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Abstract

This article provides an exposition of the field of adaptive control and its
intersections with reinforcement learning. Adaptive control and reinforce-
ment learning are two different methods that are both commonly employed
for the control of uncertain systems. Historically, adaptive control has
excelled at real-time control of systems with specific model structures
through adaptive rules that learn the underlying parameters while provid-
ing strict guarantees on stability, asymptotic performance, and learning.
Reinforcement learning methods are applicable to a broad class of systems
and are able to produce near-optimal policies for highly complex control
tasks. This is often enabled by significant offline training via simulation or
the collection of large input-state datasets. This article attempts to compare
adaptive control and reinforcement learning using a common framework.
The problem statement in each field and highlights of their results are
outlined. Two specific examples of dynamic systems are used to illustrate
the details of the two methods, their advantages, and their deficiencies.
The need for real-time control methods that leverage tools from both
approaches is motivated through the lens of this common framework.
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1. INTRODUCTION

The overarching goals in the control of a large-scale system are to understand the underlying
dynamics and offer decision support in real time so as to realize high performance. A control
problem can be stated as the determination of inputs into the system so as to have its outputs
lead to desired performance metrics, often related to efficiency, reliability, and resilience. The
challenge that arises is that these decisions must be undertaken in the presence of uncertainties
in the system and in the environment it operates in. Adaptive control (AC) and reinforcement
learning (RL) are two different methods that have been explored over the past several decades to
address this difficult problem in a range of application domains. This article attempts to present
them using a common framework.

An interesting point to note is that the solutions for this problem have been proposed by AC
and RL using two distinct frameworks. A fundamental concept that is common to both of these
methodologies is learning. Despite this commonality, there has been very little cross-fertilization
between these methods. Both methods have distinct advantages in their approach and at the same
time have gaps in application to real-time control. This article presents a first step in provid-
ing a comparison between these two methods, exploring the role of learning, and describing the
challenges that these two fields have encountered.

Sections 2 and 3 are devoted to laying out the fundamentals of AC, with particular emphasis
on how learning occurs in the proposed solutions. This is followed by a brief exploration of RL
in Section 4. Section 5 presents two different examples of dynamic systems that are used to illus-
trate the distinction between the two approaches. Finally, Section 6 is devoted to comparisons,
combinations of the two approaches, and a few concluding remarks.

2. ADAPTIVE CONTROL: PROBLEM STATEMENT

The aim in AC is to design an exogenous input u(t ) ∈ R
m that affects the dynamics of a system

given by
ẋ = f (x, θ , u, t ),

y = g(x, θ , u, t ),
1.

where x(t ) ∈ R
n represents the system state and y(t ) ∈ R

p represents all measurable systemoutputs.
For many physical systems, n � p > m (1). θ ∈ R

� represents system parameters that may be
unknown, and f (·) and g(·) denote system dynamics (which may be nonlinear) that capture the
underlying physics of the system. The functions f (·) and g(·) also vary with t, as disturbances and
stochastic noise may affect the states and output. The goal is to choose u(t) so that y(t) tracks a
desired command signal yc(t) at all t, and so that an underlying cost J((y − yc), x, u) is minimized.
In what follows, the system that is being controlled is referred to as a plant.

As the description of the system in Equation 1 is based on a plant model, and as the goal is
to determine the control input in real time, all control approaches make assumptions regarding
what is known and unknown. The functions f and g are often not fully known, as the plant is
subject to various perturbations and modeling errors due to environmental changes, complexities
in the underlying mechanisms, aging, and anomalies. The field of AC takes a parametric approach
to distinguish the known parts from the unknown. In particular, it is assumed that f is a known
function, while the parameter θ is unknown. A real-time control input is then designed so as to
ensure that the tracking goals are achieved by including an adaptive component that attempts to
estimate the parameters online. A similar problem statement can be made for a linearized version
of the problem in Equation 1, which is of the form

y =W (s, θ )[u], 2.
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where s denotes the differential operator d/dt,W(s, ·) is a rational operator of s, and θ is a parameter
vector. In this linear case, we assume that the structure of W(s) (i.e., the order and net order) is
known but that θ (i.e., the coefficients) is not known.

The following subsections further break down the approach taken to address these problems,
especially in the context of learning and optimization.While the description below is in the context
of deterministic continuous-time systems, similar efforts have been carried out in stochastic and
discrete-time dynamic systems as well (2).

2.1. An Adapt–Learn–Optimize Approach

The goal of the adaptive controller is to ensure that

lim
t→∞

e(t ) = 0, 3.

where e(t)= y(t)− yc(t). As these decisions are required to bemade in real time, the focus of the AC
approach is to lead to a closed-loop dynamic system that has bounded solutions at all time t and a
desired asymptotic behavior as in Equation 3. The central question is whether this can be ensured
even when there are parametric uncertainties in θ and several other nonparametric uncertainties,
which may be due to unmodeled dynamics, disturbances, or other unknown effects. Once this
is guaranteed, the question of learning, in the form of parameter convergence, is addressed. As a
result, control for learning is a central question that is pursued in the class of problems addressed in
AC rather than learning for control (3). Once the control and learning objectives are realized, one
can then proceed to the optimization of a suitable cost J. This sequence of adapt–learn–optimize
is an underpinning of much of AC.

The above sequence can be reconciled with the well-known certainty equivalence principle,
which proceeds in the following manner: First, optimize under perfect foresight, then substi-
tute optimal estimates for unknown values. This philosophy underlies all AC solutions by first
determining a controller structure that leads to an optimal solution when the parameters are
known and then replacing the parameters in the controller with their estimates. The difficulty
in adopting this philosophy to its fullest stems from the dual nature of the adaptive controller,
as it attempts to accomplish two tasks simultaneously, estimation and control. This simultaneous
action introduces a strong nonlinearity into the picture and therefore renders a true deployment
of the certainty equivalence principle intractable. Instead, an adapt–learn–optimize sequence is
adopted, with the first step corresponding to an adaptive controller that leads to a stable solution.
This is then followed by estimation of the unknown parameters, and optimization is addressed at
the final step.

A typical solution of the adaptive controller takes the form

u=C1(θc(t ),φ(t ), t ), 4.

θ̇c =C2(θc,φ, t ), 5.

where θ c(t) is an estimate of a control parameter that is intentionally varied as a function of time,
and φ(t) represents all available data at time t. The nonautonomous nature of C1 and C2 is due
to the presence of exogenous signals such as set points and command signals. A stabilization task
would render these functions autonomous. The functions C1(·) and C2(·) are deterministic con-
structions and make the overall closed-loop system nonlinear and nonautonomous. The challenge
is to suitably construct functions C1(t) and C2(t) so as to have θ c(t) approach its true value θ∗

c and
ensure the stability and asymptotic stability properties of the overall adaptive systems. Several
textbooks have delineated these constructions for deterministic systems (e.g., 4–9). The solutions

www.annualreviews.org • Adaptive Control and Reinforcement Learning 67



in these books and several papers in premier control journals have laid the foundation for the
construction of C1 and C2 for a large class of dynamic systems as in Equation 1.

2.2. Links to Learning and Robustness

With the problem statement as above, it is perhaps clear to the reader that the organic connection
between the AC problem and learning enters through parameters. Given that what is unknown
about the dynamics is the plant parameter θ—or, equivalently, the control parameter θ∗

c —learning
is synonymous with accurate parameter estimation. That is, it is of interest to have the parameter
estimate θ c converge to θ∗

c in the context of control problems and for an estimate θ̂ to converge to
θ in the context of identification problems. The learning goal in either case is to determine condi-
tions under which this convergence takes place. These conditions are linked to properties defined
as persistent excitation and uniform observability (10–14). These persistent excitation properties
are usually associated with the underlying regressor φ and are typically realized by appropriately
choosing the exogenous signals such as r(t) (which is the input into the reference model M).

The assumption that the uncertainties in Equations 1 and 2 are limited to just the parameter
θ , and that otherwise f and g orW(s) is known, is indeed an idealization. Several departures from
this assumption can take place in the form of unmodeled dynamics, time-varying parameters,
disturbances, and noise. For example, the linear plant may have a form

y = [W (s, (θ (t ))) + �(s)] [u+ d(t ) + n(t ) + g(t )], 6.

where d(t) is an exogenous bounded disturbance, n(t) represents measurement noise, and g(t)
represents nonlinear effects. The parameter θ is time-varying and is of the form

θ (t ) = θ∗ + ϑ (t ), 7.

where θ∗ is an unknown constant parameter but is accompanied by additional unknown varia-
tions in the form of ϑ(t). Finally �(s) is due to higher-order dynamics that is not known, poorly
known, or even deliberately ignored for the sake of computational or algorithmic simplicity. In
all of these cases, a robust adaptive controller needs to be designed to ensure that the underly-
ing signals remain bounded, with errors that are proportional to the size of these perturbations.
Similar departures of unknown effects that cannot be anticipated during online operation exist
for the nonlinear system in Equation 1 as well. All AC methods have been developed with these
departures from the idealized problem statements (as addressed in Section 2.1).

