functions, such as crawling, steering, and turning. Pan’s
group (103, 104) developed a magnetic field–assisted DLP process to print soft-magnetic robots
with rotation motion and on-demand drug delivery applications. Roh et al. (105) proposed a mag-
netoactive soft actuator that undergoes complex reconfigurations and shape changes in an applied
magnetic field. Shao et al. (106) used the DLP method to 3D print a magnetic microgripper that
can operate in air and water.

Using 3D-bioprinting technologies, Tognato et al. (107) demonstrated that a nanocomposite
hydrogel with complex heterogeneous structures responds to a magnetic field (Figure 7d). By
combining the magnetic stimulus-responsive hydrogel with the architectural control provided by
bioprinting technologies, one can also create 3D structures that exhibit functionalities beyond
those of native tissue. Qi et al. (108) developed an FDM printing method to print magneto-active
soft materials with carbonyl iron particles embedded in a silicone rubber matrix, allowing walking,
swimming, or grabbing.
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3D-printed magnetically driven soft actuators. (a) A series of pop-up designs with multiple deformation modes demonstrated using
cooperative thermal and magnetic actuation. Panel adapted with permission from Reference 94. (b) Shape locking and lifting of a
magnetic soft robotic gripper via superimposed magnetic fields. Panel adapted with permission from Reference 95. (c) Folding
locomotion of magnetically driven soft actuators made with the DLP method. Panel adapted with permission from Reference 102.
(d) Swimming and wrapping movements of a magnetic starfish made using DIW. Panel adapted with permission from Reference 107.
Abbreviations: DIW, direct ink writing; DLP, digital light processing; MB, electromagnet placed on the bottom; ML, electromagnet
placed on the left, MR, electromagnet placed on the right; MSM, magnetic soft material; M-SMP, magnetic shape-memory polymer.

3.4. 4D Printing

4D printing is a targeted evolution of the 3D-printed structure in terms of its shape, properties,
and functionality (15, 109–127). Since Tibbits (128) first proposed the concept of 4D printing
at a 2013 TED conference, it has generated significant interest in soft robotics. The fabrication
methods for 3D and 4D printing soft robots are essentially the same. The critical difference lies
in the choice of stimulus-responsive materials. Under an external stimulus, such as pH, heat, or
light, the printed structures’ shape, properties, or functionalities change with time. 4D printing
can fabricate soft robots with self-assembly, multifunctionality, or self-repair properties.

3.4.1. Heat-driven soft actuators. Various 4D-printed soft actuators have been designed using
the modulus change of shape-memory polymers upon temperature change (112, 129–136). For
example, Ge et al. (133) used the DLP method to 3D print a soft gripper based on a multimate-
rial shape-memory polymer and demonstrated shape transition via thermal stimulus (Figure 8a).
Zhang et al. (137) used a multimaterial 4D-printing method to fabricate shape-memory-polymer
structures that could later be transformed into complex 3D shapes using pneumatic input.

Inkjet is another common way to fabricate high-resolution soft actuators based on shape-
memory polymers, as Vero is a shape-memory polymer that exhibits two orders of stiffness
change (from ∼10 MPa to ∼1 GPa) with a glass transition temperature at ∼60°C. For example,
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4D-printed soft actuators. (a) A multimaterial gripper that can grasp an object, fabricated using the DLP method. Panel adapted from
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shape-memory-polymer-based origami airplanes, crawling insects, and soft grippers (Figure 8b)
have been designed (112, 131, 134). Direct ways of forming 4D-printed structures have also been
demonstrated, where the structures are driven by internal stress built during the 3D printing
(138–140). In a frontal photopolymerization process, internal stress is built inside the cured pho-
topolymers due to the volume shrinkage during photopolymerization. Through selective curing
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using the projected geometrical pattern, one can program various actuations and shapes (140, 141)
(Figure 8c). Cui et al. (142) developed a DLP-printed gripper that can grab and unload via shape
reconfiguration (Figure 8d). Wang et al. (143) programmed different planar structures to form
3D structures via frontal photopolymerization by rationally designing the grayscale and geometric
patterns. Ding et al. (138, 139) used the built-in compressive strain during photopolymerization
to induce 4D shape changes in composite structures consisting of a glassy shape-memory polymer
and an elastomer. Upon heating, the shape-memory polymer softens, releases the constraint
on the strained elastomer, and allows the object to transform into a new permanent shape
(Figure 8e). Peng et al. (144) proposed a hybrid multimaterial 3D-printing method integrating
DLP and DIW to 4D print active soft robots driven by liquid crystal elastomers (LCEs).

