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Abstract

Since its inception in 1997, RoboCup has developed into a truly unique
and long-standing research community advancing robotics and artificial
intelligence through various challenges, benchmarks, and test fields. The
main purposes of this article are to evaluate the research and development
achievements so far and to identify new challenges and related new re-
search issues. Unlike other robot competitions and research conferences,
RoboCup eliminates the boundaries between pure research activities and
the development of full system designs with hardware and software imple-
mentations at a site open to the public. It also creates specific scientific and
technological research and development challenges to be addressed. In this
article, we provide an overview of RoboCup, including its league structure
and related research issues. We also review recent studies across several
research categories to show how participants (called RoboCuppers) address
the research and development challenges before, during, and after the
annual competitions. Among the diversity of research issues, we highlight
two unique aspects of the challenges: the platform design of the robots
and the game evaluations. Both of these aspects contribute to solving the
research and development challenges of RoboCup and verifying the results
from a common perspective (i.e., a more objective view). Finally, we provide
concluding remarks and discuss future research directions.
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1. INTRODUCTION

Since its inception in 1997, by offering a publicly appealing yet formidable challenge (1–3),
RoboCup has been a vehicle for promoting highly ambitious research in robotics and AI. One
effective way to promote science and engineering research is to set a visionary and challenging
long-term goal, and RoboCup was founded with such a long-term goal: by 2050, to have a team
of soccer-playing robots defeat the most recent World Cup champion team. This goal was set
at a time when humanoid robots were still confined largely to science fiction, as the Honda P2
humanoid robot was unveiled only in December 1996. Besides huge challenges for technology,
RoboCup’s vision also raises philosophical and societal questions (4).

This challenge has been successively expanded to address societal challenges by including ma-
jor leagues for rescue robots, robots that perform services for humans at home, and robots that
perform manufacturing tasks. The junior leagues, which target children in primary and secondary
school as well as undergraduates under 19 years old, comprise robotic soccer, rescue robots, and
creative on-stage performances by robots and humans. Generally, building teams of robots that
perform services and operate in environments with a large amount of uncertainty (such as soccer
games and rescue operations) can have significant social and economic impact, and reaching the
specific 2050 goal would certainly be a major achievement in the science and engineering fields
of robotics and AI.

Figure 1 illustrates how the number of RoboCup leagues has expanded since 1997. The first
RoboCup had three soccer leagues [the Simulation League, Small Size League (SSL), and Middle
Size League (MSL)] and has since expanded to five domains, each comprising several leagues:
RoboCupSoccer, RoboCupRescue, RoboCupJunior, RoboCup@Home, and RoboCupIndustrial.
In the following sections, we briefly explain the main research issues and their variations in each
league. The number of participating teams increased rapidly in the first 10 years, but owing to
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Figure 1

Expansion of RoboCup leagues since 1997. All leagues are currently active except for the RoboCupSoccer Four-Legged League, which
was replaced in 2009 by the Standard Platform League.
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Changes in the total number of teams across RoboCup leagues since 1997. Because league-specific
breakdowns for RoboCupJunior are not available for 2000–2010, those years show total numbers of
RoboCupJunior teams for all challenges.

the limited space and time, the number of teams in the international global event is now limited
to approximately 350–450 in the major and junior leagues combined (see Figure 2). There are
approximately 1,000major league teams and 10,000 junior league teams worldwide.There are also
many regional (e.g., the Japan, German, Iran, and Portuguese Opens) and supraregional (e.g., the
Asia-Pacific Open) RoboCup events that offer further opportunities for active participation. The
current structure of the RoboCup leagues, their current rules and committees, and information on
how to participate in RoboCup are available at the RoboCupwebsite (http://www.robocup.org).

The remainder of the article is structured as follows. In Section 2, we explain why RoboCup
is unique as a research community and how the league structure has expanded. Next, we survey
the research issues based on the broad research categories and topics. We then review a number
of current studies to show how the participants (called RoboCuppers) identify and address related
challenges. Finally, we provide concluding remarks and map future research directions.

2. WHY IS ROBOCUP UNIQUE?

To reflect the basic policy mentioned in Section 1, RoboCup has removed several types of
boundaries:

1. The boundary between competition organizers and participants: The technical committee
members of each league include members elected from among team representatives, and
the executive committee members are elected from among the former technical committee
members. Thus, the boundary between the participants and organizers is naturally blurred,
and they participate equally in discussing and designing new leagues and challenges.

2. The boundary between short- and long-term achievements: Unlike many robotics com-
petitions, which focus exclusively on significant short-term development achievements,
RoboCup focuses on sustainable, long-term progress toward its ultimate goal.

www.annualreviews.org • Scientific and Technological Challenges in RoboCup 443

http://www.robocup.org


AS03CH17_Asada ARjats.cls April 2, 2020 15:19

3. The boundary between academia and industry: Intelligent robotics is intrinsically interdis-
ciplinary, encompassing many fields in science and technology, and many RoboCup studies
similarly cover a wide range of disciplines rather than very specific issues in narrower
areas. Furthermore, RoboCup has an active relationship with the robotics industry in both
directions: New companies are born from the RoboCup community, and companies hold
their own challenges or support leagues and/or teams in RoboCup. For example, the leader
of the 2002 SSL champion team, Professor Raffaello D’Andrea, and his colleagues started a
company for mobile robotic fulfillment systems called Kiva Systems in 2002. Kiva Systems
produced mobile robot systems for carrying shelves in warehouses based on technology
fostered by RoboCup. Amazon acquired the company in 2012 and renamed it Amazon
Robotics (https://www.amazonrobotics.com) in 2015, and in 2016 and 2017, Amazon
Robotics held its own RoboCup competitions, the Amazon Picking Challenge (2016) and
Amazon Robotics Challenge (2017). In the other direction, Sony’s AIBO robot was used as
the standard platform in the Four-Legged League until 2008, when RoboCup started the
Standard Platform League (SPL) and selected the Aldebaran NAO humanoid robot as the
new standard platform following an open call for tenders; this was the first major appli-
cation of the NAO robot. SoftBank acquired Aldebaran Robotics in 2015 and renamed it
SoftBank Robotics Europe (SoftBank Robotics having been established in 2014). In 2014, a
new service robot, Pepper, was introduced, and in 2017 it was selected as the social standard
platform for the RoboCup@Home domain following another open call for tenders. The
Toyota Human Support Robot (HSR) was also selected as a domestic standard platform
in the RoboCup@Home domain following the same call. The Quince robot for disaster
response developed by Tohoku University has been evaluated in the RoboCupRescue
Robot League in various iterations, and it was finally deployed at the Fukushima Daiichi
nuclear power plant in the aftermath of the massive earthquake and tsunami that hit
eastern Japan in 2011, where it was used for inspection missions in highly contaminated
areas (5).