As will become apparent in Section 3, the results that have been proposed for a robust adap-
tive controller are intricately linked to learning of the underlying parameters. These aspects and
implications of imperfect learning will be addressed in Section 3 as well.

3. ADAPTIVE CONTROL: RESULTS

A tractable procedure for determining the structure of the functions C1 and C2, denoted as model
reference AC,uses the notion of a referencemodel and a two-step design, consisting of an algebraic
part for determining C1 and an analytic part for finding C2. A reference model provides a structure
to the class of command signals yc(t) that the plant output y can follow. For a controller to exist
for a given plant model so as to guarantee output tracking, the signal yc needs to be constrained
in some sense. A reference model is introduced to provide such a constraint.

In particular, a model M and a reference input r is designed in such a way that the out-
put ym(t) of M for an input r(t) approximates the class of signals yc(t) that is desired to be
followed. With a reference model in M, the algebraic part of the model reference AC corre-
sponds to the choice of C1 with a fixed parameter θ∗

c such that if θc(t ) ≡ θ∗
c in Equation 4, then

limt→∞yp(t) − ym(t) = 0. The existence of such a θ∗ is referred to as a matching condition. With
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such a C1 determined, and noting that θ∗
c could be unknown due to the parametric uncertainty in

the plant, the analytic part focuses on finding C2 such that output following takes place with the
closed-loop system remaining bounded. An alternative to the above direct approach of identifying
the control parameters is an indirect one where the plant parameters are first estimated, and
these estimates are then used to determine the control parameter θ c(t) at each t. The following
sections describe the details of the model reference AC approach for various classes of dynamic
systems, ranging from simple and algebraic cases to nonlinear dynamic ones.

3.1. Linear Plants

This section delineates four different classes of linear plants with parametric uncertainties and
describes the adaptive solution to the problem.

3.1.1. Algebraic systems. Many problems in adaptive estimation and control may be expressed
as (2)

y(t ) = θ∗Tφ(t ), 8.

where θ∗,φ(t ) ∈ R
N represent an unknown parameter and measurable regressor, respectively, and

y(t ) ∈ R represents an output that can be determined at each t. Given that θ∗ is unknown, we
formulate an estimator ŷ(t ) = θT(t )φ(t ), where ŷ(t ) ∈ R is the estimated output and the unknown
parameter is estimated as θ (t ) ∈ R

N . This in turn results in two types of errors, a performance
error ey(t) and a learning error θ̃ (t ),1

ey = ŷ− y, θ̃ = θ − θ∗, 9.

where the former can be measured but the latter is unknown, though adjustable. From Equation 8
and the estimator, it is easy to see that ey and θ̃ are related using a simple regression relation:

ey(t ) = θ̃ Tφ(t ). 10.

A common approach for adjusting the estimate θ (t) at each time t is to use a gradient rule and a
suitable loss function. One example is the choice

L1(θ ) = 1
2
e2y , 11.

leading to the gradient rule

θ̇ (t ) = −γ∇θL1(θ (t )), γ > 0. 12.

That this leads to a stable estimation scheme can be shown using a Lyapunov function,V = θ̃ Tθ̃ ,
as its time derivative, V̇ = −e2y .
3.1.2. Dynamic systems with states accessible. The next class of problems that has been
addressed in AC corresponds to plants with all states accessible. This section presents the solution
for the simple case of a scalar input:

ẋ = Apx+ bpu, 13.

whereAp and bp are unknown,u is the control input and is a scalar, and x is the state and is accessible
for measurement. As mentioned in Section 2.1, the first step is to find a reference modelM, which
takes the form

ẋm = Ahxm + br 14.

1In what follows, the argument (t) is suppressed unless needed for emphasis.
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and is such that the state xm(t) encapsulates the desired solution expected from the controlled plant.
This can be accomplished by choosing a reference input r, choosing Ah to be a Hurwitz matrix,
and choosing (Ah, b) to be controllable so that together they produce an xm(t) that approximates
the signal that the plant is required to track.

With the reference model chosen as above, the next step pertains to the matching condition
(4), stated as follows.

Assumption 1. A vector θ∗ and a scalar k∗ exist that satisfy

Ap + bpθ∗T =Ah, 15.

bpk∗ = b. 16.

Assumption 1 implies that a fixed control exists of the form

u(t ) = θ∗Tx(t ) + k∗r(t ) 17.

that matches the closed-loop system to the reference model. This corresponds to the algebraic
part of the problem described in Section 2.1.

The final step is the analytic part—the rule for estimating the unknown parameters θ∗ and k∗

and the corresponding AC input that replaces the input choice in Equation 17. These solutions
are given by

u= θT(t )x+ k(t )r, 18.

θ̇ = −sign(k∗ )�θ (eTPbm )x, 19.

k̇= −sign(k∗ )γk(eTPbm )r, 20.

where �θ > 0 is a positive definite matrix, γ k > 0 is a positive constant, e = x − xm, and P = PT ∈
R
n×n is a positive definite matrix that solves the Lyapunov equation

AT
mP + PAm = −Q 21.

with a positive definite matrix Q = QT ∈ R
n×n. It can be shown that

V = eTPe+ |k∗| [(θ − θ∗ )T�−1(θ − θ∗ ) + (1/γk )(k− k∗ )2
]

22.

is a Lyapunov function with V̇ = −eTQe and that limt → ∞e(t) = 0 (for further details, see
chapter 3 in Reference 4). In summary, the adaptive controller that is proposed here can be
viewed as an action–response–correction sequence where the action is the control input given by
Equation 18, the response is the resulting state error e, and the correction is the parameter-adaptive
laws in Equations 19 and 20

It should be noted that the adaptation rules in Equations 19 and 20 can also be expressed as
the gradient of a loss function (15),

L2(θ̄ ) = d
dt

{
eTPe
2

}
+ eTQe

2
, 23.

where θ̄ = [θT, k]T, and it is assumed that k∗ > 0 for ease of exposition. It is noted that this loss
function L2 differs from that in Equation 11 and includes an additional component that reflects
the dynamics in the system. It is easy to see that

˙̄θ (t ) = −�∇θ̄L2(θ̄ (t )), � > 0, 24.

and that ˙̄θ (t ) is implementable as �θL2(θ ) = φeTPbm and can be computed at each time t, where
φ = [xTp , r]

T (15). This implies that a real-time control solution that is stable depends critically on
choosing an appropriate loss function.
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The matching condition given in Equation 16 is akin to the controllability condition, albeit
somewhat stronger, as it requires the existence of a θ∗ for a known Hurwitz matrix Am (4, 16). The
other requirement is that the sign of k∗ must be known, which is required to ensure that V is a
Lyapunov function.

3.1.3. Adaptive observers. The AC solution in Equations 18 and 19 in Section 3.1.2 required
that the state x(t) be available formeasurement at each t. A central challenge in developing adaptive
solutions for plants whose states are not accessible is the simultaneous generation of estimates of
both states and parameters in real time. Unlike the Kalman filter in the stochastic case or the
Luenberger observer in the deterministic case, the problem becomes significantly more complex,
as state estimates require plant parameters, and parameter estimation is facilitated when states
are accessible. This loop is broken using a nonminimal representation of the plant, leading to a
tractable observer design. Starting with a plant model as in Equation 2, a state representation of
the same can be derived as given by Luders & Narendra (17):

ω̇1 = 
ω1 + �u,

ω̇2 = 
ω2 + �y,

y = θT
1 ω1 + θT

2 ω2,

25.

where ω = [ωT
1 ,ω

T
2 ]

T is a nonminimal state of the plant transfer functionWp(s) between the input
u and the output y.
 ∈ R

n×n is a Hurwitz matrix, and 
 and � are controllable and are known pa-
rameters. Assuming thatWp(s) has n poles andm coprime zeros, in contrast to a minimal nth-order
representation, Equation 25 is nonminimal and has 2n states. The adaptive observer leverages
Equation 25 and generates a state estimate ω̂ and a plant estimate θ̂ as follows:

˙̂ω1 = 
ω̂1 + �u,

˙̂ω2 = 
ω̂2 + �y,

ŷ = θ̂ T
1 ω̂1 + θ̂ T

2 ω̂2,

26.

where θ̂ = [θ̂ T
1 , θ̂ T

2 ]T and ω̂ = [ω̂T
1 , ω̂

T
2 ]

T. The adaptive law that adjusts the parameter estimates
is chosen as

˙̂
θ = −�

(
ŷp − yp

)
ω̂, 27.

where � is a known symmetric, positive definite matrix.
Analytical guarantees of the stability of the parameter estimate θ̂ in Equations 26 and 27 as

well as asymptotic convergence of θ̂ (t ) to θ can be found in References 10 and 12. Necessary and
sufficient conditions for this convergence require that the regressor ω̂ be persistently exciting.
Several results also exist in ensuring accelerated convergence of these estimates (14, 18–22) us-
ing matrix regressors, a time-varying learning rate for �, and dynamic regressor extension and
mixing.