An LCE is an integration of liquid crystal mesogens and polymer networks that has attracted
significant attention because of its unique actuation performance and tailorable energy dissipation
behavior (145, 146). LCEs exhibit reversible actuation performance, originating from the liq-
uid crystal–isotropic phase transition upon external stimuli such as heating. To achieve reversible
actuation performance, liquid crystal mesogens should be uniformly aligned on a macroscopic
scale.

DIW is often used to fabricate 3D LCE objects. Yuan et al. (147) proposed a method to realize
reversible LCE actuators, in which Joule heating produced by printed conductive wires is applied
to deform the LCE bar and the shape is restored after power-off (Figure 9a). Amorphing airplane,
an origami structure, a cubic box, and a soft crawler have been designed using this method. Lewis’s
research group (123) used high-operating-temperature DIW of LCE inks to align the mesogen
domains along the direction of the print path and demonstrated the power of this 3D-printing
method via shape-morphing LCE actuators (Figure 9b). By controlling the print paths, one can
morph the printed planar LCE actuators into a cone or saddle shape. Lewis’s research group
also developed innervated LCE actuators with prescribed contractile actuation, self-sensing, and
closed-loop control via core-shell DIW 3D printing (148) and, through an integrated design and
3D printing, created a double-layer LCE “rollbot” that assembles into a pentagonal prism and self-
rolls in programmed responses to thermal stimuli (149) (Figure 9c).Ambulo et al. (150) introduced
liquid metal and a eutectic gallium indium alloy into an LCE matrix to prepare composite inks
for 3D-printed soft actuators that can change shape in response to electrical power and light
(Figure 9d).

Recently, DLP 3D printing has been combined with liquid crystal orientation technology to
obtain 4D printing of LCEs for use in actuators and soft robots. For example, Li et al. (151) re-
ported a DLP-based additive manufacturing approach for LCEs that automatically shear aligns
mesogenic oligomers with high orientational order; this method enables the fabrication of arti-
ficial muscle-like actuators that can be remotely triggered for large strokes, fast responses, and
highly repeatable actuations (Figure 9e). High-resolution energy-dissipative LCE devices have
also been fabricated, using the inherent dissipative behavior of liquid crystal material and foam
mesostructures of periodic unit cells (152, 153). Fang et al. (154) fabricated LCE artificial muscles
with designable complex motion, taking advantage of the light attenuation along the thickness
direction in the photo-curing process. The attenuation creates mesogen alignment, thus enabling
reversible bending.

3.4.2. Light-driven soft actuators. Light is also commonly used as a wireless stimulus for soft
actuators. Light is ubiquitous in our daily lives. Its physical parameters, such as intensity, wave-
length, and polarization, can be easily tailored with high spatial and temporal resolution (155).The
on-demand control techniques enable light-driven robots’ versatile, sophisticated, and multifunc-
tional motions (156). Light can trigger macroscopic deformation, an inequivalent thermal strain,
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water desorption, a change of hydrophobicity, a change of surface tension, a phase transition, or a
change of magnetic properties.

