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Abstract

Optimal transport began as the problem of how to efficiently redistribute
goods between production and consumers and evolved into a far-reaching
geometric variational framework for studying flows of distributions on met-
ric spaces. This theory enables a class of stochastic control problems to reg-
ulate dynamical systems so as to limit uncertainty to within specified limits.
Representative control examples include the landing of a spacecraft aimed
probabilistically toward a target and the suppression of undesirable effects
of thermal noise on resonators; in both of these examples, the goal is to reg-
ulate the flow of the distribution of the random state. A most unlikely link
turned up between transport of probability distributions and a maximum
entropy inference problem posed by Erwin Schrödinger, where the latter
is seen as an entropy-regularized version of the former. These intertwined
topics of optimal transport, stochastic control, and inference are the subject
of this review, which aims to highlight connections, insights, and computa-
tional tools while touching on quadratic regulator theory and probabilistic
flows in discrete spaces and networks.
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1. INTRODUCTION

In 350 BCE, Aristotle, in his chief cosmological treatise,�ερί oυρανoύ (On the Heavens), stated,
“Of all curves enclosing a given area, the circle has the shortest perimeter.” This isoareal problem
has a celebrated dual version:When the Phoenician princess Dido arrived in North Africa around
820 BCE, the Numidian king Jarbas offered her as much land as she could enclose with an oxhide
to found Carthage (as described in book 4 of Virgil’s Aeneid). Dido had the hide cut into very fine
strips, and with these encircled a hill that eventually became the city’s citadel, known as Byrsa Hill,
after the Greek word for oxhide. This is the oldest known isoperimetric problem.

Does a circle (or a semicircle along a coast) truly enclose the maximum area for its perimeter?
Although people have believed this to be true since ancient times, it took the development of the
calculus of variations in the late seventeenth and eighteenth centuries—thanks mainly to Newton,
the Bernoulli brothers, de l’Hôpital, Euler, and Lagrange—to prove it. Let us recall the so-called
simplest problem in the calculus of variations (1), formulated as follows.

Problem 1. Let L : [t0, t1]× R
n × R

n → R be of class C1, let

X := {x ∈ C1[t0, t1]|x(t0) = x0, x(t1) = x1},

and let the functional I : X → R be given by

I(x) =
∫ t1

t0

L(t, x(t ), ẋ(t ))dt, ẋ(t ) = dx
dt

(t ).

Minimize I over X .

For instance, if n= 1 andL(t, x, ẋ) = √1+ ẋ2, corresponding to arclength, the problem consists
in finding the shortest path joining two points in the (t, x) plane, which generalizes to the search
for geodesics on a Riemannian manifold. Suppose we nowmake the following essentially cosmetic
transformation: We turn Problem 1 into the optimal control problem

min
(x,u)∈(X×U )

J(x, u)=
∫ t1

t0

L(t, x(t ), u(t ))dt 1a.

subject to ẋ(t )= u(t ), 1b.

where U := {u : [t0, t1]→ R
n, u continuous}. This has the form of a steering problem between the

two given points x0 and x1.
Suppose further that we know these two points only approximately, in that we have a probabil-

ity density for each of them, say ρ0 and ρ1, respectively. Our problem has now become a stochastic
control problem where the only source of uncertainty comes from the state boundary conditions.
If noise is present in Equation 1b, then we have an additional source of uncertainty to deal with.
These two formulations of stochastic control are the subject matter of this article, with roots in
optimal mass transport on one side and the theory of Schrödinger bridges on the other. The
second problem is also connected to work in stochastic control by Fleming and others on
the logarithmic transformation of parabolic partial differential equations (1, 2), controllability of
the Fokker–Planck equation (3), and ensemble control (4, 5). In the case when the system is linear
(not necessarily an integrator) and the boundary distributions are Gaussian, these problems also
relate to contributions by Skelton and his coworkers on covariance control (6–8). The latter con-
cerned infinite-horizon stationary control; advances in the finite-horizon case are more recent
(9–14). Either case can be thought of as the steering of probability distributions—the problem
of controlling uncertainty. This paradigm has emerged in recent times (15, 16) as an important
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variant of stochastic control, with several modern applications in guidance, sensing, control of
robot swarms, and so on (9, 10, 17–24).

The article is organized as follows. In Section 2, we give a crash course on optimal mass trans-
port and Schrödinger bridge theory; the latter can be viewed as a regularization of the former. In
Section 3, we reformulate the optimal mass transport problems as density control problems for
some simple dynamics. The extensions to more general dynamics and scenarios are developed in
Sections 4 and 5. In particular, Section 4 focuses on linear–quadratic–Gaussian cases, which ex-
tend the covariance control theory. The cases with general marginal distributions and nonlinear
control-affine dynamics are studied in Section 5. This is followed in Section 6 by a discussion of
a discrete counterpart of the density control problem over Markov decision processes (MDPs).

2. PRELIMINARIES ON OPTIMAL TRANSPORT

The theory of optimal mass transport (OMT)—also known as the earth mover’s problem—is con-
cerned with transporting mass from a source distribution to a target distribution with minimum
effort. Given two nonnegative measures μ0 and μ1 on R

n with equal total mass,1 Monge’s (25)
formulation of OMT seeks a transport map T : R

n → R
n : x �→ T (x) that moves mass from

distribution μ0 to μ1 in the sense that T	μ0 = μ1—that is, μ1(E) = μ0(T−1(E)) for every Borel set
E in R

n—and minimizes the total cost of transportation,∫
Rn
c(x,T (x))μ0(dx). 2.

Here, c(x, y) denotes the transportation cost per unit mass from point x to y; popular choices are
c(x, y) = ‖x − y‖2 and c(x, y) = c(x − y) for some strongly convex function c(·).2

The highly nonlinear dependence of the transportation cost on the transportmapT has resisted
early attempts to conquer Monge’s optimal transport problem (26). In 1942, Kantorovich (27)
presented a relaxed formulation that instead searches for a distribution π ��(μ0,μ1) onR

n × R
n,

referred to as coupling of μ0 and μ1, that solves

inf
π∈�(μ0,μ1 )

∫
Rn×Rn

c(x, y)π (dxdy). 3.

Here,�(μ0,μ1) denotes the set of joint distributions with marginals μ0 and μ1. Clearly, when the
coupling π is induced by a feasible transport map—that is, π = (Id × T)	μ0—the objective func-
tion of the Kantorovich formulation (Equation 3) coincides with that in Monge’s OMT problem
(Equation 2). Here, Id stands for the identity map. Kantorovich’s most important contribution
was the following duality theorem, which he established in 1942.3

Theorem 1. Assume that the cost function c is lower semicontinuous. Then there exists a
solution to the problem shown in Equation 3. Moreover,

min
π∈�(μ0,μ1 )

∫
Rn×Rn

c(x, y)dπ (x, y) = sup
(ϕ,ψ )∈
c

[∫
ϕdμ0 +

∫
ψdμ1

]
,


c = {(ϕ,ψ )|ϕ ∈ L1(μ0),ψ ∈ L1(μ1),ϕ(x)+ ψ (y) ≤ c(x, y)}.