4. The boundaries between nations: Unlike other competitions, such as the Olympics and the
FIFAWorld Cup championship, RoboCup is not focused on competition between nations.
Rather, it encourages international collaborations of joint teams and many research studies
by authors of different nationalities. These collaborations have been supported by strong
human networks fostered in the RoboCup community, and RoboCupJunior enhances these
networks even more. Every year, participants from approximately 40–45 different nations
and regions participate in the annual RoboCup event with a friendly, cooperative, and en-
thusiastic spirit.

5. The boundary between university-level research and project-oriented STEM education for
primary and secondary school children: RoboCupJunior and its links to the goals of the
major leagues have effectively eliminated this boundary.

As demonstrated by the above activities and achievements, RoboCup is advancing autonomous
and intelligent robotics. It was the first organization to introduce visionary competitions for intel-
ligent robots, including multiagent teams of autonomous robots, and is the oldest active robotics
competition; for these reasons, it is referred to as “the mother of all competitions.” RoboCup pi-
oneered the idea of benchmarking robotic systems through competitions, including on the func-
tional level, addressed by technical challenges, and on the system and mission levels, addressed by
games. Moreover, RoboCup was the first organization to introduce competitions for intelligent
rescue, home, and industrial robots, otherwise known as the forerunners of “Industry 4.0” and
“Society 5.0,” in efforts predating these popular terms.
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3. LEAGUE STRUCTURE

Through its board of trustees and executive committee, RoboCup has expanded the number of
leagues since 1997, as shown in Figure 1. In the RoboCupSoccer domain (6), vision systems are
the main external sensors used for object detection (the ball, goals, teammates, opponents, field
lines, etc.) and localization. The SSL uses a global open-source vision system called SSL-Vision
(7) that utilizes one or more standard cameras on the ceiling (see Supplemental Figure 1). Using
this system relaxes the requirements of the robots’ usually rather limited onboard perception and
capabilities, enabling a highly dynamic game with six robots per team. The MSL uses individual
onboard camera systems. The SSL-Vision system enables hybrid centralized/distributed control
of many robots by utilizing absolute position information for each robot and the ball, whereas the
MSL onboard vision systemmakes it necessary to control each robot individually using distributed
control with synchronizing mechanisms. The MSL initially used a standard camera for onboard
vision, but to increase the visual field and reduce uncertainty, an omnidirectional vision system is
popularly used as the de facto standard.

In the SSL andMSL,movement around the field is enabled by wheel-based locomotion. A dif-
ferential drive was originally used in which each robot was propelled by two wheels and changed
direction by varying the rotation speed of the two wheels (a nonholonomic-type system). How-
ever, the current practice is to use an omnidirectional vehicle as the de facto standard for quick
movement in any direction.The Four-Legged League started in 1998, and the Sony AIBOwas the
first standard platform used in RoboCup. Bipedal locomotion using a human-like body plan is the
focus of the Humanoid League (8), which has three classes differentiated by the size and number
of players: KidSize, TeenSize, and AdultSize. The Humanoid League originally used multi- and
omnidirectional vision systems but allowed only external and internal sensors that have a rough
equivalent in human senses, including a human-like field of view. Every few years, the real robot
soccer leagues have increased the field size and/or number of players and made the setup of the
game environment more realistic,making it more difficult to effectively tackle the numerous chal-
lenges. Figure 3 shows the playing fields for the SSL, MSL, and Simulation League at the first
RoboCup in 1997 and the latest RoboCup in 2019. The SSL field was initially a ping-pong table
(152.5 cm × 274.0 cm) and in 2019 was 900 cm × 1,200 cm (approximately 26 times larger). Sim-
ilarly, the MSL field size has increased from a 3 × 3 set of ping-pong tables (totaling 457.5 cm ×
822.0 cm) in 1997 to 14 m × 22 m in 2019 (more than 8 times larger).

The 2-D Simulation League uses a local vision system with a limited visual angle and an om-
nidirectional locomotion system. It also uses a public auditory system, meaning that players can
communicate with their teammates and that their opponents can hear any conversations. After the
Sony AIBO was retired as the standard platform in the Four-Legged League, the NAO humanoid
robot from Aldebaran Robotics was selected as the new standard platform for the SPL, and the
3-D Simulation League uses a digital NAO model.

The RoboCupRescue domain allows teleoperation by humans using the robots’ onboard sen-
sory information; although full autonomy is ideal in robotics, it is particularly challenging in the
highly unstructured environment of a disaster site, and the environments vary across missions.
The task of rescue robots is rather different from those of intelligent robots in structured and un-
damaged domains, such as industries or private homes.Therefore, fully autonomous rescue robots
are especially problematic and are still far from practical application in critical missions such as
real rescue operations (e.g., saving a disaster victim within 72 hours). Therefore, autonomous
capabilities are expected to be introduced as assistance functions supporting human operators in
their tasks. The maneuverability of these mobile robots in highly unstructured (severely damaged)
environments is a key issue, and the teams have used and developed various tracked-wheel-type
mobile robots.
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Figure 3

The fields for the Small Size League (left), Middle Size League (center), and Simulation League (right) at the first RoboCup in 1997 (top)
and at the latest RoboCup in 2019 (bottom). Left and center panels in the top row adapted from Reference 9.