Han et al. (157) reported a holistic artificial muscle with integrated light-addressable nodes
using one-step laser printing from a bilayer structure of poly(methyl methacrylate) and graphene
oxide compounded with gold nanorods.The artificial muscle can implement full-functionmotility
without further integration and is reconfigurable through wavelength-sensitive light activation.
The authors demonstrated a biomimetic robot and artificial hand that showcased functional-
ized control. Hagaman et al. (158) developed light-driven bimorph soft actuators via 3D-printed
polysiloxane liquid crystals with pendant azobenzene groups onto commercially available Kapton
polyimide thin films.The bimorph soft actuators exhibit rapid and reversible mechanical actuation
upon UV light irradiation, with an entire cycle completed within seconds. Nishiguchi et al. (159)
developed a multiphoton lithography 4D-printing method for a bioinspired soft actuator with
a defined 3D geometry and programmed printing density. The method allows for pixel-by-pixel
control of printing density in gels with a resolution of a few hundred nanometers. Photoresponsive
shape-memory devices have also been 3D printed (160).

3.5. Other Types of Soft Actuators

Other types of actuations have also been developed, including biological actuation and
combustion-powered actuation. For example,Mestre et al. (161) used a 3D-bioprinting technique
to fabricate bioactuators with highly aligned myotubes (Figure 10a). Chan et al. (162, 163) used a
3D SLA printer to build multimaterial biological soft actuators consisting of a biological bimorph
cantilever as the actuator and a base structure to define the asymmetric shape for locomotion.
Contractile cardiomyocytes actuate the biobot, and 3D SLA printing can facilitate the design of
the structure. The maximum recorded velocity of the biobot is ∼236 µm s−1, with an average
displacement per power stroke of ∼354 µm and an average beating frequency of ∼1.5 Hz.
Raman et al. (164) demonstrated a millimeter-scale biological machine with an SLA 3D-printed
skeleton. Bartlett et al. (165) used the inkjet method to 3D print a combustion-powered soft
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Figure 10

3D printing of other types of soft actuators. (a) 3D printing of bioactuators through DIW. Panel adapted with permission from
Reference 161. (b) A combustion-powered jumping robot that was inkjet printed from multiple materials to create mechanical gradients
that enable the robot to survive without shattering. Panel adapted with permission from Reference 165. Abbreviation: DIW, direct ink
writing.
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actuator whose body transitions from a rigid core to a soft exterior. 3D printing enabled a stiffness
gradient spanning three orders of magnitude in its modulus (Figure 10b), which reduced stress
concentration and helped create a reliable interface between rigid driving components and the
primarily soft body.

3.6. Integrated Soft Actuators and Sensors

The advantages of 3D-printing technologies provide the opportunity to integrate a network of
actuators, sensors, and control and power modules into fully autonomous soft robots through a
single, on-demand digital fabrication process. The systematic integration can facilitate robotic
manipulation and locomotion with precise closed-loop control and promote the mechanical
intelligence of soft robots.

Wehner et al. (166) used a multimaterial embedded 3D-printing technique to develop an un-
tethered robot composed solely of soft materials. The robot is actuated by gas generated from fuel
decomposition and controlled with a microfluidic logic that autonomously regulates fluid flow.
The authors applied this approach to engineer a multimaterial Octobot that can pneumatically
raise its individual tentacles. Truby et al. (167) employed the same 3D-printing technique to cre-
ate soft actuators with multiple sensing capabilities (Figure 11a). The fabrication method enables
the seamless integration of pneumatic structures with sensing components, including curvature,
inflation, and contact sensors. The demonstrated soft grippers could simultaneously provide hap-
tic, proprioceptive, and thermal sensing feedback when grasping objects.Using the SLS technique,
Scharff et al. (168) demonstrated a 3D-printed soft robotic gripper that integrates actuators, sen-
sors, and structural components. The FDM technique has also been used to develop soft actuators
with tactile sensing enabled by complex 3D-printed structures (169–172). Ntagios et al. (169) de-
signed a biomimetic hand embedded with soft capacitive sensors that can detect pressure (more
than 1 kPa) (Figure 11b). They combined an FDM printer with a second nozzle for paste/ink ex-
trusion, capable of printing conductive ink, metal paste, and polymers. Similarly, Sadeghi et al.
(173, 174) developed a bioinspired robot that creates its own body through an FDM process
and integrates with a sensorized tip (Figure 11c). The actuator can grow with a speed of up to
4mmmin−1, overcomingmedium pressure of up to 37 kPa and bending with a minimum radius of
100 mm. Zhu et al. (175) developed a hydrogel microfish using a DLP 3D-printing method with
toxin sensors that exhibit chemically powered and magnetically guided propulsion. Shen et al.
(176) further fabricated a conducting polymer hydrogel strain sensor through DIW, which en-
abled the proprioceptive sensing of a pneumatic actuator. The inkjet method has also been used
to print multimaterial soft robotic fingers with self-powered triboelectric curvature sensors (177).