3.1.4. Adaptive control with output feedback. The two assumptionsmade in the development
of adaptive systems in Section 3.1.2 include matching conditions and the availability of states of
the underlying dynamic system at each instant t. Both are often violated in many problems, which
led to the development of adaptive systems when only partial measurements are available. With
the focus primarily on linear time-invariant plants, the first challenge was to address the prob-
lem of the separation principle employed in the control of linear time-invariant plants (23, 24).
The idea therein is to allow a simultaneous estimation of states using an observer and a feedback
control using state estimates with a linear–quadratic regulator to be implemented, and to allow
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them both to proceed simultaneously in real time and guarantee the stability of the closed-loop
system. The challenge in the current context is that parameters are unknown, introducing an ad-
ditional estimate (of the plant parameter) to be generated in real time. In contrast to the classical
problem, where the closed loop remains linear, the simultaneous problem of generating the pa-
rameter estimate to determine the controller and the feedback control to ensure the generation
of well-behaved parameter estimates introduced intractable challenges.

The starting point is an input–output representation of the plant model as in Equation 2.
Recognizing that estimation and control are duals of each other (25), a similar nonminimal repre-
sentation of the plant as in Equation 25 was used as the starting point to decouple the estimation
of the state from the design of the control input. In particular, an AC input of the form

u(t ) = θT
c (t )ω(t ) + k(t )r(t ) 28.

enabled a tractable problem formulation,whereω(t) is generated as in Equation 25.The added ad-
vantage of the nonminimal representation is that it ensures the existence of a solution that matches
the controlled plant using Equation 28 to that of the reference model. That is, the existence of a
control parameter θ∗ and k∗ such that

u(t ) = θ∗Tω(t ) + k∗r(t ) 29.

ensured that the closed-loop transfer function from r to ymatched that of a reference model with
a transfer functionWm(s), specified as

ym(t ) =Wm(s)r(t ). 30.

That is, the controller in Equation 29 is guaranteed to exist for which the output error ey = yp −
ym has a limiting property of limt → ∞ey(t) = 0. For this purpose, the well-known Bézout identity
(23) and the requirement thatWp(s) has stable zeros were leveraged.

When the adaptive controller in Equation 28 is used, the plant model in Equation 2 and the
existence of θ∗ and k∗ that guarantee that the output error ey(t) goes to zero lead to an error model
of the form

ey = (1/k∗ )Wm(s)[ ¯̃θ
T
φ], 31.

where φ = [ωT, r]T and ¯̃
θ = [(θ − θ∗ )T, (k− k∗ )]T.

The problem of determining the adaptive rule for adjusting ¯̃
θ was solved in a very elegant man-

ner when the relative degree (i.e., the net order) ofWm(s) is equal to 1. In this case, a fundamental
systems concept of a strictly positive real (SPR) transfer function as well as an elegant tool known
as the Kalman–Yakubovich lemma (KYL) (13, 26–30) can be leveraged. The KYL, which was first
proposed by Yakubovich (26) and then extended by Kalman (27), came out of stability theory of
nonlinear systems, Popov’s absolute stability, and the circle criterion (30) and is briefly described
below.

The concept of positive realness arose in the context of stability of a class of linear systems with
an algebraic nonlinearity in feedback. It was demonstrated, notably by Popov, that under certain
conditions on the frequency response of the linear system, a Lyapunov function can be shown
to exist. The KYL establishes the relation between these frequency domain conditions and the
existence of the Lyapunov function (2).

Using the KYL, the following adaptive laws are proposed for the adjustment of the control
parameters:

θ̇ =−sign(k∗ )eyω, 32.

k̇=−sign(k∗ )eyr. 33.
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It can be shown that

V = eTPe+ (1/|k∗|) (||(θc − θ∗ )||2 + |(k− k∗ )|2) 34.

is a Lyapunov function where P is the solution of the KYL for the realization {Am, b, c} ofWm(s),
which is SPR. This follows from first noting that

V̇ = −eT(AT
mP + PAm )e+ 2eTPb(θ̃ Tω + k̃r) − ˙̃

θ
T
eyω − ˙̃keyr.

Since Wm(s) is SPR, the use of the KYL applied to Wm(s) together with the adaptive laws in
Equations 32–34 causes the second term to cancel out the third and fourth terms, and hence
V̇ = −eTQe ≤ 0. The structure of the adaptive controller in Equation 28 guarantees that ey, θ c, k,
ω, yp, and u are bounded and that limt → ∞ey(t) = 0. Additions of positive definite gain matrices to
Equations 32 and 33 as in Equations 19 and 20 are straightforward. Similar to Section 3.1.2, the
action–response–correction sequence is accomplished by u in Equation 28, ey, and the adaptive
laws in Equations 32 and 33.

The choice of the adaptive laws as in Equations 32 and 33 centrally depended on the KYL,
which in turn required thatWm(s) be SPR. An SPR transfer function (4) leads to the requirement
that the relative degree—the difference between the number of poles and zeros ofWp(s)—is unity
and has stable zeros (zeros only in Re[s] < 0), also defined as hyperminimum phase (31). Qualita-
tively, it implies that a stable adjustment rule for the parameter should be based on loss functions
that do not significantly lag the times at which new data come into the system. For a general case
when the relative degree ofWp(s) exceeds unity, it poses a significant stability problem, as it is clear
that the same simple adaptive laws as in Equations 32 and 33 will no longer suffice because the
corresponding transfer functionWm(s) of the reference model cannot be made SPR.

A final note regarding the assumptions made about the plant model in Equation 2 is in order.
For the controller in Equation 29 to allow the closed-loop system to match the reference model
in Equation 30 for any reference input r(t), a reference modelWm(s) with the same order and net
order as that ofWp(s) must be chosen, which implies that the order and net order of the plant must
be known.Determination of a Lyapunov function requires that the sign of k∗ be known.Finally, the
model matching starting with a nonminimal representation of the plant requires stable pole-zero
cancellations, which necessitates that the zeros be stable.

Extensions to a general case with output feedback have been proposed using several novel
tools, including an augmented error approach (4), backstepping (8), averaging theory (32), and
high-order tuners (33). In all cases, the complexity of the adaptive controller is increased, as the
error model in Equation 31 does not permit the realizations of simple loss functions as in Li(θ ),
i = 1, 2. Annaswamy & Fradkov (2) provided a concise presentation of these extensions.

3.1.5. Learning and imperfect learning. As is clear from all preceding discussions, the hall-
mark of all AC problems is the inclusion of a parameter estimation algorithm. In addition to
ensuring that the closed-loop system is bounded and that the performance errors are brought
to zero, all adaptive systems attempt to learn the underlying parameters, with the goal that the
parameter error θ − θ∗ is reduced, if not brought to zero.

Four important implications of learning and imperfect learning should be kept in mind (and
are expanded further in Section 5). The first is the necessary and sufficient condition under which
learning occurs.

Definition 1 (4). Abounded function φ : [t0,∞) → R
N is persistently exciting if there exist

T > 0 and α > 0 such that ∫ t+T

t
φ(τ )φT(τ )dτ ≥ αI, ∀t ≥ t0.
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Morgan & Narendra (12) and Narendra & Annaswamy (4) showed that this condition leads
to convergence of the parameter error in algebraic systems, in dynamic systems with states ac-
cessible, and in dynamic systems with output feedback. Several books and papers have delineated
properties of the exogenous signals in a control system that ensure that the underlying regressor φ

is persistently exciting (4, 7, 10, 11). It should be noted that this property creates a rank N matrix
over an interval even though the integrand is of rank one at any instant τ . This necessary and
sufficient condition on the underlying regressor leads to several desirable properties of the adap-
tive system, including lack of bursting (34–37) and uniform asymptotic stability and robustness to
disturbances (38, 39).

The second implication is the important observation that persistent excitation is not required
for satisfactory performance of the adaptive system; both output estimation and tracking,which are
typical goals in system estimation and control, can be achieved without relying on learning. That
is, a guaranteed safe behavior of the controlled system can be assured in real time even without
reaching the learning goal, as output matching is an easier task, while parameter matching is task
dependent and faces challenges due to spectral properties of a dynamic system. This guarantee
in the presence of imperfect learning is essential and suggests that for real-time decision-making,
control for learning is the practical goal, in contrast to learning for control. It should also be
added that when the excitation level is insufficient or there is simply no persistent excitation, the
parameters will not converge to the true values (40).