1Without loss of generality, we take μ0 and μ1 to be probability distributions; when these are absolutely
continuous with respect to the Lebesgue measure, we will use ρ to denote the corresponding density, e.g.,
μi(dx) = ρi(x)dx, i � {0, 1}.
2Monge’s original choice was for c(x, y) = ‖x − y‖, which leads to a challenging problem in that there is
no guarantee of either the existence of a solution or its uniqueness (26).
3This was several years before von Neumann’s duality theorem in the finite-dimensional setting.
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When μ0, μ1 are absolutely continuous with respect to the Lebesgue measure, and c(x, y) =
c(x− y) for some strongly convex c, Monge’s OMT problem (Equation 2) has a unique (26, 28, 29)
solution T� that is equivalent to Equation 3 in the sense that

π� = (Id× T � )	μ0

solves Equation 3. For the most part, in this article, we assume that c(x, y) = ‖x − y‖2, in which
case the unique optimal transport T� is the gradient of a convex function φ (see 26, 28)—that is,

T �(x) = ∇φ(x). 4.

With this quadratic cost, the square root of the optimal cost in Equation 3 defines the celebrated
Wasserstein metric4 (26, 29–32) over the space of probability distributions.

Clearly, Kantorovich’s formulation (Equation 3) may be seen as a special, yet infinite-
dimensional, linear programming problem.5 In spite of an abundance of linear programming al-
gorithms, Equation 3 remains a challenging problem when the state dimension n is large since the
size of the discretization grid grows exponentially with n. A partial remedy is to solve regularized
OMT problems for an approximate solution, with entropy regularization being the most popular
and effective. Including an entropy regularizer, the OMTproblem shown in Equation 3 becomes

inf
π∈�(μ0,μ1 )

∫
Rn×Rn

c(x, y)π (x, y)dxdy+ ε
∫
Rn×Rn

π (x, y) logπ (x, y)dxdy. 5.

It turns out that, in fact, this regularizedOMTproblem coincides with the classical Schrödinger
bridge problem (SBP). In 1931 and 1932, Schrödinger (33, 34) considered the following hot gas
gedankenexperiment: A large numberN of independent and identically distributed Brownian par-
ticles in R

n are observed to have at time t= 0 an empirical distribution approximately equal to ρ0,
and at some later time t = 1 an empirical distribution approximately equal to ρ1. Suppose that ρ1

differs considerably from what it should be according to the law of large numbers, namely,∫
qB(0, x, 1, y)ρ0(x)dx,

where

qB(s, x, t, y) = (2π )−n/2(t − s)−n/2 exp
(
−‖x− y‖

2

2(t − s)
)

denotes the Brownian transition probability density kernel. It is apparent that the particles have
been transported in an unlikely way. But of the many unlikely ways in which this could have
happened,which one is themost likely? In view of Sanov’s theorem (see 35), Schrödinger’s question
reduces to determining a probability law P (·) on C[0, 1], the continuous paths onR

n over the time
interval [0, 1], that minimizes the relative entropy:

D(P‖Q) :=
∫
C[0,1]

log
(
dP
dQ

)
dP . 6.

Here, dP
dQ denotes the Radon–Nikodym derivative, Q(·) is the probability law induced by the

prior Markovian evolution (the Wiener measure—a class of measures over path space induced by
Brownian motion—in Schrödinger’s original problem), and P (·) is chosen among probability laws
that are absolutely continuous with respect to Q(·) and have the prescribed marginals.

4More precisely, it defines the Wasserstein-2 metric. The general Wasserstein-p metric is defined similarly,
with the unit transport cost being c(x, y) = ‖x − y‖p.
5Interestingly, Kantorovich’s early contributions to linear programming also included a form of the simplex
method to solve the finite-dimensional problem.
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DISINTEGRATION OF MEASURES

For a given measure P over path space C[0, 1], let Pxy represent the conditioning of P on paths that take values x
and y at t � {0, 1}, respectively, and let P01 denote the joint probability for the values of paths at the two ends, t �

{0, 1}. Then, P can be disintegrated (36) into

P (·) =
∫
Rn×Rn

Pxy(·)P01(dxdy).

By disintegration of measures (see the sidebar titled Disintegration of Measures),

D(P‖Q) = D(P01‖Q01)+
∫
Rn×Rn

D(Pxy‖Qxy )P01(dxdy).

The second term on the right is nonnegative, and the minimum value 0 is achieved when Pxy is
the same as Qxy for each x, y. Thus, the SBP, to identify a probability law P that is in agreement
with the specified marginals while minimizing D(P‖Q), reduces to

inf
P01∈�(ρ0,ρ1 )

∫
Rn×Rn

log
(
dP01

dQ01

)
dP01.

The solution to this optimization problem is referred to as the Schrödinger bridge. The exis-
tence of the minimizer has been proven in various degrees of generality by Fortet (37), Beurling
(38), Jamison (39), and Föllmer (35); Jamison’s result is stated in the theorem below for a general
diffusion kernel.

Theorem 2. Given two probability measures μ0(dx) = ρ0(x)dx and μ1(dy) = ρ1(y)dy on
R
n and the continuous, everywhere positive Markov kernel q(s, x, t, y), there exists a unique

pair (up to scaling) of functions (ϕ̂0,ϕ1) onR
n such that the measureP01 onR

n × R
n defined

by

P01(E ) =
∫
E
q(0, x, 1, y)ϕ̂0(x)ϕ1(y)dxdy 7.

has marginals μ0 and μ1. Furthermore, the Schrödinger bridge from μ0 to μ1 induces the
distribution flow

Pt (dx)=ϕ(t, x)ϕ̂(t, x)dx, with 8a.

ϕ(t, x)=
∫
q(t, x, 1, y)ϕ1(y)dy, 8b.

ϕ̂(t, x)=
∫
q(0, y, t, x)ϕ̂0(y)dy. 8c.

When the Markov kernel is associated with a scaled Brownian motion, that is,

q = qBε := (2π )−n/2((t − s)ε )−n/2 exp
(
−‖x− y‖

2

2(t − s)ε
)
, 9.

the SBP reduces to

min
π∈�(μ0,μ1 )

∫
Rn×Rn

π (x, y) log
π (x, y)

qBε (0, x, 1, y)
dxdy,
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which can readily be checked to reduce to Equation 5 with a quadratic cost c(x, y)= ‖x− y‖2, after
discarding constant terms.Thus, the SBP can be viewed as an entropy-regularized OMT problem
with a quadratic cost.

Since the optimal solution P01 depends only on ϕ̂0,ϕ1, to solve the SBP, we only need to find
a proper pair function ϕ̂0,ϕ1 such that P01 ∈ �(μ0,μ1). Setting ϕ0 = ϕ(0,·) and ϕ̂1 = ϕ̂(1,·), we
obtain

ρ0=ϕ0(·)ϕ̂0(·), 10a.

ρ1=ϕ1(·)ϕ̂1(·), 10b.

from Equation 8a and

ϕ0(x)=
∫
q(0, x, 1, y)ϕ1(y)dy, 10c.

ϕ̂1(y)=
∫
q(0, x, 1, y)ϕ̂0(x)dx, 10d.

from Equations 8b and 8c. In 1940, Fortet formulated a natural algorithm to solve the SBP (37,
40) by tracing the circular sequence of computations

ϕ̂0(·) 10d−→ ϕ̂1(·)
10a ↑ ↓ 10b

ϕ0(·) 10c←− ϕ1(·)
11.

or, equivalently, by iterating the composition of maps

ϕ̂0(·) 10d−→ ϕ̂1(·) 10b−→ ϕ1(·) 10c−→ ϕ0(·) 10a−→ (ϕ̂0(·))next . 12.