4. PROGRESS AND PERSPECTIVES

Despite the significant progress in the field of 3D printing for soft robotics, its further devel-
opment requires the development of novel 3D-printable soft materials, advanced 3D-printing
technologies capable of efficient and rapid deposition of multiple materials, and computational
design tools incorporating realistic material models to predict the actuation behaviors of the
3D-printed soft robots. This section discusses integrated 3D printing, multiscale 3D printing,
4D printing, and other novel printing methods, such as voxel printing and one-step volumetric
3D printing.

4.1. Multiscale 3D Printing

Nature has developed high-performance biostructures over millions of years of evolution and
has become an important inspiration source for designing high-performance materials and
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Integrated soft actuators and sensors. (a) Embedded 3D-printed soft actuators with somatosensitive capabilities. Panel adapted with
permission from Reference 167. (b) A 3D-printed robotic hand with soft tactile capacitive sensors. Panel adapted from Reference 169
(CC BY 4.0). (c) Plant-inspired robots that use multiple tip sensors and an FDM printer to sense their surroundings and selectively
grow to avoid obstacles. Panel adapted with permission from Reference 174. Abbreviations: FDM, fused deposition modeling; IC,
integrated circuit; PLA, polylactic acid; RT, room temperature; TPU, thermoplastic polyurethane.

structures. Multiscale structure is an essential property of biological materials that can improve
their characteristics.

The ability to fine-tune functional material properties by incorporating nanomaterials in 3D
printing offers an attractive approach to achieving seamless multifunctional integration. One way
to fabricate nanoscale structure is by two-photon polymerization, with as small as 9-nm voxel
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resolution. Another way is to use patterning phenomena in 3D printing to create nanoscale
structures, such as shear, evaporative, acoustic, electrical,magnetic, optical, or thermal phenomena.

Two-photon polymerization is a powerful 3D precision nanofabrication method where poly-
merization is initiated by two-photon absorption with a pulsed infrared laser. It has been
extensively applied to fabricating microscale and nanoscale soft actuators. For example, Ma et al.
(178) reported femtosecond laser-programmed artificial musculoskeletal systems for prototyp-
ing 3D microbots, using relatively stiff SU-8 as the skeleton and pH-responsive protein (bovine
serum albumin) as the smart muscle. They also proposed a two-photon polymerization method
to enable the sequential structuring of two photosensitive materials within a predesigned config-
uration. Zeng et al. (179) reported a microscopic walker able to move on different substrates in a
dry environment, consisting of LCE as the muscles and four conical legs made using an IP-Dip
photoresist.

Fabricating multiscale 3D structures at high resolution is challenging, especially for me-
chanically weak hydrogels. To 3D print multiscale and multimaterial hydrogel structures with
microscale resolution, Kunwar et al. (180) developed a hybrid laser-printing technology. Multi-
scale hydrogel fractal bionic channels can be printed by moving the convex lens of a DLP-based
3D-printing system (181). A microscale piezoelectric nanoactuator has been printed using the
microscale DLP method (182).

Another advantage of multiscale printing is its ability to improve the global print speed with
the desired local resolution. Li et al. (183) proposed a multiscale SLA method realized by dy-
namic switching of laser spot size and adaptively sliced layer thickness. Using different slicing and
printing settings for different portions, they printed macroscale objects with microscale surface
structures and showed a significant improvement in the global printing speed.