The third implication is the strong link between learning and robustness. Ensuring that the
parameter estimates have converged to their true values opens the door to several attractive prop-
erties of a linear system, the foremost of which are exponential stability and robustness to various
departures from idealization. In fact, a treatment of bounded behavior in the presence of persis-
tent excitation has been established globally for the case when these departures are due to external
disturbances (38) and locally for a larger class of perturbations (32).The foundation for these state-
ments stems from the fact that AC systems are nonlinear, and bounded-input, bounded-output
stability is not guaranteed when the unforced system is uniformly asymptotically stable and not
exponentially stable (38, 41).Use of regularization and other modifications, such as projection and
dead zone modifications, has been suggested to ensure robustness when no persistent excitation
properties can be guaranteed (4, 6).

The fourth implication, which rounds off this topic, is this: When there is no persistent exci-
tation and disturbances are present, the closed-loop system can produce large bursts of tracking
error (34–36). That is, imperfect learning exhibits a clearly nonrobust property that leads to a sig-
nificant departure from a tracking or regulation goal, exhibiting an undesirable behavior over short
periods when the tracking error becomes significantly large. A specific example that illustrates this
behavior is the following (34): Consider a first-order plant with two unknown parameters a and b
of the form

yk+1 = ayk + buk, 35.

whose AC solution is given by (42)

uk = 1
b̂k

[−âkyk + y∗k+1

]
. 36.

The results of Goodwin et al. (43) can be used to reparameterize Equation 36 as

uk = −θc1,kyk + θc2,ky
∗
k+1 37.

and propose parameter adjustment rules for θc1,k and θc2,k. These adjustment rules guarantee that
(a) θci ,k and yk are bounded (42); (b) θci ,k converge to constants θ0

ci , which may not coincide with
the true values (44); and (c) yk approaches y∗k as k → ∞ (42). In addition, when φc, k is persistently
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exciting (i.e., satisfies Definition 1), we also have that the estimates θci ,k approach the true values
θ∗
ci . However, when such a persistent excitation is not present and when perturbations are present,
bursting can occur, which can be explained as follows.

Suppose we consider a simple regulation problem with y∗k ≡ 1. The control input in
Equation 37 leads to a closed-loop system of the form

yk+1 = g(θc1,k )yk + h(θc2,k ), 38.

where

g(θc1,k ) = (
a− bθc1,k

)
, h(θc2,k ) = bθc2,k. 39.

This implies that the closed-loop system is (a) unstable if |g(θc1,k )| > 1 and (b) stable if |g(θc1,k )| < 1.
The most troublesome scenario occurs when there is marginal stability—i.e., θc1,k = θ bc1 , where
g(θ bc1 ) = −1. Suppose that that parameters θci ,k become arbitrarily close to θ bci for some k = k0; at
k+
0 , a disturbance pulse is introduced, which can cause the parameters to drift, with θc1,k approach-
ing θ bc1 , which in turn leads to oscillations yk, causing θci ,k to readjust and once again approach
another set of constant values, θ0′

ci . Such a phenomenon has been shown to occur in the absence of
persistent excitation (34), including in continuous-time systems (37). This phenomenon is not pe-
culiar to the specific systems in question and can occur in any dynamic system where simultaneous
identification and control are attempted.

3.1.6. Numerical illustration of learning and imperfect learning. As an example, consider a
continuous-time F-16 model (45), where the nominal dynamics are linearized about level flying
at 500 feet/s at an altitude of 15,000 feet to produce a linear time-invariant system similar to the
one described by Stevens & Lewis (45), with states, inputs, and parameters defined as follows:

x =
[
α

q

]
, u = δe, Ap =

[
−0.6398 0.9378
−1.5679 −0.8791

]
, bp =

[
−0.0777
−6.5121

]
, 40.

where α, q, and δe are the angle of attack (degrees), pitch rate (degrees per second), and elevator
deflection (degrees), respectively. The goal is to control the nominal dynamics using a linear–
quadratic regulator with cost matrices

QLQR =
[
1 0
0 0

]
, RLQR = 1. 41.

Solving the discrete algebraic Riccati equation provides us with a feedback gain vector

θLQR =
[
−0.1536, 0.8512

]T
. 42.

Finally, applying the feedback gain above to the dynamics in Equation 40, along with a reference
input r(t), gives the following closed-loop system, which we choose as the reference system:

ẋm = Apxm + bp(θT
LQRxm + r) = Ahxm + bpr. 43.

Assuming that both states are measurable, the AC goal is to ensure that the plant tracks the refer-
ence system for a given reference signal r(t), regardless of differences between the plant and the
nominal dynamics.

We now introduce a parametric perturbation into the plant model such that the true open-loop
dynamics are given by

ẋ = Āpx+ bpu, 44.
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Figure 1

Simulation results of a simple F-16 model with imperfect learning. (a) The reference signal r(t) to be followed by the reference model
and the plant. Within any given 20-s period, this reference signal does not provide enough excitation for the adaptive system to fully
learn. (b) The tracking error ‖e(t)‖2. The tracking error goes to zero within the first 20-s period, but bursting occurs every time the
reference signal subsequently changes. (c) The parameter error ‖θ̃ (t )‖2. The adaptive system fully learns the true parameters by the end
of the simulation, but while the parameters are not fully learned, bursting occurs.

where

Āp =
[
−0.5078 0.8839
9.4950 −5.3970

]
. 45.

One can verify that Āp, bp, and Ah satisfy the matching condition in Assumption 1 for some θ ∗ and
k∗ = 1. Because the perturbation in the plant’s dynamics is unknown to the control designer, we
choose an initial parameter estimate of θ (0) = θLQR. We assume x(0) = 0. The resulting closed-
loop adaptive systemwith Equations 18, 19, 43, and 44 is simulated. k(t) is set to 1, and �θ is chosen
as the identity matrix. The responses are shown in Figures 1 and 2. In Figure 1b,c, the tracking
error ‖x(t) − xm(t)‖2 and the parameter error norm ‖θ (t) − θ∗‖2 are shown for the reference signal
r(t) shown in Figure 1a, where e(t) = x(t) − xm(t) and θ̃ (t ) = θ (t ) − θ∗. The same is illustrated in
Figure 2a–c as well.

Figure 1 is an illustration of imperfect learning: Although the tracking error in Figure 1b has
gone completely to zero at the end of the initial 20-s interval, the parameter error in Figure 1c
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Figure 2

Simulation results of a simple F-16 model with full learning. (a) The reference signal r(t). In this simulation, the reference signal is
modified during the first 20-s period to provide sufficient excitation for full learning. (b) The tracking error ‖e(t)‖2. Due to full learning
during the first 20 s, the plant tracks the reference model in Equation 43 through subsequent changes in r(t) without bursting. (c) The
parameter error ‖θ̃ (t )‖2. Due to persistent excitation within the first 20-s time window, the adaptive system quickly learns the true
parameters.
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remains nonzero due to lack of excitation in the reference input r(t) (Figure 1a). As a result,
each time r(t) subsequently changes, which could occur at any instant, the plant and reference
model initially move in different directions. The bursting phenomenon is therefore apparent in
Figure 1b because each time r(t) changes, the tracking error explodes to large nonzero values
before the adaptive law is able to correct this behavior. Contrast Figure 1 with Figure 2, in which
the reference system is set to r(t)= sin (0.5t)+ sin (1.5t) during the first 20-s interval to provide the
plant with persistent excitation and allow the parameter error to go to zero alongside the tracking
error, as evidenced by Figure 2c. Learning occurs in this second simulation, and thus no bursting
is exhibited in Figure 2b.

This simple example uses a piecewise constant reference input with large jumps to illustrate the
danger of imperfect learning. In practice, a control designer might not choose such an adversarial
reference input.However, the same phenomenon can be caused by several other potentially adver-
sarial influences on the system that are out of the control designer’s hands, such as state-dependent
disturbances due to unmodeled dynamics (46).

3.2. Nonlinear Systems

We now return to the original problem shown in Equation 1, where we assume that the parameter
θ is unknown. Assuming that the adaptive controller is determined as in Equations 4 and 5, the
question is whether one can determine conditions on the overall closed-loop system determined
by the plant and the controller under which the control objective shown in Equation 3 can be
guaranteed.

An elegant AC solution for a large class of nonlinear systems with guarantees of global stability
can be attributed to what is denoted as a backstepping approach (8, 47, 48). The main feature of
this class of nonlinearities is a triangular structure, with a typical dynamics of the form (48)

żi = γ 0
i (z1, . . . , zi+1) + θTγi(z1, . . . zi+1), i = 1, . . . n− 1, 46.