Fortet directly established the convergence of a rather complex scheme involving three different
sequences of functions. The iteration may be shown, under appropriate assumptions, to be strictly
contractive with respect to a suitable projective metric (namely, the Hilbert metric), and thus the
algorithm converges globally (41). In the discrete setting, these algorithms are known as iterative
proportional fitting–Sinkhorn (IPF-Sinkhorn); establishing their convergence is much simpler
than it is in the continuous case.

3. DENSITY CONTROL

Equations 2 and 3 are both static formulations of OMT.Their solution specifies the optimal mass
allocation strategy but does not provide details on how to achieve it. In 2000, a seminal work
by Benamou & Brenier (42) described a dynamic (Eulerian) formulation of OMT that addresses
this issue. More specifically, when μ0 and μ1 are absolutely continuous—that is,μ0(dx) = ρ0(x)dx
and μ1(dy) = ρ1(y)dy, with ρ0 and ρ1 being the corresponding density functions—the dynamic
formulation of OMT for a quadratic cost c(x, y) = ‖x − y‖2 reads

inf
ρ,v

∫
Rn

∫ 1

0

1
2
‖v(t, x)‖2ρ(t, x)dtdx, 13a.

∂ρ

∂t
+ ∇ · (vρ ) = 0, 13b.

ρ(0, x) = ρ0(x), ρ(0, y) = ρ1(y). 13c.

The minimum is taken over all pairs (ρ, v) satisfying Equations 13b and 13c and some additional
technical assumptions (see 26, theorem 8.1; 32, chap. 8). The solution to Equation 13 clarifies
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that the optimal mass reallocation can be achieved by moving the mass following a time-varying
velocity field v(t, x). Moreover, ρ(t, x) clearly describes how the mass evolves over time when the
optimal transport plan is utilized.

Equation 13b is the continuity equation of fluid dynamics. It also describes the evolution of the
probability distribution of the state for a closed-loop first-order integrator. In particular, the state
distribution for the system ẋv (t ) = v(t, xv (t )) with feedback control v(·, ·) and initial state xv(0) ∼
ρ0 exactly follows Equation 13b with the initial condition ρ0.

The objective function shown in Equation 13a also has the stochastic interpretation∫
Rn

∫ 1

0

1
2
‖v(t, x)‖2ρ(t, x)dtdx = E

{∫ 1

0

1
2
‖v(t, xv (t ))‖2dt

}
.

Thus, we arrive at the stochastic control formulation of OMT as

inf
v∈V

E

{∫ 1

0

1
2
‖v(t, xv (t ))‖2dt

}
, 14a.

ẋv (t ) = v(t, xv (t )), 14b.

xv (0) ∼ μ0, xv (1) ∼ μ1, 14c.

where V represents the family of admissible state feedback control strategies, for which the con-
trolled system shown in Equation 14b has a unique solution for almost every deterministic initial
condition at t = 0. Note that we have used μ0 and μ1 to account for the possibility of singular
marginal distributions.

The problem shown in Equation 14 is a special case of density/uncertainty control for the
simple case of first-order integrator dynamics. In general, the goal of such a density/uncertainty
control problem is to drive a dynamical system from a given initial uncertain state to a target un-
certainty state with minimum cost. It differs from standard optimal control in the added constraint
on the terminal state distribution and the absence of a terminal penalty in the index. Note that
the scenario when μ0 and μ1 are Dirac measures does fall within the scope of standard optimal
control. Thus, to some extent, density control can be viewed as a relaxation of the optimal con-
trol problem, replacing hard state constraints with soft (probabilistic) ones. On the other hand,
when viewed as a control problem over the space of probability densities, as in Equation 13, it is
in fact a standard, albeit infinite-dimensional, optimal control problem with the hard constraints
ρ(0, ·) = ρ0 and ρ(1, ·) = ρ1 at the two end points.

One strategy (13) to solve the atypical optimal control problem shown in Equation 14 is to
transform it into a standard one by adding an artificial terminal cost ψ1 without enforcing the
terminal constraint xv(1) ∼ μ1 at the outset. Applying dynamic programming to the resulting
problem leads to

∂ψ

∂t
+ 1

2
‖∇ψ‖2 = 0 15a.

with the terminal condition ψ(1, ·) = ψ1 and the associated optimal control being
v(t, x) =�ψ(t, x). Substituting back into Equation 14b yields the continuity equation

∂ρ

∂t
+∇ · (ρ∇ψ ) = 0. 15b.

To constitute a solution to Equation 14, ρ must satisfy the boundary conditions

ρ(0, ·) = ρ0, ρ(0, ·) = ρ1. 15c.

For a fixed ρ0, the procedure determines a map from ψ1 to ρ(1, ·). If for some ψ1 the resulting
ρ(1, ·) matches the specified boundary distribution ρ1, then v(t, x) =�ψ(t, x) is in fact a solution
to Equation 14.
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To find such a ψ1, one essentially needs to solve the partial differential equation (PDE) system
shown in Equation 15. It turns out that Equation 15 always has a unique solution (up to a constant
shift on ψ). This implies that, given a fixed ρ0, for any target distribution ρ1 there is a unique
terminal cost ψ that can be added to the density control problem shown in Equation 14 such
that the solution to the resulting standard optimal control problem also solves Equation 14. This
terminal cost in fact relates to φ in Equation 4 as

ψ1(x) = ‖x‖
2

2
− φ∗(x), 16.

where φ∗ denotes the convex conjugate (43) of φ. With this ψ1, the solution to Equation 15a can
be obtained using the Hopf–Lax formula, yielding

ψ (t, x) = inf
y

{
ψ1(y)+ ‖x− y‖

2

2(1− t )
}
, t ∈ [0, 1).

Remark 1. The PDE system shown in Equation 15 can also be obtained by (formally)
applying Pontryagin’s maximum principle to the fluid dynamic formulation shown in
Equation 13 (for more details, see 13, 15). Such a connection between dynamic program-
ming and the maximum principle for the associated dynamics over the state distribution is
expected to occur for more general stochastic control problems.

The entropy-regularized OMT—or, equivalently, the SBP—can also be cast as a stochastic
control problem. Specifically, the SBP with prior diffusion kernel qBε in Equation 9 becomes

inf
v∈V

E

{∫ 1

0

1
2
‖v(t, xv )‖2dt

}
, 17a.

dxv (t ) = v(t, xv (t ))dt +√εdw(t ), 17b.

xv (0) ∼ ρ0, xv (1) ∼ ρ1, 17c.

where V again denotes the set of admissible state feedback control laws and dw represents stan-
dard white noise. In a departure from Equation 14, the underlying dynamics in Equation 17 is a
stochastic diffusion process. The derivation of this stochastic control reformulation of the SBP is
completely different from that of OMT. It builds on the celebrated Girsanov theorem (44), stating
that

dPxv

dPx0
= exp

{∫ 1

0

1√
ε
v(t, xv (t )) · dw +

∫ 1

0

1
2ε
‖v(t, xv (t ))‖2dt

}
, 18.

where Pxv and Px0 denote the measures induced by xv and x0, respectively (with x0 := xv(·) = 0).
Substituting into Equation 6 yields a remarkable conclusion that the relative entropy between the
controlled process and the uncontrolled one is equal to the control energy (scaled by 1/ϵ) (for
more details, see 45). This result is summarized in the following theorem.

