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Abstract

Cyber-vulnerabilities are being exploited in a growing number of control
systems. As many of these systems form the backbone of critical infrastruc-
ture and are becoming more automated and interconnected, it is of the
utmost importance to develop methods that allow system designers and
operators to do risk analysis and develop mitigation strategies. Over the last
decade, great advances have been made in the control systems community to
better understand cyber-threats and their potential impact. This article pro-
vides an overview of recent literature on secure networked control systems.
Motivated by recent cyberattacks on the power grid, connected road vehi-
cles, and process industries, a system model is introduced that covers many
of the existing research studies on control system vulnerabilities. An attack
space is introduced that illustrates how adversarial resources are allocated in
some common attacks. The main part of the article describes three types of
attacks: false data injection, replay, and denial-of-service attacks. Represen-
tative models andmathematical formulations of these attacks are given along
with some proposed mitigation strategies. The focus is on linear discrete-
time plant models, but various extensions are presented in the final section,
which also mentions some interesting research problems for future work.
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1. INTRODUCTION

Security in networked control systems refers to the study of attack algorithms by which an ad-
versary can degrade the performance of a control system by utilizing a cyber-channel over which
sensor measurements or control signals are being transmitted in a control loop, as well as the cor-
responding detection and mitigation mechanisms that can be employed to prevent performance
degradation in the presence of such attacks. Attacks on control systems are notably different from
attacks in which the goal of the adversary is degradation of the cyber-network itself, e.g., through
distributed denial-of-service (DoS) attacks on internet routers (1, 2). They are also different from
faults, which may also degrade the performance of a control system, since in the traditional fault
diagnosis literature, a basic assumption is that the fault is happening without active participation
by an adversary (3). Finally, cyberattacks are different from physical attacks, as the latter are carried
out by an adversary who does not utilize a cyber-channel to carry out the attack.

Although cyberattacks on industrial control systems have been reported regularly for quite
some time, the area was catapulted into public awareness through a few high-profile attacks, such
as the Stuxnet computer worm that attacked industrial sites in Iran in 2010 (4) and the cyberat-
tack on the Ukrainian power grid in 2015 (5). The latter consisted of interfering with the power
grid’s supervisory control and data acquisition (SCADA) system to remotely switch substations off
and disable infrastructure components in order to interrupt the proper functioning of the power
network. More generally, such cyberattacks have been noted or demonstrated against a variety
of systems, including infrastructure systems, automobiles, manufacturing industries, oil refineries,
and smart homes. As more control systems become networked—meaning that sensor and con-
troller signals are transmitted over wireless or wired networks—the possibilities available to the
attacker, and hence the importance of security in control systems, only increase.

The security problem in networked control systems is essentially a game between the attacker
and defender. This can be interpreted formally in the context of game theory or in an informal
sense as referring to a competition between these two entities: The attacker seeks to stay one
step ahead of the defender in terms of designing an attack that is sophisticated enough to beat
the detection and mitigation mechanisms employed by the defender. Similarly, the defender seeks
to estimate the capabilities or sophistication of the attacker and deploy mechanisms to detect
or mitigate the attack. This point of view has three immediate consequences. The first is that
technically it makes sense to define and identify a spectrum of capabilities or resources available
to the attacker and the defender in order to calculate the outcome for the control loop in a variety
of possible scenarios. The second is that algorithms that can identify the capabilities of an attacker
or a defender can be very useful in practice. The final consequence is that the interaction between
the attacker and the defender needs to be ideally captured by a dynamic or iterative model, in
which the attacker and the defender have the ability to learn from previous interactions and to
improve their strategies or resource allocations.

Several important technologies are available and commonly used to defend industrial control
systems against cyberattacks. How to engineer secure systems in general is a large and broad
cross-disciplinary topic with specific solutions for certain application domains (6). Cryptography
is a critical component and is about securing information systems in general against adversarial
attacks by encrypting data for secret communication, deploying protocols for secure key exchange,
allowing proper user authentication, and so on (7). In contrast to cryptography, there are also
many specialized defense mechanisms, such as so-called honeypots aimed at luring an adversary
into the system and then monitoring and analyzing that adversary’s behavior in order to create
counteractions (8). Obfuscation has often played a key role in traditional control system security
in that knowledge of dedicated computer systems and communication protocols for industrial
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control systems has not been widely available.The trend of buildingmodern control systems based
on off-the-shelf components and standard technologies has reduced the role of obfuscation and
made these systems more vulnerable to adversarial organizations and individuals. It is a mistake
for a defender to rely only on the lack of knowledge by an attacker about the system or the strategy
employed by the defender. Kerckhoffs’s principle (9) on military ciphers from 1883 and Shannon’s
maxim “the enemy knows the system” from 1948 can be interpreted as saying that the reliance on
secrets in a system design should be kept to a minimum and that the defender should implement
security algorithms under the assumption that the algorithms are public and thus known to the
adversary. This principle leads to stronger systems in the long run and is also adopted for the
algorithms discussed in this article.

Our focus is on security for networked control systems and particularly on attack andmitigation
techniques targeting the requirements and nature of such systems. A key requirement is the need
for real-time response as the systems are monitoring and controlling physical processes, which
thus imposes a timescale that needs to be followed for the detection and mitigation of any attacks.
This also means that solutions that rely on collecting and analyzing large amounts of data need to
be evaluated for the latency that they impose.A related requirement is the need for the closed-loop
control system to be operated safely and continuously, since breaking the loop might deteriorate
the performance of the controlled physical process or even render it unstable.While one solution
for mitigating an attack on an IT system may simply be to restart a device or a server, interrupting
a physical process such as an infrastructure system or an autonomous car is in most practical
situations impossible. In some applications, such as the power grid or the transport infrastructure,
legacy devices may also be present that need to be considered while designing secure systems.

Confidentiality, integrity, and availability are fundamental requirements for computer secu-
rity (6). This paradigm can also be applied to the security of networked control systems while
keeping in mind the differences above. In the present context, confidentiality refers to authorized
access to information. In other words, sensor or control information should be encrypted and oth-
erwise authenticated. Authentication attacks seek to impersonate authorized users or otherwise
defeat the measures in place. If networked control systems have legacy components, the problem
is even more difficult. Similarly, integrity refers to the property that the data being transmitted are
not replaced with malicious data by the adversary. Such data can lead to incorrect control updates,
and thus the state of the process may evolve in a manner that does not satisfy constraints such as
safety or stability.Most of the attacks that we consider are data integrity attacks.The physics of the
process imposes some constraints on what the attacker can transmit; however, there is still con-
siderable freedom available that can be exploited. Finally, availability refers to the property that
the control system components are always available. DoS or jamming attacks can lead to sensor
or state data not being available to the controller, thus challenging the decision-making process
and possibly degrading the system performance to unacceptable levels.