żn = γ 0
n (z) + θTγn(z) +

[
β0(z) + θTβ (z)

]
u, 47.

where zi denotes the ith element of z, and the functions γ i, β i, and β are all known, with θ as
an unknown parameter, all with suitable dimensions. The backstepping approach involves the
construction of a suitable Lyapunov function that allows a stable adaptive controller even though
a certainty-equivalence-based approach does not readily lead to a suitable structure and overcomes
the fact that the triangular structure does not satisfy a matching condition.

Several approaches to AC of nonlinear systems are based on approximation of nonlinear right-
hand sides by linear ones. There are only a few publications with explicit formulations of dynamic
properties of the overall system, e.g., a paper by Wen & Hill (49) where the nonlinear model is
reduced by standard linearization via finite differences. There are a few results dealing with high-
gain linear controllers for nonlinear systems (50, 51). Other tools, such as absolute stability (52,
53), passivity (54), passification (55–57), and immersion and invariance (58), have led to a successful
set of approaches for AC of nonlinear systems.

An additional approach that requires special mention is AC of nonlinear systems based on neu-
ral networks. The basic principles of using neural networks in control of nonlinear systems have
been addressed in a number of papers (59–62), and this approach is one of the common tools
employed in both AC and RL due to neural networks’ ability to approximate complex nonlinear
maps and powerful interpolation properties. Another approach that has been used is an approxi-
mation of Lyapunov functions for control using neural networks, so that the stability of the closed
loop (63, 64) is guaranteed. The central challenge addressed in all of these works is to come up
with a stable approach that addresses the well-known fact that there is an underlying issue of an
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approximation error that is a function of the compact set over which the neural network is trained.
These problems are difficult to overcome because the goal is to assume that uncertainties can oc-
cur even after training has been completed, and the task at hand is the determination of a real-time
control input that is guaranteed to be well behaved.

4. REINFORCEMENT LEARNING: PROBLEM STATEMENT
AND APPROACH

In contrast to AC, whose evolution has been motivated by stability considerations, RL has been
strongly influenced by notions of optimality, finite states, and dynamic programming. To provide
a narrative comparable to that in the previous section, we begin with a deterministic, nonlinear,
discrete-time dynamic system of the form

xk+1 = f (xk, uk ). 48.

It should be noted, however, that a large part of the RL literature has focused on a stochastic
treatment wherein principles of optimality as well as the entire approach outlined here have clear
analogs.

The goal is to design a control input of the form

uk = π (xk ) 49.

so that an underlying cost Jπ (x0) is minimized, where

Jπ (x0) = lim
k→∞

1
k

k∑
i=0

c(xi,π (xi )), x0 ∈ X , 50.

and π is a deterministic policy that maps x � X to u � U(x).X ⊂ R
n andU ⊂ R

m are desired sets
for the state x and the control input u, respectively. It is assumed that policies π (xk) can be found
such that

0 ≤ c(xk, uk ) ≤ ∞, ∀xk ∈ X , uk ∈U (xk ). 51.

With the above problem statement, optimal control results provide a framework for determining
the solutions of Equation 50. The foundation for this framework comes from the well-known
Bellman equation:

J∗(x) = min
u∈U (x)

{
c(x, u) + J∗( f (x, u))

}
, ∀x ∈ X , 52.

in which the fixed point solution J∗ is the optimal cost. The solution leads to an optimal control
input u∗(xk) that satisfies

u∗(x) = argmin
u∈U (x)

{
c(x, u) + J∗( f (x, u))

}
, ∀x ∈ X . 53.

The dynamic programming approach utilizes the principle of optimality in which the following
cost-to-go problem is solved:

J∗(xk ) = min
uk∈Uk

{
c(xk, uk ) + J∗(xk+1)

}
, 54.

with a boundary condition J∗(x∞) specified. The challenge in solving the Bellman equation comes
from its computational burden, especially when the underlying dimensions of x and u as well as
the sets U and X are large and when f is unknown.

Motivated by these concerns of computational burden and overall complexity in determining
the optimal control input when the model is uncertain, an approximation is employed to solve the
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Bellman equation and forms the subjectmatter of the field of RL,often denoted as approximate dy-
namic (or sometimes neuro-dynamic) programming. The evolution of this field centrally involves
the determination of a suitable approximate cost and a corresponding approximately optimal con-
trol policy.Various iterative approaches, including policy iteration,Q-learning, and value iteration,
have been proposed in the literature to determine the best approximation. Bertsekas (65, 66) and
Watkins & Dayan (67) have published excellent expositions on Q-learning and value iteration. A
brief discussion of policy iteration is given below.

Here, policy iteration is illustrated using the concept of a Q-function. The optimal Q-function
corresponds to the cost stemming from the current control action, assuming that all future costs
will be optimized using an optimal policy. Such a function is defined as the solution to

Q∗(xk, uk ) = c(xk, uk ) + min
u∈U

,Q∗( f (xk, uk ), u). 55.

An attractive property of a Q-function is that it provides a model-free method for determining
the optimal control action, in contrast to Equation 53, which requires f. That is,

u∗(x) = argmin
u∈U (x)

Q∗(x, u). 56.

To construct an approximation Q̂i to Q∗, the following iterative algorithm is used:

Q̂i+1(x, u) = c(x, u) + min
a∈U

Q̂i( f (x, u), a). 57.

An implicit assumption here is that the cost c(x, u) can be determined in Equation 57, even
when the model is unknown, using the concept of an oracle (68). As Q̂i → Q∗, it follows that
the corresponding input from Equation 56 will yield the optimal u∗.

To determine an efficient approximation, a parametric approach is often used. Denoting this
parameter as θ ∈ R

p, we estimate the Q-function as

Q̂θ (xk, uk ) =
p∑
i=1

φi(xk, uk )θi, 58.

where φ(x, u) is a basis function in R
p for the Q-function. One can then associate a parameter θπ

for a particular policy uk = π (xk) by defining

Q̂θπ
(xk, uk ) = φT(xk, uk )θπ . 59.

A particularly successful approximation involves deep neural networks of the form

Q̂θπ
(xk, uk ) = g(xk, uk, θπ ), 60.

where g is a nonlinear function of xk and uk as well as parameters θπ , which represent the weights
of the neural network. This ability to approximate even complex functions has been successfully
leveraged in AC as well (59, 60, 62, 69). The structure of the network g often permits a powerful
approximation and leads to a desired approximation Q̂∗

θ with a minimal approximation error. By
collecting several samples {xk j , ukj , ck j }, j= 1, . . . ,N subject to the policy ukj = π (xk j ), one can com-
pute a least-squares-based solution (70, 71) to compute θπ . One can also use a recursive approach
to determine these parameters, based on a gradient descent rule that minimizes a loss function of
the approximation error, an example of which is the well-known back-propagation approach (72,
73). A large number of variations occur in the type of adjustments used in determining θπ (74–76),
motivated by performance, efficiency, and robustness, an exposition of which is beyond the scope
of this article. Once θπ is determined, an approximate optimal policy is determined as

û(x) = argmin
u∈U (x)

Q̂(x, u) = argmin
u∈U (x)

g(xk, uk, θπ ). 61.
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It should be noted that the same action–response–correction sequence introduced in Section 3
occurs in RL. This follows from Equation 61, which determines the action; Q̂θπ

and φ, which
constitute the response; and Equation 57 together with the underlying gradient-descent-based
neural network update, which represents the correction.

This iterative approach for optimizing the policy and Q-function is predicated on the ability
to interrogate the system through simulations and collect the responses and costs. As these com-
putations are often carried out offline, real-time performance metrics, such as stability, are not
of concern. The focus of the dynamic programming approach, approximate or otherwise, is on
optimality and not stability.

When the problem at hand shifts to that of real-time control, and when the dynamic system
under consideration has uncertainties, the RL approach begins to get tested. Over the past several
years, the scope of RL has been increasingly used to not only learn the optimal policy through
an approximate structure but also carry out this learning when the dynamic system is uncertain.
And it is in the context of the latter problem that the commonality between AC and RL begins to
emerge. As the RL approach is predicated on access to a simulation engine or dataset that enables
repeated exploration of various policies, one of the major uncertainties that must be contended
with is the oft-mentioned challenge of a sim-to-real gap (77, 78), which describes the difficulty of
generalizing a trained policy to a new environment. This challenge takes even more of a center
stage in the context of real-time control.

Three points should be noted in particular. First, RL algorithms, whether based on nonrecur-
sive or recursive approaches, are geared toward ensuring that the function approximations (e.g.,
Q̂), and not the parameter estimates of θπ , converge to their true values. It should be noted that
when the dimensions of θπ are large, as in deep networks, the focus is exclusively on the opti-
mization of the underlying Q-function, value function, or policy. Any such overparameterization
often negates identifiability and can lead to imperfect learning, as there can be infinite θ̂ that
solves

Q̂θ̂π̂
(x, u) = Qθπ

(x, u).