Theorem 3.

D(Pxv‖Px0 ) = E

{∫ 1

0

1
2ε
‖v(t, xv (t ))‖2dt

}
. 19.

When described in terms of state probability distributions ρ, the stochastic control problem
shown in Equation 17 has the following reformulation (12, 46):

inf
ρ,v

∫
Rn

∫ 1

0

1
2
‖v(t, x)‖2ρ(t, x)dtdx, 20a.

∂ρ

∂t
+∇ · (vρ )− ε

2
�ρ = 0, 20b.

ρ(0, ·) = ρ0, ρ(1, ·) = ρ1, 20c.
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FISHER INFORMATION FUNCTIONAL REGULARIZATION

Chen et al. (15) gave the following alternative equivalent reformulation of the SBP:

inf
(ρ,v)

∫
Rn

∫ 1

0

[
1
2
‖v(t, x)‖2 + ε

2

8
‖∇ log ρ(t, x)‖2

]
ρ(t, x)dtdx,

∂ρ

∂t
+∇ · (vρ ) = 0,

ρ(0, x) = ρ0(x), ρ(1, y) = ρ1(y),
where the Laplacian in the dynamical constraint is traded for a Fisher information regularization term in the cost
functional. This reformulation answers a question posed by Carlen (47) in a 2006 work that investigated the con-
nections between OMT and Nelson’s stochastic mechanics (see 15, sec. 5).

where Equation 20b is the Fokker–Planck equation capturing the state distribution evolution.The
infimum is over smooth fields v and ρ that weakly solve this equation. Equation 20 is similar to
OMT (Equation 13) except for the presence of the Laplacian in Equation 20b. In another closely
related formulation of the SBP, the Laplacian in Equation 20b is traded with a Fisher information
term in the objective (Equation 20a) (see the sidebar titled Fisher Information Functional Reg-
ularization). Intuitively, when ϵ↘0, Equation 20 converges to Equation 13. Several works have
justified this connection (36, 48–50), stating that the OMT problem is, in a suitable sense, the
limit of the SBP when the diffusion coefficient of the reference Brownian motion qBε goes to zero.
This echoes the fact that the SBP is a regularized OMT (with regularization intensity ϵ).

The stochastic control formulation of the SBP can be solved by using a similar strategy as in
Equation 14 for OMT, which yields the coupled PDE system

∂ψ

∂t
+ 1

2
‖∇ψ‖2 + ε

2
�ψ = 0, 21a.

∂ρ

∂t
+∇ · (ρ∇ψ )− ε

2
�ρ= 0, 21b.

ρ(0, ·) = ρ0, ρ(0, ·) = ρ1, 21c.

which resembles Equation 15, with the optimal control strategy being v(t, x) = �ψ(t, x).
Equation 21a is a second-orderHamilton–Jacobi–Bellman equation.Applying a logarithmic trans-
formation ψ = ϵlogϕ and ϕ̂ = ρ/ϕ casts the system of Equation 21 in the form

∂ϕ

∂t
+ ε

2
�ϕ= 0, 22a.

∂ϕ̂

∂t
− ε

2
�ϕ̂= 0, 22b.

ϕ(0, ·)ϕ̂(0, ·)= ρ0, ϕ(1, ·)ϕ̂(1, ·) = ρ1. 22c.

This represents a pair of linear PDEs coupled only through boundary conditions; Equation 22a
is a backward Kolmogrov equation, and Equation 22b is a Fokker–Planck equation. The optimal
control to Equation 17 is then given by v(t, x) = ϵ�logϕ(t, x).
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Interestingly, Equation 22 is in fact the Schrödinger system for the SBP associated with tran-
sition kernel qBε ; it is easy to see that Equations 22a and 22b are simply PDEs corresponding to
Equation 8 for q = qBε . Note the analytic nature of ϕ̂, which is a harmonic function, and ϕ, which
is a coharmonic (i.e., a harmonic in the reverse time direction).

We have seen that the standard OMT and Schrödinger bridge theories provide elegant so-
lutions to the density control problems associated with a deterministic or stochastic first-order
integrator. From the point of view of control theory, a natural direction to pursue is to establish a
framework for density control of general stochastic systems:

dx(t ) = f (t, x, u)dt + σ (t, x)dw. 23.

Work on such an approach is ongoing and has already led to fruitful results in several directions
(9, 10, 12–15, 17, 51–53). Next, in Section 4, we focus on the case of linear systems with Gaussian
stochastic uncertainty, and in Section 5, we briefly mention more general cases.

4. COVARIANCE CONTROL

In this section, we focus on density control problems for general linear dynamics with Gaussian
distributions. This subject is known as covariance control or, alternatively, covariance steering.
The term covariance control first arose in the work of Skelton and his coworkers (6–8) to describe
steady-state regulation of state statistics; the qualifier “steering”was used later to describe the class
of problems where state statistics are prescribed to constrain a controlled finite-time transition (9,
10, 14, 52, 53). This covariance steering/control framework has found use in a range of applica-
tions, such as active cooling of stochastic oscillators (51) (see the sidebar titled Active Cooling
along with Figure 1).

4.1. Minimum Energy Steering

Consider the linear dynamics

dx(t ) = A(t )x(t )dt + B(t )u(t )dt +√εB(t )dw(t ), 24.

ACTIVE COOLING

Newton’s laws relate the position x and velocity v of particles to friction −bv(t) and conservative forces −�V, with
a potential V, stochastic forcing dW, and control action u(t), as in

dx(t )= v(t ) dt,

mdv(t )=−bv(t ) dt + u(t )dt −∇V (x(t ))dt + σdW (t ),

with x(t0) = x0 and v(t0) = v0 almost surely. In a variety of applications relating to scientific instrumentation, the
task of the control u is to suppress state uncertainty and thus, through control action, ensure a lower effective
temperature than what the stochastic excitation dictates.

When the potential V is quadratic, the stationary (Boltzmann) distribution becomes Gaussian, and the problem
reduces to a covariance steering/control problem.Figure 1 shows typical trajectories in phase space under a suitably
selected control to steer and maintain the state covariance.
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Figure 1

Typical trajectories in phase space under a suitably selected control to steer and maintain the state covariance
during active cooling (see the sidebar titled Active Cooling). The transparent tube represents the 3-σ region
of the Gaussian distribution, inside which the trajectories should lie with a probability of at least 99.7%.

where the pair A, B is assumed to be controllable in the sense that the reachability Gramian

M(t, s) =
∫ t

s
�(t, τ )B(τ )B(τ )′�(t, τ )′dτ ,

with �(·, ·) denoting the state transition matrix for A, is nonsingular for all s < t. For the sake of
simplicity, we do not make the dependence of A,B over t explicit unless it is necessary. Assume that
the initial state x(0) is a random vector with a Gaussian distribution ρ0 = N (m0,�0). We seek a
minimum energy control input over the time interval6 [0, 1] that steers the system to a target state
distribution ρ1 = N (m1,�1).We assume�1 > 0; the case where�1 is singular is more challenging
and has been addressed by Ciccone et al. (54). Formally, the problem reads

inf
u∈U

J(u)=E

{∫ 1

0
‖u(t )‖2dt

}
, 25a.

dx(t )=Ax(t )dt + Bu(t )dt +√εBdw(t ), 25b.

x(0)∼N (m0,�0), x(1) ∼ N (m1,�1), 25c.

where the minimization is over the set U of all admissible control laws. By the linearity of this
problem, the mean/expectation of the control drives the deterministic part of the dynamics from
initial valuem0 to terminal valuem1 and can be obtained independent of the covariances (for more
details, see 9). Thus, without loss of generality, for the rest of this article we assume m0 = m1 = 0.