The outline of this article is as follows. Section 2 presents three motivating examples and de-
scribes how they relate to the methodologies presented later. The system and attacker models
used throughout the article are introduced in Section 3. Three extensively studied types of cyber-
attacks are then discussed—false data injection (FDI) attacks (Section 4), replay attacks (Section 5),
and DoS attacks (Section 6)—together with some proposed mitigation mechanisms. The article
concludes with an outlook on extensions and future work in Section 7.

2. MOTIVATING EXAMPLES

Cyber-physical security vulnerabilities are present in a wide range of control applications. Some
of them have already been exploited over the last few years in various attacks. In this section,
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we describe three examples to illustrate this trend and to motivate models and defense strategies
introduced in later sections.

2.1. Power Grid

Toward the end of 2015, the operation of part of the power grid in a region of western Ukraine
was interrupted through a sophisticated cyberattack that impacted approximately 225,000 cus-
tomers. The attack was probably the first one of such a scale on a power system, and it was widely
reported in the media (5) and described in detail by security corporations and government orga-
nizations (10). Through spear-phishing efforts prior to the actual attack, adversaries were able to
obtain virtual private network credentials to the SCADA network of the grid. On the day of the
attack, these credentials allowed them to gain remote access to several substations (similar to the
one shown in Figure 1), giving them control over circuit breakers. Opening such breakers took
down power delivery for several hours for many customers. As part of the attack, they remotely in-
stalled malicious firmware on field devices at the substations, making it impossible for the remote
operators to restore their operation automatically and requiring extensive manual work.

Many security vulnerabilities of the power grid have been discussed over the last decade. The
grid is a large-scale networked control system that regulates frequency and voltage by ensuring
that the supply equals the demand. Sensors, actuators, and control algorithms are distributed over
the network and over large geographic areas. All of the cyberattacks and mitigation strategies
discussed in this article are relevant for the grid. As an example, consider the state estimator for
the transmission grid generating estimates for the voltage phasor magnitudes and angles, which
are extensively used by control and optimization algorithms in the grid control center. Studies
showed more than 10 years ago how FDI attacks could fool the state estimator (11) and that this
vulnerability can be systematically evaluated (12). FDI attacks for networked control systems are
discussed in detail in Section 4. DoS attacks, which are presented in Section 6, have also been
studied for load frequency control (13).

Figure 1

An example of a substation. Substations transform electric voltage levels as part of the power grid, often
between the transmission and distribution networks. They typically have several sensing and actuation
devices and have been shown to be vulnerable to cyberattacks. Photo by ETA+ via Unsplash.

448 Sandberg • Gupta • Johansson



Figure 2

A vehicle platoon of three trucks. The control of the distances between the trucks is based on vehicle states
being wirelessly communicated among the vehicles. Photo courtesy of Scania.

2.2. Connected and Automated Vehicles

In 2015,Miller &Valasek (14) demonstrated that it was possible to remotely take over the essential
functionalities of a 2014 Jeep Cherokee while a journalist fromWired was driving the vehicle on
a highway (15). At a conference and in an extended report, they detailed the vulnerabilities in
the system and the procedure they went through to take control of the car, basically providing a
recipe for how to perform cyberattacks on a large number of carmodels.The attack surface was the
radio interface in the car, which supported bothWi-Fi and cellular communication.This interface
gave indirect access to the controller area network that connected several electronic control units
handling steering, transmission, braking, and many other critical functionalities. Reprogramming
an embedded microcontroller with new firmware made it possible to send commands through
the cellular network to an electronic control unit in order to shut down the engine remotely. The
demonstrated remote attack could be done from any location, did not require any modification to
the vehicle, and showed that hundreds of thousands of vehicles were vulnerable.

Future intelligent transport systems with connected and automated vehicles will have many
more radio interfaces than today’s vehicles and thusmanymore potential attack surfaces for remote
intruders than the ones described above. An example of an emerging technology is heavy-duty ve-
hicle platooning, as illustrated in Figure 2. Such road trains provide more energy-efficient freight
transport under almost driverless operations but require wireless communication among the ve-
hicles to regulate the intervehicle distances tightly (16). Vehicle platoons and automated vehicles
in general will be supported by an advanced wireless sensing and communication infrastructure to
enable the vehicles to have beyond-human situational awareness for smooth interactions between
all kinds of road users and traffic controllers. Such infrastructure needs to be resilient to a large
range of potential cyberattacks, such as DoS attacks overloading the communication networks and
servers, which are further discussed in Section 6.

2.3. Industrial Process Automation

The Stuxnet cyberattack on industrial sites in Iran 2010 was the first large-scale attack on a
SCADA system to directly exploit the nature of the targeted control system (4). It consisted
of multiple phases and used specific vulnerabilities, including four zero-day exploits, which are
software flaws unknown to the target software vendor. The Stuxnet worm entered the system via
a USB stick and then spread to multiple computers while checking to see whether each machine
was part of a targeted industrial control system. For the machines that were part of this control
system, such as the control of centrifuges in a uranium-enrichment plant, the worm compromised
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Figure 3

A paper mill. Such a plant consists of thousands of control loops, which in the future might be connected to
the cloud to enable basically unlimited computing power for data analytics, which could be used in, for
instance, advanced predictive maintenance. Photo courtesy of Iggesund Paperboard.

their programmable logic controllers in a sophisticated way. The compromised controllers first
silently recorded plant information such as sensing and actuation data for a while, then used
these data to generate control commands that destabilized and destroyed the controlled process;
meanwhile, they also provided supervisory controllers and operators with false data, giving them
the impression that the process status was normal. Such a cyberattack is nowadays called a replay
attack and is further discussed in Section 5.

Wireless sensors and networks are not commonly used in today’s process industry control loops,
as in the industrial plant in Figure 3. With the current trend in embedded and cloud comput-
ing, wireless and cellular communication, and Internet of Things technology, however, drastic
changes can be expected in the architecture and operation of industrial automation systems (17).
Existing and new embedded devices will collect data online and feed them into the cloud for data
analytics, predictive maintenance, operation optimization, and so on. Such systems will provide
huge advantages in performance, resource efficiency, and flexibility, but several new attack surfaces
could be established if this technological development is not done properly. Industrial processes
could be open to all of the cyberattacks discussed in this article, including the replay attack de-
scribed above.