The RoboCup@Home domain aims to develop intelligent service and assistive robot tech-
nologies with high relevance for future personal domestic applications. Human–robot interaction
and cooperation are among the core issues in the development of these robots. It is also necessary
to hone their object recognition skills, as they are required to recognize many types of objects
under natural light conditions in daily life. Skills such as grasping and manipulating objects and
mapping and navigating a changing environment inside a building, such as a living room, office,
or supermarket, are particularly vital. Communication with humans is necessary to respond to
human instructions. As such, speech recognition, understanding, and responses to humans are
required. Unlike the RoboCupSoccer domain, RoboCup@Home is not based on an adversarial
environment; instead, it thrives on collaboration between robots and humans.

The RoboCupIndustrial domain comprises two leagues: RoboCup@Work and the RoboCup
Logistics League (RCLL). Both are oriented toward industry.RoboCup@Work focuses onmobile
robots with manipulators that cooperate with and assist humans in a futuristic industrial produc-
tion environment, while the RCLL consists of multiple mobile robots cooperatively planning,
executing, and optimizing the material flow and product delivery according to dynamic orders in
a smart factory environment. The standard platform of the RCLL is Robotino, a mobile robot
from Festo. Although both leagues have many research issues in common with other domains and
leagues, they require industrial qualification for practical applications.

The competitions in the RoboCupJunior domain focus on project-oriented education and edu-
tainment and mainly involve robots participating in two activities inspired by the major leagues,
soccer and rescue.The competition unique to RoboCupJunior is OnStage, wherein teams develop
a creative stage performance and compete against one other using autonomous robots that they
have designed, built, and programmed. The three competitions are designed to enable children
and teens to simultaneously learn several subjects (such as physics, mechanics, electrotechnics,
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and electronics) through computer programming without any formal separation of the subjects
(as would be the case in, e.g., a typical university curriculum). Furthermore, as they execute their
project, the participants naturally learn social teamwork.

Table 1 summarizes the differences among the leagues. In subsequent sections, we discuss
research achievements with reference to this table.

4. A TREASURE TROVE FOR A RICH DIVERSITY OF RESEARCH ISSUES

Many research issues in RoboCup are structured in terms of categories and specific topics (see
Table 2), with an eye toward the goals of the four major domains. Although this classification is
not strict, it provides a guide, as many research endeavors cover different topics and categories
owing to their interdisciplinary nature. For example, although 3-D perception and robot kine-
matics and dynamics are separate challenges, they are combined and studied under the category
of sensory-motor control. Furthermore, these combined challenges are supported by infrastruc-
ture (robot hardware and software) challenges for the teams participating in the real robot leagues,
especially the ones that do not use a standard platform. It should be noted that the complexity of
the robot hardware and corresponding software increases from the SSL through the MSL and on
to the RoboCupRescue domain and Humanoid League. Progress in overcoming these challenges
is verified through competitions that are open to the public (see Supplemental Figure 2).

Among the seven categories inTable 2, two categories—robot hardware and software, and ap-
plications and benchmarking—are special, as many RoboCuppers can be inhibited by hardware-
related issues that increase the time and effort required to design, assemble, and maintain the
robots. This is the main reason why RoboCup pushed standard platforms in several domains:
Shared platforms make evaluations regarding the capabilities of software modules and function-
alities more objective, which is important in both research and applications.

The achievements at RoboCup can have a broad impact; in addition to providing great educa-
tion and training for participants in RoboCup, the work significantly impacts technology transfer
and development. Several RoboCup achievements have been presented at the annual RoboCup
symposiums held directly after the competitions and published in the corresponding proceedings
(10–32), as well as presented at regular international robotics and AI conferences. In the following
sections, wemainly review recent activities described in the symposium papers of the last five years
(28–32), along with a small number of earlier studies.

5. ROBOT HARDWARE AND SOFTWARE

Robot hardware and software are central in any study of intelligent and autonomous robotics.
RoboCup in particular necessitates various types of robot platforms, depending on the specifica-
tions of the different leagues. Below, we review first the hardware platforms and then the software
platforms.

5.1. Hardware Platforms

Because no hardware platforms were available when RoboCup began, all the robots were orig-
inally either built from scratch or based on modifications to commercially available parts. The
MSL of the first RoboCup had five teams, and the two cochampions—Trackies, from Osaka Uni-
versity (Figure 4a), andDreamteam, from theUniversity of Southern California Information Sci-
ences Institute (Figure 4b)—coincidentally modified the same Japanese radio-controlled toy cars,
which implies that few suitable platforms were available. Two other teams used omnidirectional
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Table 2 Selected research categories and topics in RoboCup

Category Topics
Robot hardware and software Mobile robotics, humanoid robotics, sensors and actuators, embedded and mobile devices,

robot construction and new materials, robotic system integration, robot software
architectures, robot programming environments and languages, real-time and concurrent
programming, robot simulators

Perception and action 3-D perception, distributed sensor integration, sensor noise filtering, real-time image
processing and pattern recognition, motion and sensor models, sensory-motor control,
robot kinematics and dynamics, high-dimensional motion control

Robot cognition and learning World modeling and knowledge representation; learning from demonstration and imitation;
localization, navigation, and mapping; planning and reasoning; decision-making under
uncertainty; neural systems and deep learning; complex motor skill acquisition;
reinforcement learning and optimization; motion and sensor model learning

Human–robot interaction Robot social intelligence; fluency of interaction; speech synthesis and natural language
generation; natural language recognition; explainable robot behaviors; emotion
recognition and reaction; understanding of human intent and behavior; safety, security,
and dependability; enabling humans to predict robot behavior