This problem resembles a standard stochastic linear–quadratic regulator problem except for
the boundary conditions. As in Section 3, we adopt the strategy of adding an artificial terminal

6Any time window can be converted to [0,1] by rescaling time. Thus, without loss of generality, we assume a
unit time window for notational simplicity.
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cost while relaxing the terminal constraint, to bring it into the form of standard optimal control.
We then investigate the possibility of selecting the terminal cost to enforce the constraint. To this
end, we assume that {�(t)�0 ≤ t ≤ 1} is a differentiable function taking values in the set of n × n
symmetric matrices, and construct an augmented cost

J̃(u) = E

{∫ 1

0
‖u(t )‖2 dt + x(1)′�(1)x(1)− x(0)′�(0)x(0)

}
. 26.

Then, minimizing J̃(u) or J(u) over all control strategies while enforcing the boundary conditions
shown in Equation 25c gives the same answer, since the added terms are constant and have no
effect. However,

J̃(u) = E

{∫ 1

0
‖u(t )‖2 dt +

∫ 1

0
d (x(t )′�(t )x(t ))

}
.

If we select �(t) on [0,1] to satisfy the Riccati equation

�̇(t ) = −A′�(t )−�(t )A+�(t )BB′�(t ), 27a.

then

J̃(u) = E

{∫ 1

0
‖u(t )+ B′�(t )x(t )‖2 dt +

∫ 1

0

ε

2
trace (�(t )BB′) dt

}
,

by Itô calculus. Clearly, if boundary values for � can be found so that the choice

u�(t ) = −B′�(t )x(t )

ensures that the boundary conditions �(0) = �0 and �(1) = �1 hold for the state covariance, in
agreement with the Lyapunov equation

�̇(t ) = (A− BB′�(t ))�(t )+�(t ) (A− BB′�(t ))′ + εBB′, 27b.

then this choice of control is indeed optimal. Thus, we seek a solution pair (�(t), �(t)) of the
coupled system of Equations 27a and 27b with split boundary conditions

�(0) = �0, �(1) = �1. 27c.

To solve for the pair (�(t),�(t)), when ϵ > 0, we define

H(t ) := ε�(t )−1 −�(t ),

which leads the system of coupled Riccati equations through their boundary values:

�̇(t )=−A′�(t )−�(t )A+�(t )BB′�(t ), 28a.

Ḣ(t )=−A′H(t )−H(t )A−H(t )BB′H(t ), 28b.

ε�−10 =�(0)+H(0), ε�−11 = �(1)+H(1). 28c.

Expressing Equations 28a and 28b in terms of �−1, H−1, we arrive at two Lyapunov equations
instead. This equation system (Equation 28) can be viewed as an extension of the Schrödinger
system (Equation 22) for more general dynamics but with Gaussian marginals (see the sidebar
titled Linear–Quadratic–Gaussian Schrödinger System). Based on this transformation, the fol-
lowing closed-form solution to Equation 28 was obtained (9):

�ε (0) = ε

2
�−10 +� ′10M−110 �10 −�−1/20

(
ε2

4
I +�1/2

0 � ′10M
−1
10 �1M−110 �10�

1/2
0

)1/2

�
−1/2
0 , 29.
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LINEAR–QUADRATIC–GAUSSIAN SCHRÖDINGER SYSTEM

In contrast to the basic SBP shown in Equation 17, the covariance steering in Equation 25 allows general dynamics
but is restricted to Gaussian marginals. For A = 0, B = I, the correspondence between the solutions of the two
problems (by solving the systems shown in Equations 28 and 22, respectively) is

ϕ(x) ∝ exp(−‖x‖2� ) and ϕ̂(x) ∝ exp(−‖x‖2H).

whereM10 :=M(1, 0),�10 :=�(1, 0), and the subscript ϵ is used to emphasize dependence on the
value of ϵ. The optimal control is in a state feedback form u�(t, x) = −B′�ϵ(t)x, with �ϵ(t) being
the solution to the Riccati equation shown in Equation 27a.

Note that Equation 28 becomes meaningless when ϵ = 0. To obtain the solution for ϵ = 0, we
can take the limit of Equation 29 by letting ϵ↘0, which leads to

�0(0) = �−1/20

[
�

1/2
0 � ′10M

−1
10 �10�

1/2
0 −

(
�

1/2
0 � ′10M

−1
10 �1M−110 �10�

1/2
0

)1/2
]
�
−1/2
0 . 30.

The optimal control is once again a state feedback u�(t, x) = −B′�0(t)x, with �0(t) the solution
to the Riccati equation shown in Equation 27a. In fact,�0(t) has the explicit form

�0(t )=−M(t, 0)−1�(t, 0)
[
� ′10M

−1
10 �10 −�−1/20

(
�

1/2
0 � ′10M

−1
10 �1M−110 �10�

1/2
0

)1/2

�
−1/2
0 �(t, 0)′M(t, 0)−1�(t, 0)

]−1
�(t, 0)′M(t, 0)−1 −M(t, 0)−1.

Standard OMT and the SBP with Gaussian marginals correspond to A = 0, B = I, giving

�ε (0) = ε

2
�−10 + I −�−1/20

(
ε2

4
I +�1/2

0 �1�
1/2
0

)1/2

�
−1/2
0 . 31.

4.2. State Penalty

A state penalty can also be introduced into density control. In the covariance control setting, we
arrive at

inf
u∈U

E

{∫ 1

0
[‖u(t )‖2 + x(t )′Q(t )x(t )]dt

}
, 32a.

dx(t ) = Ax(t )dt + Bu(t )dt +√εBdw(t ), 32b.

x(0) ∼ N (0,�0), x(1) ∼ N (0,�1), 32c.

where Q(·) is the weight for the state penalty, which does not need to be nonnegative.
Following a similar strategy as for the minimum energy covariance control shown in

Equation 25, for ϵ > 0, we obtain two Riccati equations that are coupled through boundary con-
ditions:

−�̇(t )=A′�(t )+�(t )A−�(t )BB′�(t )+Q(t ), 33a.

−Ḣ(t )=A′H(t )+H(t )A+H(t )BB′H(t )−Q(t ), 33b.

ε�−10 =�(0)+H(0), ε�−11 = �(1)+H(1). 33c.
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The corresponding optimal control is once again in a state feedback form:

u(t, x) = −B(t )′�(t )x. 34.