Second, the parametric updates, whether using least squares or recursive counterparts, are exclu-
sively an offline exercise. As we move the focus of the RL methods toward an online solution, a
huge set of obstacles that were mentioned in the previous section will have to be addressed here.
Imperfect learning can often occur because of a lack of identifiability or lack of convergence. It is
not clear that robustness properties will always be satisfied or that bursting can be avoided. Third,
the approximation error in Q is a function of the input u and the state x. This in turn implies
once again that in real time, any perturbations that occur due to departures from the simulation
environment, because of unforeseen anomalies, environmental changes, or modeling errors, may
lead to fundamental questions of stability and robustness.

5. ILLUSTRATIONS OF ADAPTIVE CONTROL AND REINFORCEMENT
LEARNING

To better elucidate the two approaches of AC and RL, this section describes two specific
examples—a linear and a nonlinear dynamic system—and delineates the two approaches.

5.1. Example 1: Control of a Linear Discrete-Time Plant

A typical problem formulation in this class is of the form (79)

xk+1 = Axk + Buk, 62.
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where A and B are unknown matrices. The control objective is to determine uk such that the cost
function

J(A,B) def= lim sup
T→∞

1
T

T∑
i=1

[
xTi Qxi + uTi Rui

]
, 63.

where Q = QT > 0 and R = RT > 0, is minimized. To address this objective, the following first
describes the AC approach (both direct and indirect) and then the RL approach.

5.1.1. Adaptive control approach. In what follows, we outline two different approaches, indi-
rect and direct, where in the former, the plant parameters are first estimated and then the control
parameters are determined, whereas in the latter, the control parameters are directly estimated.

5.1.1.1. Indirect approach. It is well known that for this linear–quadratic system, the following
control input is optimal:

uk = K (A,B)xk, 64.

where

K (A,B) = −[BTPB+ R]−1BTPA

and P solves the discrete-time algebraic Riccati equation

P = ATPA− ATPB(BTPB+ R)−1BTPA+ Q.

The results of Campi & Kumar (79) show that the problem becomes significantly more com-
plex when A and B are unknown, and the control gain in Equation 64 must be replaced with one
that depends on parameter estimates of A and B. Suppose we define (ALS

k ,BLS
k ) as the least-squares

estimate of [A, B], i.e.,

(ALS
k ,BLS

k ) def= argmin(A,B)∈�

k∑
s=1

||xs − Axs−1 − Bus−1||2. 65.

Becker et al. (44) showed that for autoregressive–moving-average with exogenous inputs
(ARMAX) systems, which are equivalent representations of the plant in Equation 62, the param-
eter estimates can converge to false values with positive probabilities when measurement noise is
present in Equation 62; Borkar & Varaiya (80) provided an example of the above statement for
general Markov chains. Campi & Kumar (79, 81) reported an interesting fix for this problem that
enabled a suboptimal solution. The following assumptions are made.

Assumption 2. The true value (A0, B0) lies in the interior of a known compact set �0, and
(A, B) is stabilizable at all points in this compact set �0.

The approach used by Campi & Kumar (79) consists of adding a bias term to the cost J in
Equation 63 so as to lead to estimates of the form

(ALS
k ,BLS

k )= argmin(A,B)∈�

k∑
s=1

||xs − Axs−1 − Bus−1||2

+μkJ(A,B) if k is even 66.

= (Âk−1, B̂k−1) if k is odd. 67.

In the above,μk is a deterministic sequence that tends to infinity as o(log k).The points to note here
are that (a) the estimation is based on a nonrecursive approach, (b) the problem is strictly focused
on a stabilization task, and (c) the solution exploits the linear dynamics and the quadratic structure
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of the cost. The typical procedure in the indirect approach is to utilize the updated estimates of A
and B to determine a controller using Equation 64 so as to render the control input optimal. This
often requires sufficient persistent excitation to precede the control computation, which may not
always be possible.

In addition to the above, Guo and colleagues (82–84) used diminished persistent excitation
with time to lead to adaptive optimal control in stochastic systems. Elements of the approach
used by Campi & Kumar (79) have also been employed by Dean et al. (85) and Abbasi-Yadkori
& Szepesvári (86) to derive nonasymptotic bounds with the requirement that the estimation er-
ror in A become arbitrarily small for optimal control to be guaranteed, with persistent excitation
introduced through the injection of noise.Here, too, the optimization cost centers around a stabi-
lization task rather than tracking; the latter can make all associated derivations significantly more
challenging, as there is a potential to lead to imperfect learning and therefore bursting.

5.1.1.2. Direct approach. Unlike the previous case, in a direct approach the control parameters
themselves are directly estimated. To describe this method, we start with a single-input version of
Equation 62, rewritten as

xk+1 = Axk + buk, 68.

where for ease of exposition only A is assumed to be unknown. Suppose that a nominal value of A
is given by Am, the reference system is designed as in Section 3.1.2 as

xm(k+1) = Amxmk + bumk, 69.

and umk is designed to optimize a cost function

J(Am, b)
def= lim sup

T→∞

1
T

T∑
i=1

[
xTmiQxmi + uTmiRumi

]
. 70.

Noting that the cost function is quadratic and the dynamics in Equation 69 is linear, the optimal
control input is given by umk = kToptxmk, which leads to a reference system xm(k + 1) = Ahxmk, where
Ah is Schur-stable and is such that it leads to an optimal cost of J. We assume that (A, b) satis-
fies Assumption 1, with Equation 16 satisfied for k∗ = 1. The structure of the optimal input umk
suggests that as θ∗ is not known, an AC input is chosen as

uk = θT
k xpk, 71.

which leads to closed-loop adaptive system

xk+1 = (Ah + bθ̃T
k )xk, 72.

where θ̃k = θk − θ∗. To drive parameter error θ̃k, we attempt to drive ek to zero, where ek = xpk −
xmk.

As in Section 3.1.2, we derive an error model that relates ek to θ̃k, which takes the form

e(k+1) = Ahek + bθ̃T
k xk. 73.

The question then is whether it is possible to adjust the parameter estimate as

θk+1 = θk − γ g(ek, θk ) 74.

using a suitable gradient g(ek, θ k) that ensures stability, convergence of ek to zero, and optimality.
The following constants, both scalars and matrices, are first defined:

P=PT > 0 such that AT
h PAh − P = −Q, Q = QT > 0, 75.

c= 2AT
h Pb, d > bTPb, d0 = d

bTPb
. 76.
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Next, we define a few variables:

N (x)= 1
1 + αγ dxTx

, 77.

ωk+1 =Ahωk + b αγ xTk xkεyk, 78.

εk = ek − ωk, 79.

εyk =N (xk )
(
cTεk + d0bTP(ek+1 − Ahek )

)
. 80.

In the above, Equation 75 is the Lyapunov equation for discrete linear time-invariant systems,
yielding a positive definite solution P; d0 is a positive constant that exceeds unity and is useful in
developing the update law for θ k; c determines a unique combination of a vector of state errors and
plays a central role that will become clear below; and ωk and εk (and therefore εyk) are augmented
state and output errors, respectively, that lead to a provably correct adaptive law that is in lieu of
that in Equation 73, as will be seen below.

With the above variables and constants, we choose the adaptive law (87)

θk+1 = θk − γ εykxk. 81.

What is remarkable about the choice of the gradient g(·, ·) as εykxk is that it causes the positive
definite function

Vk = 2εTk Pεk + 1
γ

θ̃T
k θ̃k 82.

to become a Lyapunov function, i.e., �Vk ≤ 0. To provide a rationale for the choice of V in
Equation 82, the following theorem is needed.

Theorem 1 (87). A dynamic system given by

εk+1 =Ahεk + bνk, εyk = cTεk + dνk, 83.

νk = θ̃T
k xk − αγ xTk xkεyk, 84.

together with the adaptive law in Equation 81, permits the Lyapunov function in
Equation 82 with a nonpositive decrease

�Vk = −2εTk Qεk − 2(d − bTPb)ν2
k − (2α − 1)γ ε2ykx

T
k xk. 85.

The crucial point to note here is that the augmented state error εk and εyk in Equations 79
and 80 can be shown to satisfy the dynamic relations in Equation 83. Thanks to Theorem 1
(87), we have therefore identified a provably correct law (Equation 81) for the control param-
eter θ k in Equation 71. This leads to the complete solution using the direct AC approach, given
by Equations 71 and 81.