3. SYSTEM AND ATTACK MODELS

The networked control systems we consider are schematically illustrated by the block diagram in
Figure 4. The physical layer consists of the plant P and also includes devices such as sensors and
actuators. Examples of relevant plants were given in Section 2. The cyber-layer consists of a com-
munication network, such as a SCADA system or a field network, together with the controller
C and a possible detector D. The controller and detector could be centralized and located at a
control center or could be distributed in, for example, programmable logic controllers. In the fol-
lowing, we introduce an abstract modeling framework for system-theoretic security analysis.Note
that for practical security considerations, implementation details such as the choice of hardware
and protocols are also essential (for a comprehensive overview, see 6).
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Figure 4

Block diagram of a networked control system. The network-and-attacker layer illustrates three modes of
attack: denial of service (switches), eavesdropping (outgoing arrows), and false data injection (au, ay). Figure
adapted from Reference 59 with permission from Springer International Publishing; permission conveyed
through Copyright Clearance Center, Inc.

In the following sections, we suppose that the plant P can be modeled as a linear discrete-time
system,

P :

{
x(k+ 1) = Ax(k) + Bu(k) + Baa(k) + w(k), x(0) = xi,

y(k) = Cx(k) +Daa(k) + v(k),
1.

for times k ≥ 0, with state x(k) ∈ R
n, communicated control input u(k) ∈ R

m, and received mea-
surement y(k) ∈ R

p. We assume that the plant is subject to process disturbance w(k) ∈ R
n and

measurement noise v(k) ∈ R
p. The signal a(k) ∈ R

q models attacks and is introduced in Section 4.
Depending on the attack scenario considered, we also specify models of the controller C and de-
tector D.

We consider malicious attacks carried out through the network communication system as in-
dicated in Figure 4. As explained in Section 1, the process operator desires confidentiality, in-
tegrity, and availability; conversely, the attacker seeks to violate one or more of these properties.
For example, the attacker may inject, or manipulate, the data content in the packets between the
controller, sensors, and actuators. This violates integrity and is modeled by an additive signal
a= (au, ay) injected into the control loop in Figure 4. Such FDI attacks are the focus of Section 4.
An attacker may also eavesdrop on communication and thus violate confidentiality. This is mod-
eled by outgoing arrows in the network layer of Figure 4. For example, the attacker may record
sensor measurements over a period of time to later inject and fool the controller about the plant
state. This could possibly be coordinated with harmful FDI in the actuator channel; such attacks
are called replay attacks and are the focus of Section 5. The actuator or sensor channels may also
be taken out (or rendered unavailable) by the attacker by overwhelming the network with commu-
nication packets.This is modeled in Figure 4 by switches, which show that such attacks effectively
render the system open loop. DoS attacks are the focus of Section 6.
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Model knowledge

Disruption resources

Disclosure resources

Replay attackDenial-of-service attack

Stealthy false data
injection attack

Figure 5

Attack space illustrating the adversarial resources required to conduct attacks. Disclosure resources quantify
the number of channels the attacker can read, whereas disruption resources quantify channel writing ability.
Model knowledge refers to how much the adversary knows about the models of components P , C, and D in
use by the designer and the operator. Figure adapted from Reference 59 with permission from Springer
International Publishing; permission conveyed through Copyright Clearance Center, Inc.

Figure 5 shows a three-dimensional attack space that serves to illustrate the relative resources
required to implement attacks against networked control systems. Disclosure resources measure
the possibilities the attacker has to read the channels u and y in Figure 4. These can vary in a net-
work depending on the attacker’s access to links and physical devices and on whether the operator
has encrypted some channels.Disruption resources measure the possibilities to overwrite or inject
new u and y packets. These depend on factors similar to those affecting disclosure resources but
also on whether the operator authenticates some links. Finally, model knowledge measures how
much the attacker knows about the models of P , C, andD in use by the designer and the operator.
An attacker can use such knowledge to mask data attacks. For example, FDI attacks can be made
undetectable or stealthy. Replay attacks do not require such knowledge, but instead exploit the
ability of the adversary to read, record, and write data packets. DoS attacks only exploit the abil-
ity of the adversary to send large numbers of data packets to specific target devices and thereby
overload the device or the communication channel. More advanced multistage attacks could very
well move in the attack space after the attack has commenced. For example, one could envisage
an attacker who first passively eavesdrops on channels to learn the models in use and later stages
a stealthy FDI attack by exploiting the learned models.

4. FALSE DATA INJECTION ATTACKS

In this section, the physical plant P is targeted by FDI attacks, modeled by a �= 0 in
Equation 1. FDI attacks generally originate from interception and corruption of communi-
cation channels to and from the plant (see Figure 4). In such scenarios, we split the attack into
the components directly affecting the control signal u and measurement y as a = (au, ay). In this
case, Ba = [

B 0
]
and Da = [

0 I
]
. We define three types of FDI attacks: sensor attacks (ay �= 0,

au = 0), actuator attacks (au = 0, ay �= 0), and coordinated attacks (ay �= 0, au �= 0). FDI attacks
generally affect the state, control, and sensor signals. The reason for the difference in plant
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state under actuator attack is obvious. For sensor attacks, the plant state may be affected when
operating in a closed loop in which a feedback controller reacts to the manipulated signal y
and applies the affected control u, and thus perturbs the state. We assume, however, that the
disturbances and noise, w and v, respectively, are unaffected by FDI attacks.

4.1. Attack Detection

A fundamental problem for the system operator is to determine whether the plant is subject to
an FDI attack—that is, whether a �= 0 or a � 0 in Equation 1. In fault diagnosis (18) termi-
nology, this is a detection problem. If an attack is detected, one may proceed to the isolation
problem to determine the attack type and affected channels. Finally, the identification problem,
which is the most complex problem, concerns the reconstruction of the exact attack sequence
ak0 := (a(0), a(1), . . . , a(k)).

Assuming a statistical setup where probability distributions of wk
0 := (w(0),w(1), . . . ,w(k)),

vk0 := (v(0), v(1), . . . , v(k)), and xi are known, and with given data (uk0, y
k
0), the detection problem

can be understood as a multiple hypothesis test:

H0 : a ≡ 0 (no FDI attack),

Hk0 : a
k0−1
0 ≡ 0, akk0 �= 0 (FDI attack starts at time k0 > 0).