Multirobot systems Team coordination methods, communication protocols, learning and adaptive systems,
teamwork and heterogeneous agents, dynamic resource allocation, adjustable autonomy

Education and edutainment Robotics and artificial intelligence education, educational robotics, robot kits and
programming tools, robotic entertainment

Applications and benchmarking Search-and-rescue robots; robot surveillance; service and social robots; robots at home, at
work, and in public spaces; robots in the real world; performance metrics; human–robot
interaction

locomotion systems with different mechanisms: One used omni-wheels (Figure 4c) and one used
rolling spheres (Figure 4d). The fifth team used the Pioneer I robot, a nearly complete plat-
form consisting of commercially available parts (Figure 4e). As mentioned above, omnidirectional
movements are suitable for quick motion in any directions. Although omni-wheels are commer-
cially available, many teams constructed their own omni-wheels to increase the robots’ speed and
stability.

Tech United Eindhoven recently demonstrated that the conventional triangular omni-wheel
system could not deliver all of the torque from the motors in the desired movement. Furthermore,
a high forward acceleration may cause the front wheels to slip, thus preventing the robot from
applying torque from the motors to the field. The team developed an eight-wheeled platform
to resolve these drawbacks. A key issue is how to resolve an overactuated system with four or
more wheels. The eight-wheeled platform (see Supplemental Figure 3) has three degrees of
freedom and is five times overactuated. Therefore, to allow the five internal movements, each

aa bb cc dd ee

Figure 4

The five platforms used in the Middle Size League at the first RoboCup in 1997. (a,b) Modified radio-
controlled toy cars used by the cochampion teams Trackies (panel a) and Dreamteam (panel b). (c) A robot
with omni-wheels for locomotion. (d) A robot with rolling spheres for locomotion. (e) A Pioneer I robot
consisting of commercially available parts. Figure adapted from Reference 9.
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of the wheel combinations is suspended, with a rotation point below the ground, and the back
wheels are suspended over an axle hinge. Because of this mechanism, the wheels are always in
contact with the ground to transfer the torque from the motors to the ground (33). In addition to
the locomotion mechanisms, the kicking devices are also custom designed and improved (34–36).

In the SSL, omnidirectional motion control in combination with kicking devices is very pop-
ular. One of the SSL teams, OP-AmP, developed a new kicking mechanism with a multiple-angle
kicking device using a Geneva drive mechanism to generate straight and diagonal shots in five
directions, allowing curved shots by combining the straight kick and backspin behavior (37, 38)
(see Supplemental Figure 4).

In the SPL, because teams are not permitted to modify the hardware of the standard platform,
they are able to focus more on software programming and less on the challenges and damage faced
by the robots themselves (which are also not fully avoidable with standard platforms due to the
strenuous nature of the competitions). By contrast, in the Humanoid League, many teams have
built their own humanoid robots to meet the challenging specifications for a human-like body
plan and senses. Compared with the NAO robot in the SPL, robots in the Humanoid League
have a much smaller relative foot size (due to the higher ratio of center of mass to allowed foot
size) in order to foster research on dynamic humanoid motion and postural stability. Furthermore,
the NAO has a non-human-like second camera sensor in its chin that allows it to see a nearby ball
on the ground without having to bow its head completely, as in the Humanoid League. There-
fore, although the teams in the Humanoid League may prefer to spend more time on behavior
generation and other software-based functionalities, they need to spend significant time on de-
signing, building, and maintaining their robots, and a number of humanoid robot platforms (some
of which are commercially available) have been developed.

For the KidSize class (height of 40–90 cm), the Dynamic Anthropomorphic Robot with
Intelligence–Open Platform (DARwIn-OP) was manufactured by the Korean robot manufacturer
Robotis and developed in collaboration with Virginia Tech, Purdue University, and the University
of Pennsylvania. DARwIn-OP has 20 degrees of freedom, each controlled by a Dynamixel MX-
28T servomotor, and has been useful as a form of standard platform for several years, although
recent rule changes that introduced artificial grass on the field have diminished its usefulness. The
MX-28T has a stall torque of 24 kgf·cm (at 12 V and 1.5 A) and a 360° range of motion (39), and
many teams use Dynamixel servomotors because they are compact, lightweight, easily moduled,
and powerful. Fabre et al. (40) proposed an open-source alternative firmware for Dynamixel ser-
vomotors; they compared the proposed control strategy with the default strategy and observed
significant improvements in terms of accuracy, delay, and repeatability. Bestmann et al. (41) pre-
sented a newmultibus solution that enables the typical humanoid robots used in RoboCup to have
a control-loop frequency of more than 1 kHz, and they also incorporated solutions to integrate
sensors into this bus with high update rates. After the success of DARwIn-OP, Schwarz et al. (42)
introduced NimbRo-OP as an open platform for the larger classes, such as the TeenSize (80–
140 cm height) and AdultSize (130–180 cm) classes in the Humanoid League. NimbRo-OP has
a wide-angle camera, ample computing power, and sufficient torque to enable full-body motions,
such as dynamic bipedal locomotion, kicking, and getting up after a fall. It is designed to be easily
manufactured, assembled, repaired, and modified. TeamNimbRo, which developed the robot, has
won the championship several times (e.g., 43), including in 2019 (see Supplemental Figure 5).

In the RoboCup@Home domain, two standard platforms were introduced in 2017 as a result
of an open call for tenders: the Toyota HSR for the new Domestic Standard Platform League,
and Pepper from SoftBank Robotics for the new Social Standard Platform League. As in the
RoboCupSoccer SPL, the use of these standard platforms avoids the need for teams to spend
time building and maintaining their own robots at the expense of other research. The Toyota
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HSR was custom developed for RoboCup@Home based on joint research between Toyota and
participating teams. It is equipped with many sensors, actuators, and other devices necessary for a
wide range of useful tasks (44) (see Supplemental Figure 6).