This new system of coupled Riccati equations (Equation 33) is substantially different from
Equation 28 in that it can no longer be directly transformed into linear Lyapunov equa-
tions. However, it is still possible to obtain solutions in a closed form by expressing � in
Equation 33a (and similarly for H) as a matrix fraction �(t) = Y(t)X(t)−1, with [X,Y] satisfying
the linear dynamics [

Ẋ
Ẏ

]
=

[
A(t ) −B(t )B(t )′
−Q(t ) −A(t )′

] [
X
Y

]
. 35.

Indeed, if we denote the state transition matrix of this linear system by


(t, s) =
[

11(t, s) 
12(t, s)

21(t, s) 
22(t, s),

]
, 36.

and, for simplicity, [

11

10 

12
10


21
10 


22
10

]
:=

[

11(1, 0) 
12(1, 0)

21(1, 0) 
22(1, 0)

]
,

then the system shown in Equation 33c has a unique solution specified in Reference 14:

�ε (0) = ε�−10

2
−(
12

10)
−1
11

10 −�−1/20

(
ε2I
4
+�1/2

0 (
12
10)
−1�1((
12

10)
−1)′�1/2

0

)1/2

�
−1/2
0 . 37.

We leave it as an exercise for the reader to check that Equation 37 reduces to Equation 29 when
Q(·) � 0.

The optimal control in cases where ϵ = 0 is again a linear state feedback u(t, x) = −B(t)′�0(t)x,
with �0(·) determined from the initial condition

�0(0) = −(
12
10)
−1
11

10 −�−1/20

(
�

1/2
0 (
12

10)
−1�1((
12

10)
−1)′�1/2

0

)1/2
�
−1/2
0 ,

is obtained by letting ϵ↓0 in Equation 37.

4.3. Different Input and Noise Channels

In Sections 4.1 and 4.2, the noise and control are assumed to enter the system through the same
channels (i.e., they have identical input matrices). However, in many applications (10), this may
not be the case. Thus, we are led to consider covariance control for the system

dx(t ) = Ax(t )dt + Bu(t )dt + B1dw(t ), x(0) ∼ N (0,�0), 38.

where B1 �= B. For simplicity, we consider the minimum energy control to drive the system shown
in Equation 38 to a target state distribution x(1) ∼ N (0,�1).

In a similar manner as before, we arrive at

�̇=−A′�−�A+�BB′�, 39a.

Ḣ=−A′H−HA−HBB′H+ (�+H) (BB′ − B1B′1) (�+H), 39b.

�−10 =�(0)+H(0), �−11 = �(1)+H(1). 39c.
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When Equation 39 admits a well-defined solution, then, as before, u(t, x) := −B′�(t)x is the opti-
mal control to our covariance control problem (10). However, in contrast to the case where B =
B1, which has a closed-form solution, the two Riccati equations in Equation 39 are coupled not
only through their boundary values (Equation 39c) but also in a nonlinear manner through their
dynamics (Equation 39b). Due to this nonlinear dynamic coupling, establishing the existence and
uniqueness of solutions to Equation 39 appears to be quite challenging.

While in general it is not known whether the covariance steering problem corresponding to
Equation 38 has a minimizing control law, the feasibility of the problem has been established (10);
it is known that as long as (A,B) is a controllable pair, there is at least one (linear) feedback control
law that drives the state from initial distribution N (0,�0) to target distribution N (0,�1). Be-
low, we provide an approach that allows the construction of suboptimal controls while incurring
a cost that is arbitrarily close to infu∈U J(u). This approach is based on the fact that the covari-
ance steering problem can be recast as an (infinite-dimensional) convex optimization problem
(10).

Consider the expected control energy

E

{∫ 1

0
u(t )′u(t )dt

}
=

∫ 1

0
trace(K (t )�(t )K (t )′)dt

for linear state feedback controls with gain K(t) and state covariance �(·) satisfying the Lyapunov
equation

�̇(t ) = (A+ BK (t ))�(t )+�(t )(A+ BK (t ))′ + B1B′1.

The change of variables U(t) := �(t)K(t)′ recasts the expected energy minimization as

min
U (·),�(·)

∫ 1

0
trace(U (t )′�(t )−1U (t ))dt, 40a.

�̇(t ) = A�(t )+�(t )A′ + BU (t )′ +U (t )B′ + B1B′1, 40b.

�(0) = �0, �(1) = �1, 40c.

which is a convex problem in the parameters (U, �). The optimization problem can be further
converted to a semidefinite program in a standard manner (10).

Although Equation 40 is a convex problem, it is infinite dimensional. The convexity itself is
not sufficient to justify the existence of the optimizer. Rigorous analysis is not yet available to
show that an optimal control to the covariance steering problem associated with Equation 38
exists. Numerically, this convex optimization is solved by discretization over time. A suboptimal
feedback gain is then recovered in the form K(t) = −U(t)′�(t)−1.

4.4. Extensions

It is natural to extend the above discussion on covariance steering/control to the infinite-horizon
setting. In fact, the covariance control problemwas first investigated for infinite-horizon problems
in References 6–8, although these works made no connection to OMT. Consider the dynamical
system shown in Equation 38 and suppose that A, B, and B1 do not depend on time. The goal
of covariance control in the infinite-horizon setting is to maintain the state covariance at a fixed
value � > 0. Unlike the finite-horizon cases, it turns out that not all � > 0 are achievable. There
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exists a constant state feedback law u(t) = −Kx(t) so that � > 0 is a stationary state covariance for
the linear stochastic controlled evolution shown in Equation 38 if and only if (10, theorem 4)

rank

[
A�+�A′ + B1B′1 B

B 0

]
= rank

[
0 B
B 0

]
.

The condition ensures that � satisfies the algebraic Lyapunov equation

(A− BK )�+�(A− BK )′ + B1B′1 = 0

for a suitable K that ensures that A− BK is a Hurwitz matrix. References 6–8 presented alternative
conditions for stationary covariance control. The above rank condition extends theorem 1 from
Reference 55.

Another straightforward extension is to the setting of output feedback with measurement
noise—that is, the case where the feedback control is based on an output process

dy = Cxdt + dv,

with dv being white measurement noise. Chen et al. (52) showed that the achievable covariance
�(·) is bounded below by the minimum estimation error using a Kalman filter.

Other scenarios can also be considered, including a differential game setting with more than
one agent (53), a mean-field game setting with many agents (56), and nonlinear covariance control
for nonlinear dynamics (20, 57).Covariance control for discrete dynamics has also been extensively
studied (8, 18, 19, 22).

5. DENSITY STEERING

Having seen the special cases of density control in the linear Gaussian setting, let us return to
general marginal distributions. We again focus on the finite-horizon setting; a treatment in an
infinite-horizon setting can be found in Reference 58 and the references therein.

Consider the nonlinear control-affine system

dx = f (x)dt + σ (x)u(t )dt +√εσ (x)dw. 41.

For notational simplicity, we have suppressed the dependence of f and σ over time t. Denote
a(x) = σ (x)σ (x)′. We assume that the system is controllable in the sense that Hörmander’s condi-
tion (59) holds, which is equivalent to the hypoellipticity of the operator

n∑
i, j=1

ai j (x)∂xi∂x j +
n∑
i=1

fi(x)∂xi − ∂t .