Several properties follow from Theorem 1. First, θ k and εk are bounded. Second, as k → ∞,
εk, νk, and εykxk all approach zero. Third, because νk = θ̃T

k xk − αγ xTk xkεyk, it follows that θ̃T
k xk

approaches zero asymptotically. Fourth, the true state error ek approaches zero asymptotically, as
Ah is Schur-stable. And fifth, all variables in the closed-loop system are bounded. The dynamic
model in Equations 83 and 84 can be viewed as an SPR transfer function between νk and εyk. The
normalization N(x) as in Equation 77 and the choice of εyk as in Equation 80 were necessary to
create such an SPR operator, which clearly adds to the complexity of the underlying solution.
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5.1.2. A comparison of direct and indirect approaches. A few obvious distinctions are appar-
ent from the discussions in the preceding sections. While the indirect approach is motivated by
optimality and the direct approach is motivated by stability, the assumptions made—Assumption 2
in the indirect approach and Assumption 1 in the direct approach—make the class of systems in
question quite comparable. Assumption 2 requires controllability in the entire compact set, which
may not be satisfied by systems where Assumption 1 does not hold. For ease of exposition, noise
has not been included, and only a single-input case has been considered in the discussions in
Section 5.1.1.2. Extensions were reported by Annaswamy & Fradkov (2 and references therein).

The difference between the two approaches, however, becomesmore pronounced as onemoves
toward the tracking problem. It is not easy to ensure a stable controller with the indirect approach
unless the parameter estimation error becomes arbitrarily small, which in turn makes the depen-
dence on persistent excitation a strong one; in this regard, a direct approach is more robust, as
imperfect learning is implicitly accounted for in its formulation. Its development, however, en-
tails more complexity because the algorithm requires an appropriate gradient function g(·) that
leverages notions of SPR transfer functions.

5.1.3. Reinforcement learning approach. Note that the RL approach outlined in Section 4,
particularly in Equations 59 and 61, is directly applicable to an optimal choice of uk in Equation 62
by replacing the right-hand side of Equation 50 with that of Equation 63. Several variations of
this approach have been suggested in the past few decades, as mentioned in Section 4.

5.2. Example 2: Control of a Continuous-Time Nonlinear Plant

The problem that we consider is a nonlinear plant of the form

ẋ = f (x) + g(x)u, 86.

where there are some uncertainties, which may be either in f or in both f and g. The goal is to
choose u so as to minimize a cost function

J(x0, u) =
∫ ∞

0
c(x(t ), u(t ))dt, x(0) = x0. 87.

5.2.1. Adaptive control approach. We start with the case when the dynamic system in
Equation 86 is affine and controllable, where f (x) is assumed to be unknown, and g(x) = B. With-
out loss of generality, it is assumed that f (0) = 0. With this assumption, we rewrite Equation 86
as

ẋ = Ax+ B[u+ f1(x)], 88.

where A and B denote the Jacobian evaluated at the equilibrium point x = 0, and (A, B) is a
controllable pair. The uncertainty in f and g in Equation 86 can be assumed to pertain to A, B, and
f1(·).

Similar to Example 1, we propose a reference system

ẋr = Arxr + Br[ur + f1r(xr )] 89.

whereAr,Br, and f1r(x) can be viewed as nominal values of thematricesA andB and the nonlinearity
f1(x). Suppose that a nominal controller is designed as

ur = − f1r(xr ) + �l ,rxr + ucom, 90.

where �l, r is such that Ar + Br�l, r = AH, with AH a Hurwitz matrix, and ucom is such that xr(t)
tracks a desired command signal xcom(t) as closely as possible and such that the cost function in
Equation 87 corresponding to xr and ucom is minimized.
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Suppose that the plant dynamics in Equation 88 had uncertainties that satisfy the following
assumptions.

Assumption 3. The nonlinearity f1(x) is equal to �′
n�n(x), where �′

n ∈ R
m×l is unknown,

while �n(x) ∈ R
l is a known nonlinearity.

Assumption 4. The unknown linear parameters A and B are such that a matrix �∗ ∈ R
m×m

exists such that

A+ B�∗ = AH 91.

and a diagonal matrix 
 exists, with known signs for all diagonal entries, such that

B = Br
. 92.

The plant equation in Equation 88 then becomes

ẋ = Ax+ Br

[
u+ 
−1�′

n�n(x)
]
, 93.

where the uncertainties in the plant to be controlled are lumped into the matrices 
 ∈ R
m×m

and �′
n ∈ R

m×l . The structure of the uncertainty 
 in Equation 92 often occurs in many practi-
cal applications in the form of a loss of control effectiveness. This is typically due to unforeseen
anomalies that may occur in real time, such as accidents or aging in system components, especially
in actuators. Parametric uncertainty �′

n in the nonlinearity f1(x) may be due to modeling errors.
As nonlinearities are always more difficult to model even with system identification, it may not
always be possible to accurately identify the parameters of nonlinear effects even if the underlying
mechanisms may be known; this provides the rationale for Assumption 3. The problem here is
therefore control of Equation 93, where Br and �n(x) are known but A, 
, and �′

n are unknown.
Overall, the model structure in Equation 93 is utilized to develop the AC solution.

The adaptive controller is chosen as follows:

u= �̂(t )�(t ), 94.
˙̂� =−γBTPe�T, e = x− xr, 95.

where �̂ is a parameter estimate of �,

� := [

−1, −
−1�′

n, �∗] , � :=

⎡⎢⎣ ucom
�n(x)
x

⎤⎥⎦. 96.

The efforts in AC guarantee that the closed-loop system determined by Equations 93–95 is
globally stable for any initial conditions in x(0), xr(0), and �̂(0).

This follows by deriving an error model that relates e and the parameter error �̃ = �̂ − �,
which takes the form

ė = AHe+ Br
[u− ��]. 97.

That is, the key component that connects the uncertain parameter � to the performance error e
is a regressor �. Together with the AC input as in Equation 94, we get a fundamental error model
of the form

ė = AHe+ Br
[�̃�]. 98.

The following comments can be made regarding the choice of the adaptive controller and the
behavior of the closed-loop system.
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1. Three different elements are employed in the regressor �: ucom(t) in Equation 90, �n(x(t)),
and the state x. These are utilized to address the three different sources of parametric uncer-
tainties, 
, �n, and �∗. The first regressor component, ucom(t), comes predominantly from
the reference system. It is assumed that sufficient information is available about the nominal
system to be controlled and the desired command xcom(t) so as to generate ucom(t) at each
t. The second and third regressors are determined by the linear and nonlinear aspects of
the plant dynamics, which is assumed to be available based on the physics of the system.
Together, these regressors lead to an error model structure as shown in Equation 98. Both
this error model and a real-time performance metric such as a loss function or a Lyapunov
function are used to determine the parameter learning algorithm in Equation 95.

2. It can be shown that V = eTPe+ Tr(�̃T(
TS)�̃) is a Lyapunov function for the error sys-
tem specified by Equations 95 and 98,where S= �−1,with the symmetric part of
S positive
definite.

3. There are several extensions of the AC approach to broader nonlinear systems, as in
Equations 46 and 47 (2, 8).

5.2.2. Reinforcement learning approach. One particular application of RL to control the
system in Equation 86 begins with the following assumption (88, 89).

Assumption 5. There exist a functionV0 ∈ P and a feedback control policy u1 such that

L(V0(x), u1(x)) ≥ 0, ∀x ∈ R
n, 99.

where, for any V ∈ C1 and u ∈ R
m,

L(V , u) = −∇V T(x)( f (x) + g(x)u) + c(x, u), 100.

where V0 is denoted as the value function.

It is clear that Assumption 5 assumes that despite the uncertainty in Equation 86, a stabilizing
policy u1(x) can be found for someV0. It should also be noted thatV0 serves as a Lyapunov function
for this system. It then follows that V0 could be used as an upper bound for the cost incurred using
this stabilizing policy—that is,

J(x0, u1) ≤ V0(x0), ∀x0 ∈ R
n. 101.

This stability assumption is then connected with optimality through the Hamilton–Jacobi–
Bellman equation, necessitating the following assumption.

Assumption 6. There exists a proper, positive definite, and continuously differentiable
function V∗(x) such that the Hamilton–Jacobi–Bellman equation holds:

H(V ∗ ) = 0, 102.

where

H(V ) = ∇V T(x) f (x) + q(x) − 1
4
∇V T(x)g(x)R−1(x)gT(x)∇V (x).

Such a V∗ can be easily shown to be a Lyapunov function such that

V ∗(x0) = min
u

J(x0, u) = J(x0, u∗ ), ∀x0 ∈ R
n, 103.

corresponds to the optimal value function and also yields the optimal control input

u∗(x) = −1
2
R−1(x)gT(x)∇V ∗(x). 104.
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Finding a V∗ that solves Equation 102 is too difficult. In addition, it is easy to see that it requires
knowledge of f and g. Policy iteration is often used to find V∗, where the control input u is iterated,
and with each new input u, the corresponding Lyapunov function is computed. The following
procedure is often utilized:

1. For i = 1, 2, . . . , solve for the cost function Vi(x) ∈ C1, with Vi(0) = 0, from the partial
differential equation

L(Vi(x), ui(x)) = 0. 105.