5.2. Software Platforms

Generally, computer simulations are very powerful tools in scientific and engineering studies. In
the case of RoboCup, computer simulations are used in several ways:

1. Game environments: 2-Dor 3-D simulation leagues are typically conducted using simulated
competition environments.

2. Real-time robot simulations: Depending on the research issues, some real robot experi-
ments are difficult or almost impossible to implement or require very large amounts of
time and effort. In such cases, various computer simulations of real robots have a long tra-
dition in RoboCup for verifying and/or improving computational methods for perception,
action, and planning through suitable digital twins of robots and their interaction with the
environment.

3. Proposals for new environments connecting real and virtual worlds.
4. Tools for developing of behavior programming and data analysis.

In relation to the above, several systems and tools have been developed in RoboCup to assist the
teams. The Robot Operating System (ROS) from the Open Source Robotics Foundation (http://
osrfoundation.org) has found widespread use in RoboCup. In addition to other projects, this
foundation supports the development, distribution, and adoption of open-source software for use
in robotics research, education, and product development.

RoboCuppers have made many open-source contributions to the ROS ecosystem. Moreover,
the technical lead for the new, even more capable ROS 2 is Dirk Thomas, a RoboCup graduate
who has been active for many years in championship-winning teams in the Four-Legged and
Humanoid Leagues. Scheunemann & van Dijk (45) distributed ROS 2 packages to RoboCup
teams with benchmarks to show that ROS 2 is a promising candidate for a common framework
among leagues.Thielke &Hasselbring (46) proposed a C++ library that compiles neural network
models at runtime into machine code that performs inferences. In their experiments on the NAO
V6 platform, the library significantly outperformed existing implementations in small networks
but was inferior in large networks. Mitrevski & Ploger (47) presented a small Python library for
enabling the specification, configuration, and dynamic creation of state machines using a minimal
domain-specific language. They demonstrated its validity in scenario definition in contexts such
as the RoboCup@Home competition.

Data analysis is an important topic and is expected to be applicable in RoboCup, whose nu-
merous games translate into a massive amount of data.Mellmann et al. (48) presented a system for
automatically recording synchronized videos of RoboCup games in the SPL and an application
for exploring and annotating large sets of RoboCup-related data. In addition, they provided data
sets collected during the 2018 competitions and an algorithm for visually detecting and tracking
robots in the RoboCup videos. Figure 5a provides an overview of the data flow of the imple-
mented data-processing ecosystem, and Figure 5b shows a sample session for the annotation of
kick events regarding their quality in the synchronized video and log data. Figure 5c shows de-
tected robots in a video recorded using aGoPro camera at the EuropeanOpen 2016 in Eindhoven,
illustrating that object detection and localization are among the most essential tasks in RoboCup.
Fiedler et al. (50) developed a tool called ImageTagger that facilitates creating and sharing labeled
training data sets for object recognition. ImageTagger is more open and more user-friendly than
the existing labeling tools (see Supplemental Figure 7).
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with the game

Figure 5

(a) Overview of the data flow of the implemented data-processing ecosystem. (b) Example of analysis of the quality of kick events. The
main components are timelines, with kick events represented by colored buttons (bottom), a visualization of the robot’s state (position on
the field and perceived ball) (right side), and an evaluation panel for assigning labels to the events (left side). (c) An example of detected
NAO robots in a video recorded using a GoPro camera at the European Open 2016 in Eindhoven. The colored boxes illustrate the
varying confidence levels of the detected robots (49). Figure adapted from Reference 48.

The recent progress in AI technologies, especially deep learningmethods, has engendered tasks
requiring a large amount of data. Hess et al. (51) proposed a framework for stochastic scene gen-
eration and rendering and the automatic creation of semantically annotated ground-truth masks.
They evaluated multiple neural network architectures with varying depths and representational
capacities and their corresponding runtimes on the current NAO-H25 hardware and provided
the required sample training data. Visser et al. (52) proposed a tutorial course that demonstrates
how the various tasks can be tackled using the AI and machine learning algorithms available in
the MATLAB Statistics and Machine Learning toolbox, and their course works as a toolbox. Van
Dijk & Scheunemann (53) proposed a system that processes full VGA images in real time on a
low-power mobile processor. Gholami et al. (54) developed another multibody simulation system
for a humanoid robot based on MATLAB/Simulink and Simscape software. The system can be
used for purposes such as designing control systems and enhancing the stability of robots.

In addition to the useful tools above, new environments have been proposed. Inamura &
Mizuchi (55) proposed a novel software platform for statistically evaluating human–robot interac-
tion in competitions. With the help of cloud computing and an immersive virtual-reality system,
cognitive and social human–robot interaction can be conducted and measured as objective data
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in a virtual-reality environment (see Supplemental Figure 8). Takami et al. (56) proposed an
environment that integrates an agent-development framework and an experiment-management
system to support researchers.

Opening the source codes in the RoboCupSoccer Simulation League has played an important
role in improving the codes and encouraging new teams to join the league. Code sharing has
become much easier and richer in content. Recent examples are the 3-D simulation base code
(57), the 2-D simulation base code (58), and an open-source ROS vision pipeline (59). Sharing
open-source codes has helped ensure even progress across all leagues [e.g., Hector SLAM (60)
and several standard software modules (61) in the RoboCupRescue Robot League].

Introducing referee robots similar to human referees on the field has been one of the significant
challenges in RoboCup. Separately from physical referee robots, different types of automated
referee software have been developed in the SSL and MSL. The ssl-autonomous-refbox system
was an early attempt in the SSL (62); later, Zhu et al. (63) developed AutoRef for monitoring
SSL games and detecting rule infringements using data from the global SSL-Vision system. In
the MSL, Schoenmakers et al. (64) from Tech United Eindhoven elaborated on the initial steps
toward realizing an autonomous MSL referee. As a first step, they implemented an automated
referee system that makes decisions based solely on the positioning of the ball and players; the
most recent version is available as RefBox (65).