We are interested in the following density control problem:

inf
u
E

{∫ 1

0

[
1
2
‖u(t )‖2 +V (x(t ))

]
dt

}
, 42a.

dx = f (x)dt + σ (x)u(t )dt +√εσ (x)dw, 42b.

x(0) ∼ ρ0(x), x(1) ∼ ρ1. 42c.

It turns out that this problem can also be formally addressed by adding an artificial terminal cost
so that the resulting standard optimal control policy generates the specified target distribution.

104 Chen • Georgiou • Pavon



As in Section 3, this pipeline points to the coupled Hamilton–Jacobi–Bellman and Fokker–Planck
equation system

∂ψ

∂t
+ f · ∇ψ + 1

2
∇ψ · a∇ψ + ε

2

n∑
i, j=1

ai j∂2ψ
∂xi∂x j

= V , 43a.

∂ρ

∂t
+ ∇ · (( f + σ∇ψ )ρ )− ε

2

n∑
i, j=1

∂2(ai jρ )
∂xi∂x j

= 0, 43b.

ρ(0, ·) = ρ0, ρ(0, ·) = ρ1. 43c.

Once again, when ϵ> 0, using the logarithmic transformation ψ = ϵ logϕ and ϕ̂ = ρ/ϕ, we arrive
at two PDEs that are coupled only through boundary conditions:

∂ϕ

∂t
+ f · ∇ϕ + ε

2

n∑
i, j=1

ai j∂2ϕ
∂xi∂x j

= V ϕ, 44a.

∂ϕ̂

∂t
+∇ · ( f ϕ̂)− ε

2

n∑
i, j=1

∂2(ai jϕ̂)
∂xi∂x j

= −V ϕ̂, 44b.

ϕ(0, ·)ϕ̂(0, ·) = ρ0, ϕ(1, ·)ϕ̂(1, ·) = ρ1. 44c.

It can be shown that the density control problem is equivalent to an SBP associated with prior
diffusion being the uncontrolled process shown in Equation 41 (with u = 0), with the possibility
of the creation or killing of rate V. More specifically, the cost function shown in Equation 42a is
equal to the relative entropy between the controlled process and the uncontrolled one.7 Conse-
quently, the existence and uniqueness of a function pair (ϕ, ϕ̂) satisfying Equation 44, and thus
the optimal control, are guaranteed.Moreover, the PDE system shown in Equation 44 leads to an
algorithm that solves the density control problem. This system is essentially the same as the iter-
ative algorithm shown in Equation 12, but the step shown in Equation 10c is achieved by solving
Equation 44a backward, and the step shown in Equation 10d is achieved by solving Equation 44b
forward. Caluya & Halder (64) recently proposed a potentially more scalable algorithm.

The solution in the case when ϵ = 0 is more delicate. One possibility is to solve the density
control problem for ϵ > 0 and then take the limit ϵ↘0 (for an illustrative example, see Figure 2).
This strategy works well under some strong assumptions, such as that σ is square and nonsingular
or Equation 41 is linear and controllable. But for general nonlinear dynamics, it is unclear whether
such an approach would work. On the other hand, under some technical assumptions and using
other techniques, Elamvazhuthi et al. (65) recently established the existence of a solution in the
case of ϵ = 0 for a general nonlinear control-affine system.

6. DISTRIBUTION STEERING OVER MARKOV DECISION PROCESSES

The density control problems in previous sections have a counterpart in the discrete time and
space setting. Chen et al. (23, 66, 67) explored this counterpart to robustly transport a single
commodity from one distribution to another over a network. For instance, such a network may
represent highway connections between cities, and the task is to transport products between cities
from a supply distribution to a demand distribution. In this section, we present an alternative

7This connection, together with the Feynman–Kac formula, is explored in a different area in stochastic control,
constituting the foundation of path-integral control (60–63).
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Figure 2

An illustrative example of density control. For a one-dimensional diffusion process dx(t ) = −1.5x(t )dt + u(t )dt +√εdw(t ), the goal is
to find a feedback control to steer the state from an initial (non-Gaussian) distribution to a target one. The evolution of the state
distribution is shown here for different values of ϵ: (a)

√
ε = 0.5 and (b)

√
ε = 0.15.

interpretation of this discrete counterpart of density control as a distribution-steering problem
for MDPs—a well-known discrete version of dynamical systems.

AnMDP is a 4-tuple {X ,U ,P,C}, where X denotes the state space,U denotes the action space,
P(u) specifies the transition probability of the state for a given action u ∈ U , and C(x, u) denotes
a running cost. The goal of an MDP is usually to search for an optimal control strategy, which
could be either deterministic [ut = π (xt)] or stochastic and is specified by a distribution of U for
each x, that minimizes a total cumulative cost E

{∑∞
t=0 γ

tC(xt , ut )
}
. Here, 0 < γ ≤ 1 is a discount

factor. This optimal control problem allows for the possibility of discrete states and actions.
We consider a special class of an MDP known as a linearly solvable MDP (68), in which X =

{1, 2, . . . , n} is a finite set with |X | = n and U = R
n. The transition kernel is P(u) = [Pij(u)], with

Pi j (u) ∝ P̄i j exp(uj ), 45.

and the cost is

C(i, u) = KL(Pi(u) ‖Pi(0)) :=
∑
j

Pi j (u) log
Pi j (u)
Pi j (0)

, 46.

where KL denotes the Kullback–Leibler divergence.8 Note that Pi = [Pi j]nj=1 needs to be a proba-
bility vector that describes the state transition. In linear solvable MDPs, the state transition Pij(u)
can be anythingwith a proper choice of u as long as it is compatible with the zero-control transition
Pi j (0) = P̄i j , in the sense that Pij(u) = 0 if P̄i j = 0. This structure provides considerable flexibility
for the control to affect the behavior of the MDP. The running cost is 0 for a zero-control action,
u= 0. For nonzero control, the cost captures the difference between the new transition kernel and
the prior one. Todorov (68) studied the infinite-horizon optimal control problem that minimizes
the total cost E

{∑∞
t=0 γ

tC(xt , ut )
}
. It turns out that the corresponding Bellman equation can be

converted to a linear equation after a logarithmic transformation, which is where the term linearly
solvable MDP comes from. The resulting linear equation can be solved efficiently and thus can
improve the scalability of the linearly solvable MDP. Since a Kullback–Leibler divergence cost is
being used, this line of research became known as Kullback–Leibler control (63, 68–70).

8The Kullback–Leibler divergence between two probability vectors is another term for the relative entropy
between the two. It is commonly used in the discrete setting and so, herein, we follow the convention and use
this term instead.
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Herein, we consider a finite-horizon optimal control problem over this class of MDPs, with
the objective of steering the state from one distribution μ0 to a target distribution μT at time t =
T. The cost to minimize is

E

{
T−1∑
t=0

C(xt , ut )

}
= E

{
T−1∑
t=0

KL(Pxt (ut ) ‖Pxt (0))
}
. 47.

This cost is exactly the Kullback–Leibler divergence (or, equivalently, the relative entropy) of the
distribution Pu induced by the controlled MDP on the path space relative to that of the prior
MDP without control, P0—that is, KL(Pu‖P0). Hence, the distribution steering problem over
this class of MDPs is equivalent to an SBP with marginal constraints μ0, μT, and a prior process
being the uncontrolled MDP.