This test should determine whether there is sufficient evidence to reject the null hypothesisH0 in
favor of one of the alternative hypotheses H>0. A difficulty here is for the operator to character-
ize and model the alternative hypothesis H>0 since the capabilities and goals of the attacker are
generally unknown, although risk assessment may give valuable insights. Assuming deterministic
but unknown attack signals a, we may use recursive generalized likelihood-ratio tests on online
data (19, 20) to generate a detection alarm as soon as possible after the actual attack has started.
References 19 and 21 discuss optimality properties and relations to the so-called cumulative sum
(CUSUM) test, and References 18 and 19 explain how and when it is possible to proceed to isolate
and identify attacks following a detection alarm. In general, this follow-up analysis is best done in
an offline mode using all available data.

If the alternative hypothesesH>0 are not well characterized, so-called nonparametric CUSUM
tests (22) can be run online in order to quickly detect certain deviations from the null hypothesis
H0. How to tune such detectors to minimize the physical damage in the presence of malicious
FDI attacks is discussed in Reference 22. An example of a nonparametric CUSUM test to detect
attacks is the following. First, compute residual sequence rk0 using a state estimator:

x̂(k+ 1) = Ax̂(k) + Bu(k) + Kr(k), x̂(0) = Exi,

r(k) = y(k) −Cx̂(k).
2.

A common choice is to use a Kalman gain K tuned under the null hypothesisH0, in which case the
residual is the innovation sequence with desirable independent and identically distributed (i.i.d.)
statistical properties. Then, compute the CUSUM statistic as

S(k) = max{S(k− 1) + |r(k)|2 − δ, 0}, S(0) = 0,

where δ is a tunable forgetting parameter chosen such that E|r(k)|2 − δ < 0 under the null
hypothesis H0. The test is now

S(k)
H>0
≷
H0

τ ,
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where τ is a tunable alarm threshold chosen to trade off the false-alarm and correct detection rates.
An alarm at time ka supports that an abrupt change has occurred in the system at time k0 ≤ ka,
and we can estimate the change time as k0 ≈ ka −Nka + 1,whereNk = Nk−11{S(k−1)>0} + 1 (see 19).
Here, Nk counts the number of time steps since S(k) was last set to zero, and 1 is the indicator
function.

The CUSUM statistic is an example of a so-called stateful test, which takes the history of the
residual into account. Popular alternatives are stateless tests, such as the χ2 test (18, 22), where
only the current residual is monitored:

|r(k)|2
H>0
≷
H0

τ. 3.

Generally, such tests are easier to theoretically analyze but may perform worse in practice (higher
false-alarm rate, easier to bypass, etc.) (22).Windowed χ2 tests (23) are a possible stateful extension
of the regular χ2 test, with better performance.

The tests and schemes mentioned above were originally designed for the detection of faults
with no malicious intent. More recent anomaly detection schemes and mitigation tools are dis-
cussed in Section 4.3. However, as discussed in the following section, a resourceful attacker can
often bypass particular detection tests.

4.2. Undetectable and Stealthy Attacks

The design of attack detection algorithms is clearly very important and challenging even under
strong assumptions on the attacker. A related line of work has focused on characterizing types
of attacks that are particularly difficult to detect for any detection test. Such attacks are called
undetectable or stealthy. The possibility of these attacks highlights inherent weaknesses in the
system itself. As part of a risk management process, knowledge of such attacks and their impact
can be used to guide the allocation of new security resources (24). Examples of security resources
are redundant sensors, redundant actuators, and the deployment of encryption or authentication
mechanisms on selected communication channels.

Next, we review some classes of undetectable and stealthy attacks.

4.2.1. Deterministic undetectable attacks. A deterministic approach to characterizing attacks
that are hard to detect leads to the concept of undetectable attacks (25). Informally, an attack a
is undetectable if the signals available to the controller and detector coincide with signals due to
some nominal operating condition.More formally, a �= 0 is undetectable if there exist initial states
xi and xai such that

y(k; xi, u, 0) = y(k; xai , u, a), k ≥ 0, 4.

for at least some input u.1 Hence, there exist (at least) two different conditions for the same in-
put and output sequences. One possibility is that the system is not under attack, and another is
that there is an FDI attack (albeit with a different initial condition). Typically the operator does
not exactly know what the initial state is and hence cannot determine whether there is an attack.
The attack is thus undetectable.

Under certain situations (generically, when there are more attack signals than outputs), the
condition given in Equation 4 may hold with xi = xai . In this case, even if the operator knows the

1y(k; xi, u, a) denotes the output of Equation 1 at time k when the input is u and attack is a. For simplicity, we
leave out w and v in the deterministic scenario here.
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initial state, undetectable attacks exist. Such attacks are perfectly undetectable attacks (or shorter,
perfect attacks; see 26).

For linear systems, the condition in Equation 4 translates into the existence of zero dynam-
ics (transmission zeros) (25), and these attacks are also sometimes referred to as zero-dynamics
attacks (27).

4.2.2. Deterministic stealthy attacks. Another deterministic approach leads to the concept
of stealthy attacks (27). Whereas undetectable attacks are designed to be independent of possible
fault or anomaly detection mechanisms (Section 4.1), stealthy attacks take them explicitly into
account. For simplicity, consider a constraint derived from Equation 3:

|r(k; y, xi, u, a)|2 ≤ τ + ε, k ≥ 0, 5.

where r(· ; y, xi, u, a) emphasizes the dependence of the residual on the system signals and attack
underH>0. A stealthy attack a �= 0 against the detector given in Equation 3 satisfies the constraint
from Equation 5 for some threshold ε ≥ 0 chosen by the attacker. By choosing ε = 0, the attack
will not generate an alarm from this particular detector.Using ε > 0 increases the risk for an alarm
but may also increase the impact of the attack. In a similar manner, stealthy attacks may be defined
for other detectors.

Intuitively, the class of deterministic stealthy attacks is larger than the class of undetectable
attacks. Indeed, undetectable attacks are often stealthy attacks. However, it is possible to design
detectors that trigger alarms for dangerous, or unlikely, actual outputs y. In general, it is not pos-
sible to conclude that undetectable attacks are always stealthy or vice versa.