6. PERCEPTION AND ACTION

Perception and action are the most essential research areas in robotics. Some research issues in
this category are common across leagues to a certain extent, and some leagues have their own
unique issues (see Table 1).

6.1. Vision

The global vision system in the SSL has its own vision server (7) that provides low-level visual
information, such as the location of the ball and the locations and directions of the robots (team-
mates and opponents), along with certainty values showing the reliability of the location infor-
mation. The approach to processing such information depends on the strategy of each team (e.g.,
66).

Because teams in the MSL typically use omnidirectional vision systems, a global map is easily
obtained by integrating the local maps of teammates and utilizing the information on the loca-
tions and directions of the teammates. This can be done without the perspective transformation
necessary when using normal perspective cameras (see Supplemental Figure 9).

At the inception of RoboCup, the ball was painted red and the goals were painted blue and yel-
low to simplify image processing and enable quick reactions and movements.One part of reaching
the ultimate goal of RoboCup is to make the environment as close as possible to a real human soc-
cer field, and current leagues use a standard black and white soccer ball, which presents a much
greater challenge than a colored ball.Modern deep learning techniques can enhance visual recog-
nition tasks even under the constraints of computational resources and quick processing, andmany
RoboCuppers have applied such techniques by drawing onmethods inherent in their task domains.

Speck et al. (67) proposed a neural approach using a convolutional neural network (CNN) to
localize the ball in various scenes (see Supplemental Figure 10). In the case of a black and white
ball,Menashe et al. (68) evaluated and applied a series of heuristic region-of-interest identification
techniques and supervised machine learning methods for detecting a ball with high reliability
without any prior knowledge of the ball position. Utilizing only black and white images without
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any color information, Leiva et al. (69) applied a CNN approach to detect a ball and humanoid
robots with the following (high) ratios: a robot detection rate of 94.90%, a ball detection rate of
97.10%, a completely perceived orientation rate of 99.88% when the robot under observation
was static, and a completely perceived orientation rate of 95.52% when the robot was in motion.
However, ball detection is complicated because there are many variations of ball images. To cope
with this issue, Teimouri et al. (70) applied CNNs to accurately detect a ball based on an iterative
method that employs an efficient integral image-based feature. The features were then fed to a
lightweight CNN to finalize the bounding box of the ball, with a resultant detection accuracy of
97.17%. Ball tracking is also a necessary part of the game. Utilizing the temporal information in
the CNN,Kukleva et al. (71) presented a system that uses spatiotemporal correlation to efficiently
detect and track a soccer ball based on its trajectory. Felbinger et al. (72) designed a CNN for ball
detection using a genetic approach that optimized network hyperparameters, providing a cost-
effective inference on the NAO with a limited amount of training data.

One constraint on computational resources is the general challenge surrounding the real-time
processing of perceptions and actions. In particular, the onboard resources are limited in the SPL,
and various teams have therefore devised ways to address this issue. Cruz et al. (73) analyzed the
general problem of using CNNs and proposed general design guidelines for their use. Houliston
& Chalup (74) proposed an enhancement of CNNs for object detection in resource-constrained
robotics through a geometric input transformation called visual mesh.According to the results, the
execution time achieved by their method demonstrates outstanding accuracy while being 16 times
faster than the fastest competitor tested. Szemenyei & Estivill-Castro (75) proposed an end-to-
end neural network solution for scene understanding in robot soccer using two CNNs: one that
performs semantic segmentation on an image and another that propagates class labels between
consecutive frames. They utilized synthetic data sets and provided RoboDNN, a C++ neural
network library. They also extended their study to a system called ROBO, which outperformed
Tiny You Only Look Once (Tiny YOLO)—a computer vision system capable of detecting a wide
variety of objects in a single image (https://pjreddie.com/darknet/yolo)—in terms of both speed
and accuracy (76) (see Supplemental Figure 11). Poppinga & Laue (77) developed a real-time
object detection method for NAO robots called Just Enough TimeNet ( JET-Net), a model frame
for efficiently detecting objects based on CNNs. They reused the learned features to obtain more
information from simulation data, a method called simulation transfer learning.

As in the RoboCupSoccer domain, the robots in the RoboCup@Home competitions need to
recognize numerous everyday objects.However, in contrast to soccer, transparent objects are com-
mon in domestic environments and are particularly difficult to recognize.Hagg et al. (78) proposed
a method for recognizing transparent objects using combinations of four modalities: 2-D shapes,
3-D geometry, transparency, and specular reflection. Figure 6a shows a test set consisting of dif-
ferent types of objects (diffuse, composite, and transparent), and Figure 6b shows two graphs in-
dicating the performance of the proposed method: one for the entire set of objects, and one for a
reduced set with no transparent objects.Using the transparency modality significantly contributes
to an increase in the recognition rate even when the set does not include transparent objects.