4.2. Novel Printing Methods

Multimaterial voxel printing is needed for fabricating soft robots with complex functions. Bader
et al. (184) presented an approach to physical data visualization through voxel printing using
multimaterial 3D printing to improve the current data physicalization workflow (Figure 12a).
Multimaterial 3D printing with photopolymeric materials enables the simultaneous use of several
different materials. Full-color models with variable transparency can be created using dedicated
cyan, magenta, yellow, black, white, and transparent resins.

Skylar-Scott et al. (185) recently proposed a multimaterial, multinozzle method that can de-
sign and fabricate voxelated soft matter. The material’s composition, function, and structure are
programmed at the voxel scale. Compared with the inkjet-based 3D-printing method, where only
a few materials can be chosen, DIW is used to pattern a much broader range of materials. Mul-
timaterial voxel printing also enables the design of soft actuators (186–189). Boddeti et al. (187,
189) demonstrated a workflow that digitally integrates design automation, material compilation,
and digital fabrication via voxel-based additive manufacturing with material jetting of multiple
photocurable polymers.

Low speeds and geometric constraints in 3D printing are two limitations in fabricating soft
robots. Both limits are overcome by a one-step volumetric additive manufacturing method for
complex polymer structures (190) (Figure 12b). Through the use of holographic patterning of a
light field, various structures can be successfully built in ∼1–10 s. In DLP 3D printing, precision
and speed are limited by the vertical adhesion of in situ cured resin at the curing interface. Wu
et al. (191) developed an ultra-low-adhesive interface to overcome the unavoidable adhesion and
improve printing precision and speed.

To fulfill the requirement that many applications require integrating different materials
and multiple 3D-printing technologies, Roach et al. (192) developed a novel multimaterial,
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Figure 12 (Figure appears on preceding page)

Novel 3D-printing methods. (a) A curve and graph data-processing workflow for voxel printing and representative 3D-printed models.
Panel adapted from Reference 184 (CC BY 4.0). (b) A holographic volumetric 3D fabrication system schematic and example structures.
Panel adapted from Reference 190 (CC BY 4.0). Abbreviations: 4fN, telescope lens pairs used for beam expansion or image relaying;
BB, beam block to eliminate undiffracted light; FTL, Fourier transform lens; HP, hologram plane; SF, spatial filter; SLM, liquid crystal
on silicon spatial light modulator.

multimethod 3D printer comprising multiple 3D-printing technologies. Four 3D-printing tech-
nologies and two complementary technologies—inkjet, FDM, DIW and aerosol jetting, along
with a robotic arm for pick and place and photonic curing for intense pulsed light sintering—are
combined onto one platform.

5. DISCUSSION AND CONCLUSION

In this article, after a brief introduction of various 3D-printing methods, we reviewed 3D-printed
soft robots according to their actuation methods. We then discussed the integration of actuators
and sensors, followed by advanced 3D-printing technologies (such as multiscale and multimaterial
3D printing) and perspectives on 3D-printing technologies. 3D printing enables the fabrication of
multimaterial, multiscale, and multifunctional soft robots. The further development of 3D print-
ing for soft robotics will require overcoming the challenges of realizing multimaterial, multiscale,
and multifunctional properties (Figure 13):

1. Multimaterial: The human finger consists of many different parts, such as fat (Young’s mod-
ulus of ∼2 kPa), skin (∼30 MPa), muscle (∼500 MPa), joints (∼750 MPa), nail (∼1 GPa),
tendon (∼1 GPa), and bone (∼20 GPa), which enable its dexterous and stiffness-tunable
motions (Figure 13). Mimicking these properties in fabricated soft fingers requires mul-
timaterial 3D-printing methods, but the currently available 3D-printing technologies still
face various limitations regarding resolution, speed, and material compatibility. The ma-
terials used in SLS and FDM are restricted mainly to thermoplastic materials, which are
unlikely to meet the advanced material demands for highly resilient functional components.
DIW can be used for multimaterial printing, but the material has to solidify after flowing
through the nozzle, and the bonding between different layers in DIW is not tight enough.
Inkjet enables rapid multimaterial printing, but the materials are limited due to the require-
ment of low viscosity, and currently, the commercial elastomers generally cannot exceed
200% strain. DLP 3D printing can realize covalent bonding between different polymers,
but available materials are limited. The development of new materials and the studies on
bonding mechanisms can significantly promote multimaterial 3D printing.