4.2.3. Stochastic stealthy attacks. The previous classes of attacks have taken a deterministic
approach. There are various methods and assumptions in the literature to handle uncertainty in
noise, disturbance, and initial state (see 25, 27). If probabilistic models of the uncertain variables
are available, they can be used to define stochastic stealthy attacks (28–30). Let p0(yk0) and pa(y

k
0)

be the probability densities of the output sequence in closed loop under no attack (H0) and under
attack (H>0), respectively. A (possibly stochastic) attack a is then ε-stealthy if

lim sup
k→∞

1
k+ 1

DKL(pa(yk0) ‖ p0(yk0)) ≤ ε, 6.

whereDKL(·‖·) is theKullback–Leibler divergence between two probability densities. Intuitively, if
ε > 0 is small, correctly distinguishing between the two hypotheses with high probability requires
a very long output sequence. In fact, as is shown in Reference 29, the Chernoff–Stein lemma
yields that for any δ � (0, 1) there exists no detector with detection probability pD(k) (deciding
H>0 when H>0 is true) satisfying 0 < 1 − pD(k) < δ and simultaneously a false-alarm probability
pF(k) (deciding H>0 when H0 is true) decaying faster than rate ε,

lim sup
k→∞

− 1
k+ 1

ln pF(k) > ε,

illustrating the difficulty of detecting such an attack.

4.2.4. Impact of stealthy attacks. Malicious adversaries often have specific attack objectives.
In practice, a resourceful system operator can stop many attacks soon after they are detected. It
then becomes important to evaluate the possible impact of stealthy attacks. Indeed, if a stealthy
attack cannot cause much damage, it may not be of the highest priority in a risk management
process (24). A system operator may tune the detection system to balance the impact of possible

www.annualreviews.org • Secure Networked Control Systems 455



attacks and the cost for false alarms, which is a central idea in Reference 22. We next illustrate
such trade-offs in a simple example.

For detectors in stochastic systems, the worst mean delay for detection, TD, is asymptotically
bounded by the mean time between false alarms, TF, as

TD ≥ lnTF

ε
, TF → ∞,

where ε is a bound on the Kullback–Leibler divergence between the attacked and unattacked sce-
nario as expressed in Equation 6.We point the reader to Reference 21 for a precise statement and
definitions of the involved quantities. Since operators typically require very long times between
false alarms, this bound is of practical relevance. Assume next that the damage an attack can in-
cur at every time step it is undetected is approximately quadratic in that attack, D(a) ≈ 1

2a
TDaaa,

where Daa is a positive semidefinite matrix and a is a constant (bias) attack vector. If the at-
tack magnitude is small, we can furthermore approximate the Kullback–Leibler divergence as
DKL(pa(y)‖p0(y)) ≈ 1

2a
TIaaa, where Iaa is the Fisher information matrix. Hence, the total impact

of an optimal attack a�, before it is detectable and stoppable on average, can be bounded by a
generalized Rayleigh quotient,

lnTF
aTDaaa
aTIaaa

≤ lnTF
(a� )TDaaa�

(a� )TIaaa�
= lnTF · λmax(I−1

aa Daa ) ≤ TDD(a� ). 7.

Here, λmax (·) denotes the largest eigenvalue, and we assume that the Fisher information matrix
is positive definite (which corresponds to the condition that the attack cannot be undetectable).2

Note that under the quadratic approximation mentioned above, the total impact is independent
of the stealthiness parameter ε.

The system operator can use expressions such as those provided in Equation 7 to assess whether
a stealthy attack is serious. This depends on the visibility of the attack (Iaa), how the attack affects
the plant (Daa), and the threshold τ of the detector [τ �→ TF(τ )]. Assuming that there is also a cost
proportional to the frequency of false alarms, C/TF (cf. 31), the overall cost

lnTF(τ ) · λmax(I−1
aa Daa ) + C

TF(τ )

can be minimized by choosing an optimal detection threshold τ� such that

TF(τ � ) = C
λmax(I−1

aa Daa )
.

This expression optimally balances false alarm and attack impact costs.

4.3. Mitigation

Several mitigation strategies against FDI attacks have been proposed in the literature. Fault diag-
nosis and change detection methods in combination with threshold tuning (18, 19, 22) have been
discussed in Sections 4.1 and 4.2. In Reference 25, fundamental limitations and distributed imple-
mentations of FDI attack detectors are derived. Such fundamental limitations can be exploited in
preventive security resource allocation (24). Secure estimators (32, 33) exploit sensor redundancy
to always reconstruct a correct state estimate that can be used for resilient control. Data-based
anomaly detection schemes based on machine learning methodologies are currently also an active

2The first upper bound in Equation 7 is attained by choosing the optimal attack a� as the eigenvector of I−1
aa Daa

corresponding to λmax . Normalizing such that (a�)TIaaa� = 2ε achieves the desired level of stealthiness.
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research area (see, e.g., 34, 35). Approaches for increasing the opportunities for detecting stealthy
FDI attacks include moving-target defense (36) and multiplicative watermarking (37).

5. REPLAY ATTACKS

In this section, we consider replay attacks, which proceed by replaying or transmitting a delayed
version of the true sensor measurements while changing the control input to degrade the con-
trol performance. Since the received measurements correspond to a measurement sequence that
is possible, it can be very hard to detect via statistical means that an attacker has altered the mea-
surements in this way. It is, thus, considered to be a different class of attacks than the FDI attacks
discussed in the previous section, even though the control signal is still corrupted by an adversary.
As discussed in Section 2, the Stuxnet attack is believed to have been a replay attack.

A formal definition of a replay attack was considered in References 23 and 38. In this ver-
sion, the attacker is able to collect real-time sensor measurements being transmitted from the
sensor to the controller and has the capability to change the true sensor measurements to values
collected previously. This could be done, for instance, by knowing the cryptographic keys, or, in
simpler systems that do not employ cryptography or time-stamping, by simply retransmitting the
sensor measurements collected earlier. After the data collection phase, the attacker implements a
different control action than the one transmitted by the controller. Thus, a replay attack can be
implemented starting at time k = 0 for T steps by the attacker making the substitution

ya(k) = y(k− T ), 0 ≤ k ≤ T − 1, 8.

and simultaneously injecting an external input signal ua(k) for 0 ≤ k ≤ T − 1. This attack is best
applied when the system is at a steady state since the measurements will then correspond to a
system state that is well regulated. In this case, the attack is difficult to detect with any statistical
test on the sequence of received measurements. Depending on the actuation capability available
to the attacker, the true system state can degrade rapidly.