YOLO and its extensions and modifications are employed for recognizing various types of
objects in the RoboCup@Home domain. Reyes et al. (79) proposed a method based on a deep
neural network running on a backpack containing a Jetson TK1 card and a battery for near-real-
time object recognition for the Pepper robot. Consequently, Pepper could robustly detect and
recognize objects in 320 × 320–pixel images at approximately 5 frames per second. Loncomilla
& Ruiz-del-Solar (80) proposed YoloSPoC, a method for recognizing particular object instances.
It is implemented by (a) generating high-quality object proposals using YOLOv3, (b) computing
descriptors of these proposals using an approach based on maximal activation of convolutions,

454 Asada • von Stryk

https://pjreddie.com/darknet/yolo
https://www.annualreviews.org/doi/suppl/10.1146/annurev-control-100719-064806


AS03CH17_Asada ARjats.cls April 2, 2020 15:19

False positive rate

Tr
ue

 p
os

it
iv

e 
ra

te

0

0.2

0.4

0.6

0.8

1

0

M1, M2

M1, M2, M3

M1, M2, M4
M1, M2, M3, M4

10.50 10.5

a

b

Figure 6

(a) A data set of different types of objects. (b) Performance graphs for recognizing those objects using four
modalities: 2-D shapes (maximum intensity gradients, M1), 3-D geometry (maximum normal vectors, M2),
transparency (unavailable depth, M3), and specular reflection (maximum intensity, M4). The left graph shows
the receiver operating characteristic (ROC) curve for the entire set of objects, and the right graph shows the
curve for a reduced set with no transparent objects. Figure adapted from Reference 78 with permission.

(c) recognizing the object instances using an open-set nearest-neighbor classifier, and (d) filtering
any overlapping recognitions. YoloSPoC outperformed the existing methods in recognizing mul-
tiple objects, occlusions, illumination changes, cluttered backgrounds, nontextured objects, and
object classes that were unavailable when training the proposal generator. To cope with illumina-
tion changes, Houliston et al. (81) proposed a fast method for adapting lookup tables to lighting
changes in real time. The method adjusts the classified color space regions while keeping both
their surface area and volume constant.

Pepper, one of the standard platforms for the social communication task in the
RoboCup@Home domain, has difficulty self-localizing in large environments using its lidars and
RGB-D (red, green, and blue plus depth) camera. Gomez et al. (82) proposed a localization and
navigation system based on visual simultaneous localization and mapping (SLAM). Furthermore,
Schneider et al. (83) proposed gesture recognition in RGB videos using human body keypoints
and dynamic time warping for the social communication task.

6.2. Action

The standard platform for the Four-Legged League was the Sony AIBO. Kohl & Stone (84, 85)
proposed a machine learning approach for optimizing a quadrupedal trot gait for forward speed.
After approximately three hours of learning, the robots achieved a gait faster than any previously
known gait for the AIBO, significantly outperforming a variety of existing hand-coded and learned
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solutions.This gait was used by many teams (see Supplemental Figure 12), and further improve-
ments for subsequent generations of AIBO were achieved through the application of optimization
and learning methodologies.

Posturally stable bipedal walking is one of the central issues in the Humanoid League and the
current SPL. Sugihara et al. (86) developed stable online walking trajectories using an inverted
pendulum model.Many teams in the Humanoid League have developed omnidirectional walking
engines and stable walking gaits in forward directions. Hemker et al. (87) developed a sequential
surrogate optimization approach that enabled very fast learning and stable forwardwalkingmotion
with only a few experiments. To develop a stable and adaptive behavior skill, the combination of
real robot experiments and simulations is a powerful tool for teams. Rodriguez et al. (88) proposed
an approach that combines simulations and real experiments to learn gait stabilization parameters.
They used a Bayesian optimization method to select the most informative points in a parameter
space to evaluate, based on the entropy of the cost function to optimize. Zahn et al. (89) optimized
robot movements, specifically walking and kicking, using genetic algorithms and simulations. For
the kick script, the resulting optimal configuration improved the kick distance by a factor of six,
with 50% less torso sway. For the walk engine, the forward speed increased by 50%, with 38%
less torso sway, as compared with a manually tuned walk engine. Figure 7 shows the results from
two solutions derived from the genetic algorithm.

Because the hardware platform is fixed in the SPL, teams have devised several methods for
improving walking and kicking using different software. Iverach-Brereton et al. (90) proposed
a method for enabling the humanoid robot to balance on highly dynamic terrains using fuzzy
logic on a humanoid DARwIn-OP robot. Böckmann & Laue (91) applied a popular dynamic-
movement-primitives approach to the domain of soccer-playing humanoid robots to obtain a kick

a

b

Figure 7

Results from two solutions based on the genetic algorithm of Zahn et al. (89). Panel a shows one set of optimized movements; although
the distance covered is slightly shorter than that of panel b, the stability is slightly better. In real situations, the configuration in panel b
led to the robot falling over; in the simulations, however, the robot was able to remain standing after either set of movements. Figure
adapted from Reference 89.
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motion for theNAO robot.This approach includes amathematical motormodel that compensates
for the NAO robot’s motor-control delay, as well as a novel minor extension to the dynamic-
movement-primitives formulation. Seekircher & Visser (92) utilized a linear-inverted-pendulum-
based closed-loop walk model that adapts to differences in the physical behavior of the robot by
optimizing parameters of the model directly on the NAO while walking and executing other tasks
(see Supplemental Figure 13).

In the 3-D soccer simulation, the NAO model is used to improve the actions. Masterjohn
et al. (93) investigated the decision-making and behavior of robotic biped goalkeepers and pro-
posed two approaches: a heuristics-based approach with linear regression and Kalman filters for
improved perception, and another approach based on mental models with nonlinear regression
for ball trajectory filtering. Based on various simulations, they concluded that both approaches
would significantly improve the goalkeepers’ save success rates. Lanari et al. (94) tackled the gait-
planning problem by using a flexible linear-inverted-pendulum model. They extended a stable-
inversion approach to obtain bounded center-of-mass reference trajectories, and this approach
showed several advantages over preview control. Abdolmaleki et al. (95) designed a flexible kick
controller that controls the robot (nearly) optimally for a continuous range of kick distances, based
on a contextual policy search method. Kasaei et al. (96) achieved a forward velocity of 80.5 cm/s
after optimizing the parameters using a genetic algorithm. Peña & Visser (97) proposed a walk–
kick framework that can generate a kick trajectory in an arbitrary direction without prior input
or knowledge of the parameters of the kick in the midst of walking, while still guaranteeing that a
reference trajectory is achieved.