It can be seen that solving for Equation 105 requires the immediate cost c(x, ui), which may
be available through an oracle when the plant model is not known.

2. Update the control policy using ui and the value function estimate Vi as

ui+1(x) = −1
2
R−1(x)gT(x)∇Vi(x). 106.

That is, instead of solving Equation 102, the approach seeks to find a sequence of Vi that satisfies
Equation 105. Step 1 is referred to as policy evaluation, and step 2 is referred to as policy im-
provement. Then convergence of the stabilizing policy u1 to an optimal policy u∗ can be achieved,
stated in the following theorem.

Theorem 2. Suppose Assumptions 5 and 6 hold, and the solution Vi(x) ∈ C1 satisfying
Equation 105 exists, for i = 1, 2, . . . . Let Vi(x) and ui + 1(x) be the functions generated from
Equations 105 and 106. Then the following properties hold, �i = 0, 1, . . . :

1. V ∗(x) ≤ Vi+1(x) ≤ Vi(x),∀x ∈ R
n.

2. ui + 1 is globally stabilizing.
3. Suppose there existV o ∈ C1 and uo such that ∀x0 ∈ R

n,we have limi → ∞Vi(x0)=Vo(x0)
and limi → ∞ui(x0) = uo(x0). Then, V∗ = Vo and u∗ = uo.

The problem that still remains is the following. The solution of Equation 105 that deter-
mines a global solution Vi(x) for all x and policies ui(x), especially when the precise knowledge
of f or g is not available, is still nontrivial. Also, as mentioned earlier, any approximation-based
approaches, such as RL, pose problems of stability and robustness. As stated succinctly by Jiang &
Jiang (89, p. 2919), “although approximationmethods can give acceptable results on some compact
set in the state space, they cannot be used to achieve global stabilization.” Any efforts to reduce
the approximation error, including neural networks and sum of squares, carry with them a large
computational burden in addition to issues of robustness. By contrast, stability and robustness
properties are clearly delineated with the use of AC. However, these guarantees are predicated on
specific structures of dynamic systems such as Equation 88 or Equations 46 and 47.

6. COMPARISONS, COMBINATIONS, AND CONCLUSIONS

We begin with comparisons of the AC and RL approaches using Examples 1 and 2. The first point
to note from Example 1 is that in AC, both the direct and indirect approaches explicitly used the
structure of the system model. The parameters A and B of the linear model are tied intimately to
the knowledge of the system model and its order, input, and dimensions. The indirect approach
relied further on persistent excitation and therefore on learning the parameters accurately; the
direct approach, by contrast, did not require persistent excitation, allowed imperfect learning, and
still ensured stable control. Optimality followed learning in the indirect approach and followed
stability in the direct approach. Unlike AC, the RL approach is agnostic to the model structure.
It is assumed that an oracle or a simulation engine is available that allows offline experimentation,
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Schematics of (a) an adaptive controller and (b) reinforcement learning. The adaptive controller is an online solution that monitors the
performance in real time (such as the loss function L1 in Equation 11 or L2 in Equation 23) and suitably designs the control input u.
The adaptive controller uses the plant model structure to identify an underlying regressor φ and a reference model to determine both
the input and a parameter estimate θ . The regressor and the reference model lead to an error model that relates the parameter error
to the real-time performance. This error model is utilized to determine the rule by which the parameter estimate θ is adjusted. Such an
adaptive system is always guaranteed to achieve the desired real-time performance, even with imperfect learning. In addition, if the
regressor φ satisfies persistent excitation properties, then parameter learning takes place as well. Reinforcement learning is an offline
approach where the oracle is the entity used to generate the response to a policy choice and can be viewed as the plant model. An
immediate cost c(x, ui) is computed based on the system response generated by the oracle and is used to update the estimated value
function Vi − 1(x). An iterative procedure is used to update both the policy as ui and estimates of value function, using which an optimal
policy u∗(x) is obtained after ui(x) converges. If the oracle is identical to the plant dynamics, then applying u∗(x) to the plant online
achieves the optimal value function V∗(x).

and that one can collect a large amount of data pertaining to (x,u) pairs, often enough to permit the
learning of the optimal policy.When the underlying Bellman equation becomes computationally
infeasible to solve, approximations are deployed. The optimality of the resulting policy improves
as the approximation error becomes small.

All of the above statements apply to Example 2 as well.The AC approach relied completely on a
model structure, including the order as well as the nature of the nonlinearities present.The specific
result outlined required the system to be feedback linearizable. Here, too, imperfect learning was
possible by leveraging the model structure, including that of the nonlinearities. The focus once
again was on stability, and as before, optimality follows once learning takes place. The specific RL
approach that was discussed proposed an optimal solution for a class of nonlinear systems under
some assumptions.

Schematics of both the AC and RL approaches are shown in Figure 3. The RL approach
indicated in the figure illustrates popular methods, including the Q-learning approach described
in Section 4 andmethods based on temporal-difference learning (90). It should be noted that there
are online methods based on RL applied to control of nonlinear systems control (89, 91, 92) that
provide analytical guarantees based on assumptions such as knowledge of an initial stable control
law u0 and a sufficiently accurate oracle to reduce the sim-to-real gap.
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Bothmethods require assumptions and restrictions.The AC approach is predicated on amodel
structure, with the rationale that the underlying problem is grounded in physical mechanisms and
is therefore amenable to a model structure that could be determined from an understanding of
physical laws, conservation equations, and constitutive relations. Assumptions that equilibrium
points, order, model structure, and feedback linearizability are all known are not always valid.
These assumptions are stress tested as the scope of the systems being addressed increases in com-
plexity, size, and scale. Not all systems can be modeled as in the above examples. Complex systems
and stringent performance specifications of efficiency, reliability, and resilience pose tremendous
challenges, as unmodeled components introduce uncertainties of various kinds, and in real time.
The RL approach outlined here is model agnostic and is therefore applicable to a wider class
of systems. However, restrictions arise because it is a data-intensive approach—often requiring
training on an offline dataset or through the use of an environment simulator. This implies in
turn that there is sufficient information available about the true system to replicate in the form of
a simulation engine or collected dataset. That is, the sim-to-real gap is a huge challenge that must
be addressed to render RL applicable in real time for safety-critical systems. As there are always
unknown uncertainties that can occur and cannot be anticipated or incorporated in the simula-
tion engine, the desirable properties of robustness, stability, reliability, and resilience all need to be
addressed. In all cases, these decisions must be synthesized with inaccurate, partial, and limited in-
formation in real time,which in turn imposes challenges for both approaches, albeit different ones.

While the challenges seem formidable and pose roadblocks for both approaches, they also
present tremendous opportunities. The fact that the two approaches are different suggests that
there are ways in which they could be integrated so as to realize their combined advantages. The
focus of AC on stability and RL on optimality suggests that one such candidate is a multiloop
approach, with an inner loop focused on AC methods that are capable of delivering real-time per-
formance with stability guarantees and an outer loop focused on RL methods that can anticipate
an optimal policy when the sim-to-real gap is small (93–97).

The problem of controlling a large-scale dynamic system in real time is exceedingly complex.
The two solutions that have been delineated in this article, AC and RL, are huge subfields of
control that have been researched over the past several years. AC has been synthesized through
the lens of stability, parameter learning, online control, and continuous-time systems, and RL
has been synthesized through an optimality-based and data-driven viewpoint. It is clear that the
concept of learning is common to both. Stability is followed by learning and optimality in AC,
while RL attempts to achieve optimality through learning and simulation. While analytical rigor
and provable correctness in real time are hallmarks of AC, they are also plagued with several re-
strictions and difficulty in extending the approach to complex dynamic systems. Comparatively,
RL has achieved enormous success in difficult problems related to games and pattern recogni-
tion, although the lack of guarantees of stability and robustness is a deficiency that remains to be
addressed. Both approaches have learning as a fundamental tenet and employ an iterative proce-
dure that consists of an action–response–correction sequence.Despite these rich intersections and
commonalities, little effort has been expended in comparing the two approaches or in combining
their philosophies and methodologies. This article takes a first step in this direction.

There are several directions that were not explored here owing to space limitations. Each field
is vast, with several subtopics that have deep and varying insights and rich results. The intent here
is not to provide a comprehensive exposition of these topics but rather to expose the reader to
these distinct inquiries into an extremely challenging problem. Several societal-scale challenges,
including sustainability, quality of life, and resilient infrastructure, have in their core the need to
analyze and synthesize complex systems. AC and RL are fundamental building blocks that need
to be refined to meet this need.
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