5.1. Attack Detection

The detection methodology for a replay attack relies on the basic idea of the controller purpose-
fully and unpredictably moving the system away from a steady-state value. This variation would
not show up in the measurements that the attacker substitutes, and hence the attack can be de-
tected. The price to pay for such variations is that even in the absence of an attack, the plant
state moves away from the desired value. Furthermore, there is a trade-off between the amount
of control energy expended in such variations and the ease with which an attack can be detected.

To consider a simple example, consider a system of the form in Equation 1 with a(k) � 0
and zero-mean white Gaussian noises w and v with covariances �w and �v , respectively. Assume
that the nominal controller is a linear–quadratic–Gaussian (LQG) controller that minimizes the
standard quadratic cost

J = lim
T→∞

E
1
T

(
T−1∑
k=0

(
xT(k)Qx(k) + uT(k)Ru(k)

))
. 9.

In steady state, the controller first computes the minimum mean squared error estimate x̂(k|k) of
the state x(k) given measurements y(0), . . . , y(k) and then calculates the control input

u(k) = u�(k) = − (BTSB+ R
)−1

BTSAx̂(k|k), 10.

www.annualreviews.org • Secure Networked Control Systems 457



where S satisfies the Riccati equation

S = ATSA+Q− ATSB− (
BTSB+ R

)−1
BTSA. 11.

If the covariance of the steady-state estimation error for the estimate x̂(k|k− 1) is given by P, then
the cost achieved by the LQG controller is given by

J = trace (S�w ) + trace
((
ATSA+ Q− S

) (
P − PCT (CPCT + R

)−1
CP
))

. 12.

One could imagine that if an attacker changes the measurements, it might show up in the
statistics of the innovation sequence of the minimum mean squared error estimates being calcu-
lated. We could propose checking the mean and variance of the sequence y(k) −Cx̂(k|k− 1) to
see whether an attack is present. It is easy to see that, in the absence of an attack, this sequence
is an i.i.d. sequence of Gaussian variables with mean zero and variance CPCT + �v . Thus, for
instance, for a window size of detection N, a χ2 detector could be used to check for the mean
and variance of this sequence being calculated. However, for a replay attack, if the measurements
being replayed were collected when the plant was at steady state, these statistics do not change,
and such a detector would not be able to identify an attack in progress.

5.2. Mitigation

To detect a replay attack, we redesign the controller as

u(k) = u�(k) + 	u(k), 13.

where δu(k) is drawn from an i.i.d. Gaussian sequence with mean 0 and covariance �u in a manner
that is independent of the inputs u�(k), which are calculated as in Equation 10. These variables
can be viewed as an authentication signal and have also been viewed in the literature as a physical
watermarking signal, since the detector expects to see a signature of this signal in the future time
steps.Clearly, the controller is no longer LQGoptimal, and the choice of the authentication signal
above is rather ad hoc. However, for this sequence, the trade-off between the ease of detection of
the attack (say, by a χ2 detector) and the degradation in control performance can be easily char-
acterized. Specifically, under some technical conditions, we can calculate the LQG performance
now as

J̄ = J + trace
((
R+ BTSB

)
�u
)
. 14.

We can characterize the expectation of a χ2 detector as follows. First, we note that the following
holds:

lim
k→∞

E
[
(y(k) −Cx̂(k|k− 1))T(CPCT + R)−1(y(k) −Cx̂(k|k− 1))

]

=
{
p if no attack
p+ 2trace(CT(CPCT + R)−1C)U if attack,

15.

where p is the dimension of y(k), P is the solution of the Riccati equation corresponding to the
estimation problem, and U is the solution of a Lyapunov equation (for more details, see 38). This
result can then be used to show that for a χ2 detector that considers a window of T measure-
ments, its steady-state expectation is increased from pTwithout attack to pT + 2trace(CT(CPCT +
R)−1CU )T.

Since U is an increasing function of �u, there is a trade-off between the ease of detection of
the attack and the loss in LQG performance without an attack. In a single-input, single-output
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system, there is only one way to insert the random signal δu and only one way to observe it. Thus,
to achieve a certain detection rate, a certain performance loss has to be accepted. Inmultiple-input,
multiple-output systems, however, we have more degrees of freedom. The random signal can be
optimized such that the detection requirements are met while minimizing the effect on controller
performance. Reference 23 provides two ways in which the optimization problem can be posed
and solved.

The formulation discussed above can be extended in various ways. For instance, Reference 39
removed the assumption of the authentication (or watermarking) signal δu(k) being chosen to be
an i.i.d. sequence, as well as the assumption of the χ2 detector being employed to detect whether
an attack is in progress. That work considered instead the case when the authentication signal
is designed as the output of a linear dynamical system expressed in a state-space form. Further-
more, instead of the χ2 detector, an optimal Neyman–Pearson detector was identified to decide
between the two hypotheses of an attack being present or not. Together, these assumptions allow
consideration of an adversary employing more intelligent attack strategies. The performance of
this detector can be characterized by an appropriate Kullback–Leibler divergence between the
probability density functions characterizing the output sequence under the two rival hypotheses.
An optimization problem for designing the authentication signal can once again be posed.

Satchidanandan & Kumar (40), in addition to presenting a nice overview of the area of replay
attacks, extended these results in many directions, such as considering systems with arbitrary delay,
partially observed systems, and non-Gaussian systems. The latter, in particular, remains a signif-
icant open problem since the assumption of linear systems driven by Gaussian noises provides a
significant advantage in designing and analyzing the statistical tests for detecting an attack. We
would also like to mention a paper by Ferrari & Teixeira (41), which considered a multiplicative
watermarking algorithm that utilized a watermark-removing function to prevent any sacrifice of
control performance.

6. DENIAL-OF-SERVICE ATTACKS

In general, a DoS attack is a cyberattack in which a malicious actor aims to render a computer,
machine, or system unavailable for its user. This is often done by flooding a computer network
or server with data traffic, preventing it from serving its users or even causing it to crash. In
this section, we discuss DoS attacks for networked control systems. Such attacks temporarily or
indefinitely interrupt the feedback control loop and can thereby have drastic consequences for
the system operation. Obviously, if the loop of an unstable plant is opened, the attack leads to
the overall system becoming unstable. It is natural to model DoS attacks as switches introduced
into the networked control system, where an open switch indicates a control loop under attack.
We present such a model next, followed by some mitigation strategies proposed in the literature.
Reference 42 provides a more extensive overview of DoS attacks in control systems.