Leveraging the theory of the SBP, we obtain the following characterization of the optimal
controlled transition kernel:

P�i j (u)[t] = P̄i j
ϕ j (t + 1)
ϕi(t )

, 48.

where ϕ and ϕ̂ solve

ϕi(t )=
n∑
j=1

P̄i jϕ j (t + 1), t = 0, 1, . . . ,T − 1, 49a.

ϕ̂ j (t + 1)=
n∑
i=1

P̄i jϕ̂i(t ), t = 0, 1, . . . ,T − 1, 49b.

ϕi(0)ϕ̂i(0) = μ0(i), ϕi(T )ϕ̂i(T ) = μT (i), for i ∈ {1, . . . , n}. 49c.

The optimal control is thus time varying as

ut (xt ) = log
ϕ(t + 1)
ϕxt (t )

. 50.

The coupled equation system shown in Equation 49 is a discrete counterpart of the Schrödinger
system shown in Equation 8. It can be shown that it has a unique solution under the assumption
that P̄T has all positive entries (23); this condition holds when the Markov chain associated with P̄
is irreducible and T is sufficiently large (e.g.,T≥ n).We emphasize that the linear equation shown
in Equation 49a corresponds to the linear equation derived from the Bellman equation in linearly
solvable MDPs (68).

Remark 2. The Kullback–Leibler divergence corresponds to the control energy in the
continuous setting shown in Equation 17. When the running cost is C(i, u) = KL(Pi(u) ‖
Pi(0)) + q(i), it becomes a discrete counterpart of E

{∫ 1
0

[ 1
2‖u(t )‖2 +V (x(t ))

]
dt

}
. Thus, the

equivalence with the SBP still holds. However, the prior process becomes a generalized
Markov chain with transition kernel P̄ and the possibility of creation or killing with rate
exp (q).

Finally, an MDP induces a graph with states corresponding to nodes and allowable transitions
between states corresponding to edges. As a result, the control problem over MDPs amounts to a
transport problem over networks.The consequent transition probability at each state or node pre-
scribes the transport schedule at that node. The special linearly solvable MDP structure implies
that the transport schedule at each node can be assigned arbitrarily. Hence, this framework can be
applied to transport problems over networks (23, 66, 67). It should be noted that the framework of
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transport over networks is versatile, in that a prior transport plan (uncontrolled transition kernel)
can also be taken as an additional design parameter. In fact, selecting as the prior the (general-
ized) Ruelle–Bowen random walk (71, 72) results in transport plans that balance efficiency with
robustness (for more details, see 23, 66, 67).

7. CLOSING COMMENTS

We have surveyed a number of topics that highlight the rapidly growing impact of optimal trans-
port in systems theory and control engineering. The overarching theme is ways to control uncer-
tainty in state trajectories of dynamical systems and to specify objectives in terms of soft proba-
bilistic terminal constraints; the pertinent emerging trend in control theory can thus be referred to
as control of uncertainty. OMT has several other applications in systems and control that are not
covered in this short survey, such as in inverse problems (73, 74), filtering and estimation (75–80),
path planning (81), and swarm control (82).

In spite of its ancient roots, going back to Monge in 1781, optimal transport did not make
inroads into the theory of dynamical systems until the 1990s, when Benamou, Brenier, Gangbo,
McCann, Otto, and others (26, 29, 32) recast transportation with a quadratic cost in a variational
form. Many important works followed. Additional impetus was provided by a far-reaching and
unlikely link between optimal transport and the SBP, which was conceived as a gedankenexperi-
ment on stochastically driven particles (33, 34) and aimed to shine light on the time reversibility of
physical laws (15, 36, 50). In the process, Schrödinger put forth, along with the foundations of the
maximum entropy inference method, a variational problem on random trajectories that ultimately
turned out to be a model for the optimal steering of stochastically driven dynamical systems.

The deep connection between quadratic control cost and entropy functionals on path trajec-
tories, via large deviation theory, was made in the 1990s by Dai Pra (45) and Wakolbinger (83)
(see also 48, 49). In addition to expanding the significance of OMT in stochastic control, this link
between OMT and the SBP has provided a popular and efficient algorithm for solving OMT
problems (41, 84). While the mathematics of OMT and the SBP is now providing a powerful
paradigm to attack many diverse problems in engineering, physics, computer science, and so on,
the focus of our survey has been on the impact in systems and control. Specifically, our starting
point was the progression from variational problems of mechanics to stochastic control in the
space of state distributions. This led to an expansion of classical quadratic regulator theory to un-
certainty control. While this work required a new set of techniques, the solutions turned out to
be familiar looking in terms of differential (coupled, in this case) Riccati equations. There has also
been an important offshoot of optimal transport on discrete spaces/networks and the control of
MDPs. In both continuous and discrete spaces, theoretical and computational challenges remain,
such as expanding on possible state and control constraints (18, 22, 85), dealing with limits to actu-
ation authority vis-à-vis stochastic noise (see Section 4.3), and dealing with high dimensions when
only samples of the marginals are known (86). We should also note that the impact of OMT and
the SBP in other disciplines, such as oceanic and atmospheric sciences (87–89), computer imaging
(90), data sciences (91, 92), and machine learning (93), is also rapidly expanding.

In closing, we recall that Francis Bacon, in his 1620 work Novum Organum Scientiarum, listed
the following among his idola tribus (logical fallacies of human nature): “The human understanding
is of its own nature prone to suppose the existence of more order and regularity in the world
than it finds.” Could this just be a consequence of evolution? Indeed, we cannot make any rational
analysis or decision based on chaos. After all, Plato’s δημιovργ oς (literally, “people’s worker”) does
not create but rather produces order from chaotic preexisting matter. In Schrödinger’s original
problem for a cloud of Brownian particles, the prior Wiener measure represents, in a cogent way,
chaos. The Schrödinger bridge approach, of transport under stochastic uncertainty, is the less
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prejudicial strategy to derive some form of order from chaos—namely, a model on which we can
base our analysis and decisions. It is most fortunate that this procedure can be formulated as a
control problem—in fact, as the problem to control uncertainty. This significantly enlarges the
scope of control theory, connecting it to other vast areas of science to which OMT and maximum
entropy inference methods have been applied. As shown by this review, we can then use and adapt
control ideas and techniques to develop effective new ways to attack problems.

SUMMARY POINTS

1. Optimal mass transport (OMT) can be cast as a stochastic control problem.

2. The Schrödinger bridge problem (SBP) was conceived as the inference problem of find-
ing the most likely random evolution linking boundary marginal distributions.

3. The SBP can also be cast as a stochastic control problem, as with OMT, but with an
added source of stochastic uncertainty.

4. In both OMT and the SBP, the transportation cost to be minimized is the expected value
of a quadratic cost over possible trajectories.

5. Applications of OMT and the SBP lead to consideration of various generalizations with
regard to the underlying dynamics and terminal state distributions.

6. A discrete-space counterpart of either OMT or the SBP relates to control problems for
Markov decision processes and transport over networks.

FUTURE ISSUES

1. OMT and the SBP represent rapidly developing subjects, with a rich mathematical basis
that impacts a range of scientific disciplines beyond systems and control.

2. OMTand the SBPhave helped launch a new subdiscipline of stochastic control—control
of uncertainty—where many technical and computational issues remain open.
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