2. Multiscale: Many natural organisms exhibit remarkable designs, with building blocks hi-
erarchically arranged from nanometer to macroscopic length scales. Different scales can
provide different mechanical properties. For example, in a hexactinellid sponge, nanometer-
scaled spheres are arranged to form laminated spicules to increase the fracture strength (193)
(Figure 13). The assembly of these spicules into bundles and the formation of cylindrical
square-lattice structures are reinforced by diagonal ridges at the macroscopic scale, which
provide the highest buckling resistance. 3D printing enables the integration of multiscale
designs in a single structure. However, 3D printers that can fabricate structures across mul-
tiple scales are currently lacking, due to the trade-off between speed and resolution and the
need to incorporate multiscale optical design and multiscale features in one setting.

3. Multifunctional: 3D-printed soft robots demonstrate multiple functions, especially actua-
tion and sensing. Due to the infinite degrees of freedom, nonlinear behavior, hysteresis of
soft materials, complex 3D geometries, spatial distribution ofmultiplematerials, and various
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The emerging challenges of large-scale integration of multimaterial, multiscale, and multifunctional properties by 3D-printed soft
robotics. Hexactinellid sponge adapted with permission from Reference 193.

actuation methods, it is still challenging to realize the controllable actuation of 3D-printed
soft robots at high fidelity (189). Current soft robots have limited sensory capabilities. Im-
plementing complex functions requires next-generation devices to detect their deformation
state, applied forces, and environmental conditions. A fully autonomous soft robot requires
an integrated power system to enable continuous motion. Progress in 3D printing will allow
for the direct printing of soft robots with distinct functional components.
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Soft materials are elastic and can deform with an infinite number of degrees of freedom, mak-
ing control tasks very challenging. Controlling soft robots requires new approaches to modeling,
control, and dynamics. To automatically design the complex 3D trajectories of pneu-net soft ma-
nipulators, Jiang et al. (194) developed a methodology that can match complex 3D trajectories
upon a single pressurization. The 3D motions can be characterized by twisting, bending, and he-
lical deformations, which are enabled by the design of soft segments with programmable chamber
orientations. Huang et al. (195) proposed a variable-curvature kinematic modeling approach for
soft continuum robots, achieving both accurate motion simulation and feedforward control based
on an absolute nodal coordinate formulation. To design 4D-printed soft robots, structure design
and the nonlinear behaviors of soft smart materials should be considered. Recently, theoretical
models have been developed to predict the programmable shape changes of the 3D-printed soft
actuators by incorporating the complex geometries and nonlinear behaviors of the active materials
as well as diverse external stimuli (196–201).

Although 3D-printing technology provides manufacturing freedom and promising possibili-
ties for individualization without adjusting production machines, the 3D-printed objects need to
meet industrial standards to further expand the applicability of 3D printing in various industrial ar-
eas. For example, a variety of 3D-printed upper-limb prostheses have been developed owing to the
promising possibility of producing complex geometries and custom and personalized designs com-
bined with ease of manufacturing. However, to compete with or replace prostheses manufactured
by conventional methods, 3D-printed prostheses should improve on their functions, mechanical
properties, durability, comfort, fabrication accuracy, available materials, and size. Gu et al. (202)
recently developed a soft, low-cost, lightweight (292 g) neuroprosthetic hand that provides simul-
taneous myoelectric control and tactile feedback. This hand not only outperforms conventional
rigid neuroprosthetic hands in speed and dexterity but also can help an individual with a transra-
dial amputation regain primitive touch sensation and real-time closed-loop control.The proposed
manufacturing and design method paves the way for developing the next-generation soft hand.

The field of 3D printing of soft actuators and robots is still new. Demand for 3D-printing
technologies will increase due to their capability to customize application-specific and defect-
specific needs. Integrating all critical points mentioned and finding solutions to cope with the
challenges are essential for achieving autonomous soft robots.
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