Consider the networked control system in Figure 4 with the plant dynamics given in
Equation 1 but with no additive injected signal: a(k) � 0. Suppose that the closed-loop system
is exposed to DoS attacks in the communication of the control commands and sensor measure-
ments. Such attacks are represented by the switches in Figure 4 and in the model by introducing
the multiplicative relations

up(k) = γ (k)u(k), y(k) = δ(k)yp(k),

where up is the control applied to the plant and yp is the plant output. The binary variables γ(k)
and δ(k) represent DoS attacks, such that γ(k) = 0 if the control command communication is
interrupted by an attack and γ(k) = 1 otherwise, and δ(k) is defined in a similar way. In this model,
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γ and δ are decision variables of the adversary. The attack space in Figure 5 shows that a DoS
attack can be performed using only disruption resources, while in a more sophisticated scenario
the adversary could also use other available information and resources.

The interplay between the decision by the controller and the one by the adversary leads to
different analysis and design problems. One relevant case is when the controller is given, for in-
stance, as a static feedback law u(k) = −Ky(k). The closed-loop system then becomes a switched
system, which, without noise [w(k) = v(k) � 0] and with scalar controls and measurements, can be
written as

x(k+ 1) = (A− BKγ (k)δ(k))x(k). 16.

Such systems can be analyzed using Lyapunov methods based on input-to-state stability (43), as
was done in Reference 44, which derived conditions on how long and how often DoS attacks can
happen without rendering the closed-loop system unstable. In this work, the adversary is repre-
sented by deterministic sequences γ(k) and δ(k), k= 0, 1, . . . . These results make it possible to rea-
son about worst-case situations and can give an indication about what combinations of open- and
closed-loop dynamics together with DoS attack patterns are especially undesirable. Uncertainty
in the model and communication can also be conveniently included in the analysis. Nonlinear and
continuous-time plant models can be considered as well (45).

Networked control systems under DoS attacks have also been considered when the plant is
exposed to stochastic uncertainties and the attack signal is randomly generated. Amin et al. (46)
considered an LQG setting, where w and v in Equation 1 are assumed to be i.i.d. Gaussian noise.
The adversary is supposed to let the sequences γ and δ be Bernoulli distributed with fixed suc-
cess probabilities γ̄ and δ̄. Under such a model, it is shown that the optimal controller subject
to power constraints can be derived by solving a semidefinite program. A slightly more realistic
attack model is also considered, where the adversary has to decide how a finite budget of dropouts
should be utilized, denoted as block attacks. For an LQG-controlled system, Zhang et al. (47)
derived the worst possible (optimal for the adversary) DoS attack and showed under general as-
sumptions that it has such a block structure. If the dropouts are due to a jamming attack of a
wireless communication channel, it is possible to model the influence of the jamming signal on
the signal-to-interference-plus-noise ratio. Li et al. (48) studied such an attack for a remote state
estimation problem, showing that under a power-constrained setup, a game can be formulated
between the transmitter and the attacker, and this game admits a pure-strategy Nash equilibrium.
Another modification of the memoryless Bernoulli process attack model above is to extend it to
a hidden Markov model. Befekadu et al. (49) considered this problem and came up with a risk-
sensitive control formulation, which they showed has a nice separation principle that allows the
optimal control to be recursively computed.

6.1. Mitigation

Severalmitigation strategies for networked control systems underDoS attacks have been proposed
in the literature. Some strategies are based on the analysis provided by the attacks described above,
such as making sure that a sufficient number of sensor or control packets are transmitted (44, 46)
or that these packets are transmitted with sufficiently high power (48) to weaken the influence
of the malicious intent. For a networked control system, it is natural to utilize the inherent re-
silience provided by the network, such as multipath routing and data authentication. For instance,
allowing certain sensor data packets to take multiple paths or to randomly change paths can con-
siderably enhance overall security (50). Sarıtaş et al. (51) considered a more sophisticated defense
setup that uses a two-level defense mechanism with an intrusion detection system and continuous
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authentication. The intrusion detection system is responsible for detecting the attacker and net-
work anomalies. Since traditional authentication is insufficient to prevent identity theft attacks,
continuous authentication based on the characterization of user behavior has emerged. The au-
thors showed how the operator can combine these defense mechanisms to make the system more
secure even under advanced learning-based attacks.

7. OUTLOOK

To conclude, we present a brief outlook and discuss some aspects of secure networked control
systems not covered in the previous sections. To simplify the discussion, we focused in this article
on a discrete-time linear system setup. For some of the results discussed on FDI, replay, and DoS
attacks, there exist extensions to continuous-time as well as nonlinear systems. However, many
questions remain open in that setting, particularly in the stochastic setting.

Another important aspect covered only to a limited extent in the literature is the robustness to
systemmodel uncertainties and to limited knowledge about the adversary (see Section 3 on system
and attack models). For example, the problems in which the system parameters are unknown are
becoming increasingly important. In practice, both attack and defense strategies based on prob-
ing and learning the system and user responses from available data seem to be more and more
common (52). Some recent works exist in which the attacks above are combined with learning
algorithms. For example, the watermark design problem mentioned as a mitigation strategy for
the replay attack in Section 5 was extended in this direction by Liu et al. (53), who presented an
online learning algorithm to simultaneously infer the parameters of the system and generate the
watermark signal as well as the optimal detector. Interestingly, the watermark signal asymptoti-
cally converges to a signal that does not satisfy the persistent excitation condition. The authors
showed that by controlling the convergence rate, one can still guarantee that the system param-
eters will almost surely converge to the true parameters. This work could expand watermarking
in several directions, including consideration of nonlinear systems, through appropriate learning
techniques. It is also interesting to consider other attack scenarios, where a mitigation strategy
could be based on joint online system identification and defense algorithm design problems.

Machine learning and data analytics have been widely applied to cyber-security problems (54,
55). Some of these studies are also relevant for networked control systems.Methods not relying on
a known system model can be advantageous in many situations. One aspect where they are partic-
ularly relevant even if the system model is known is when the model is nonlinear or the noises are
not Gaussian, since the resulting statistics of the signals make tools depending on Kalman filters
or hypothesis testing difficult to apply. Signal-based methods include some mitigation strategies
based on classical detection schemes, as discussed in Sections 4 and 5. Causality measures can be
useful in detecting anomalies in a networked control system without accurate knowledge of the
model or statistics. Transfer entropy is one such measure from physics, indicating howmuch a sig-
nal can improve the prediction capability of another signal. Shi et al. (56) showed that, by detecting
changes in the transfer entropy, one can mitigate FDI, replay, and DoS attacks in a data-driven
fashion without relying on a model of the underlying system.

The discussion in this article also assumed a stand-alone process. There is a rich literature
on secure multiagent control systems that has examined a variety of problems, from the simple
consensus protocol under cyberattacks to more general multiagent dynamics (see, e.g., 57). As a
further illustration of these results, consider the consensus network under DoS attacks described
by Senejohnny et al. (58). The authors showed that consensus can be preserved despite the
attack by suitable time-varying control and communication policies. However, for more general
distributed control systems with multiple attackers, the problem becomes quite complicated
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(especially if coordination, detection, and mitigation need to be done in a distributed manner), as
issues of signaling become relevant.

Finally, the development of courses and curricula in which the security of networked control
systems plays an essential role is important for thewider deployment of the protectionmethods de-
veloped over the last couple of decades. Today, security is seldom taught as part of control courses
in chemical, civil, electrical, andmechanical engineering, even though systems from these domains
are continuously exposed to cyber-vulnerabilities. The curricula at various levels—undergraduate,
graduate, and continuing education—need to be developed in a holistic manner that includes both
theory and practice.

DISCLOSURE STATEMENT

The authors are not aware of any affiliations, memberships, funding, or financial holdings that
might be perceived as affecting the objectivity of this review.

ACKNOWLEDGMENTS

This work was partially supported by the Swedish Research Council, Swedish Strategic Research
Foundation, Swedish Civil Contingencies Agency, Knut and Alice Wallenberg Foundation, US
Army Research Office, and US Air Force Office of Scientific Research.

LITERATURE CITED

1. Garber L. 2000. Denial-of-service attacks rip the Internet. Computer 33(4):12–17
2. Pelechrinis K, Iliofotou M, Krishnamurthy SV. 2010. Denial of service attacks in wireless networks: the

case of jammers. IEEE Commun. Surv. Tutor. 13:245–57
3. Gao Z, Cecati C, Ding SX. 2015. A survey of fault diagnosis and fault-tolerant techniques—part I: fault

diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 62:3757–67
4. Kushner D. 2013. The real story of Stuxnet. IEEE Spectr. 50(3):48–53
5. Zetter K. 2016. Inside the cunning, unprecedented hack of Ukraine’s power grid.Wired, Mar. 3. https://

www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid
6. Anderson R. 2020. Security Engineering: A Guide to Building Dependable Distributed Systems. Indianapolis,

IN: Wiley. 3rd ed.
7. Katz J, Lindell Y. 2007. Introduction to Modern Cryptography. Boca Raton, FL: CRC
8. Mokube I, Adams M. 2007. Honeypots: concepts, approaches, and challenges. In Proceedings of the 45th

Annual Southeast Regional Conference, pp. 321–26. New York: ACM
9. Petitcolas FAP, ed. 2011. Encyclopedia of Cryptography and Security. Boston: Springer

10. Cybersecur. Infrastruct. Secur. Agency. 2016. ICS alert (IR-ALERT-H-16-056-01): cyber-attack against
Ukrainian critical infrastructure. Cybersecurity and Infrastructure Security Agency, Feb. 25. https://us-cert.
cisa.gov/ics/alerts/IR-ALERT-H-16-056-01

11. Liu Y, Reiter MK, Ning P. 2009. False data injection attacks against state estimation in electric power
grids. In Proceedings of the 16th ACM Conference on Computer and Communications Security, pp. 21–32. New
York: ACM

12. Teixeira A, Amin S, Sandberg H, Johansson KH, Sastry SS. 2010. Cyber-security analysis of state estima-
tors in electric power systems. In 49th IEEE Conference on Decision and Control, pp. 5991–98. Piscataway,
NJ: IEEE

13. Liu S, Liu XP, El Saddik A. 2013. Denial-of-Service (DoS) attacks on load frequency control in smart
grids. In 2013 IEEE PES Innovative Smart Grid Technologies Conference. Piscataway,NJ: IEEE. https://doi.
org/10.1109/ISGT.2013.6497846

14. Miller C,Valasek C. 2015.Remote exploitation of an unaltered passenger vehicle. Paper presented at Black Hat
USA, Las Vegas, NV, Aug. 1–6. Extended report available at http://illmatics.com/Remote%20Car%
20Hacking.pdf

462 Sandberg • Gupta • Johansson

https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid
https://us-cert.cisa.gov/ics/alerts/IR-ALERT-H-16-056-01
https://doi.org/10.1109/ISGT.2013.6497846
http://illmatics.com/Remote%20Car%20Hacking.pdf


15. Greenberg A. 2015. Hackers remotely kill a Jeep on the highway—with me in it.Wired, July 21. https://
www.wired.com/2015/07/hackers-remotely-kill-jeep-highway

16. Besselink B,Turri V, van de Hoef S, Liang KY, Alam A, et al. 2016. Cyber-physical control of road freight
transport. Proc. IEEE 104:1128–41

17. Ahlen A, Akerberg J, Eriksson M, Isaksson AJ, Iwaki T, et al. 2019. Toward wireless control in industrial
process automation: a case study at a paper mill. IEEE Control Syst. Mag. 39(5):36–57

18. Ding SX. 2008. Model-Based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools. London:
Springer. 1st ed.

19. Basseville M, Nikiforov IV. 1993. Detection of Abrupt Changes: Theory and Application. Englewood Cliffs,
NJ: Prentice Hall

20. Willsky A, Jones H. 1976. A generalized likelihood ratio approach to the detection and estimation of
jumps in linear systems. IEEE Trans. Autom. Control 21:108–12

21. Lai TL. 1998. Information bounds and quick detection of parameter changes in stochastic systems. IEEE
Trans. Inform. Theory 44:2917–29

22. Giraldo J,UrbinaD,Cardenas A,Valente J,FaisalM,et al. 2018.A survey of physics-based attack detection
in cyber-physical systems. ACM Comput. Surv. 51:76

23. Mo Y, Chabukswar R, Sinopoli B. 2014. Detecting integrity attacks on SCADA systems. IEEE Trans.
Control Syst. Technol. 22:1396–407
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