In the RoboCup@Home domain, Mitrevski et al. (98) analyzed dynamic motion primitives in
the context of a Toyota HSR and extended the primitives to make it possible to perform a whole-
body motion using a mobile manipulator. Renault et al. (99) analyzed the literature on navigation
among movable obstacles and found that social acceptability remains an unaddressed problem in
this robotics navigation domain. They developed a simulator that allowed testing of their social
mobility evaluations for obstacle selection and social placements of objects using a semantic map
layer.

Ball interception is a necessary skill for switching from defensemode to offensemode.Makarov
et al. (100) proposed a model-free algorithm for intercepting a moving ball using a geometric
approach. Two key ideas are the consideration of ball motion via a transition to a reference frame
where the ball is static, and planning the motion of the robot in such a reference frame from a
geometric viewpoint. The method successfully achieved ball interceptions in a variety of scenarios
in the SSL competitions.

For mobile robot control in the RoboCupSoccer SSL and RoboCupRescue Robot League,
Ommer et al. (101) proposed a new adaptive compensation feedforward controller.This controller
is capable of learning a compensation motion model online without any prior knowledge, so as to
counteract nonmodeled disturbances such as slippages or hardware malfunctions.

Omnidirectional motion control is very popular in the SSL,MSL, and other leagues.However,
the problem of time-optimal control of omnidirectional robots with bounded acceleration (TOC-
ORBA) remains unsolved. Balaban et al. (102) proposed a real-time solver for true TOC-ORBA.
They introduced a two-stage optimal control solver and implemented it in a real robot in the SSL
to verify the efficiency of the solver.

7. ROBOT COGNITION AND LEARNING

The robot cognition and learning category focuses on the processing of more global and longer-
term information, whereas the perception and action category focuses on real-time (immediate)
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processing. Machine learning, especially deep learning, is a good tool for processes involving re-
inforcement learning (RL) methods. Traditional AI approaches are also useful.

RL has been used from the inception of RoboCup, and methods have been continuously de-
vised to avoid or address several issues in RL. The two main issues are the curse of dimensionality
in the action and state spaces and the reduction of computation time. To cope with these issues,
Lobos-Tsunekawa et al. (103) proposed the use of decentralized RL with finite support basis func-
tions as an alternative to a Gaussian radial basis function. As a testbed, they used an RL-based
controller for a midwalk kick with NAO robots. Compared with classical approaches, this method
saved up to 99.94% of execution time and 98.82% of memory consumption during execution
without diminishing performance.

Another issue in RL is the design of the reward function.Watkinson &Camp (104) introduced
the use of transfer learning.They demonstrated the possibility of training an agent through a series
of increasingly difficult tasks with fewer training iterations rather than using engineered rewards.
This approach seems similar to the learning-from-easy-missions approach (105).

Running is a significant challenge, even in a 3-D simulation of the NAO robot. Abreu et al.
(106) proposed a way of leveraging a proximal policy optimization using the information provided
by the simulator for official RoboCup matches. By using a mix of raw, computed, and internally
generated data, they achieved a sprinting speed of approximately 2.5 m/s. Both the sprinting and
stopping behaviors were remarkably stable (see Supplemental Figure 14).

Collision avoidance is another germane issue for indoor service robots. Leiva et al. (107) pro-
posed an end-to-end approach to endow indoor service robots with the ability to avoid collisions
using deep RL. Their approach enabled a robot to learn a proficient collision avoidance policy
from scratch (see Supplemental Figure 15).

In the RoboCupRescue domain, because teleoperation requires certain skills for maneuverabil-
ity on irregular surfaces, some sort of autonomy is desirable.Wiley et al. (108) developed a system
that learns the effects of a robot’s actions and then uses this knowledge to plan an approach to
reconfiguring the robot’s tracks so that it can overcome different types of obstacles. The system is
a hybrid of qualitative symbolic learning and RL. High-level knowledge regarding the task could
reduce the number of attempts necessary to learn a new skill.

A number of general learning approaches have been proposed. Rizzi et al. (109) proposed a
situation-aware fear learning (SAFEL) model and discussed specific scenarios where SAFEL’s as-
sociative learning could help to increase the positive outcomes of a team during a soccer match
through contextual adaptation. SAFEL enables NAO robots in the SPL to learn the behavioral
profile of the opposing team at runtime. Simoes et al. (110) observed that the weighted-policy-
learner algorithm has difficulty regarding convergence to deterministic strategies, and they pro-
posed an adjusted and bounded weighted policy learner with a new update rule. In this new rule,
the algorithm’s speed is not slowed, and its behavior in stochastic Nash equilibrium games remains
unchanged.

In the robot task-learning methods, the most typical representation of a state and action is a
statemachine representation, in which states encapsulate actions and a transition function switches
between states. In real robot experiments or competitions, roboticists often adjust the parameters
manually to cope with any changes in the environment. Holtz et al. (111) proposed a semiau-
tomatic white-box approach for adjusting the transition parameters of robot state machines. The
proposed method effectively increased the success rate for multiple behaviors, such as finding new
parameters quickly using a small number of annotations, producing solutions that generalize well
to novel situations, and improving the performance in a real-world robot soccer application, the
RoboCup SSL.
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Block diagram of the Corrective Advice Communicated by Humans (COACH) learning framework. Figure
adapted from Reference 112 with permission.

8. HUMAN–ROBOT INTERACTION

Apart from the soccer competitions, daily-life (RoboCup@Home) and special (RoboCupRescue)
applications have become increasingly important. In these situations, human–robot interaction
provides rich and deep research issues.

Celemin & Ruiz-del-Solar (112) proposed an interactive learning framework called Corrective
Advice Communicated by Humans (COACH) that allows nonexperts to shape a policy through
corrective advice,which includes a mechanism for adaptively adjusting the amount of human feed-
back that a given action receives, considering past feedback.Figure 8 shows a block diagram of the
COACH learning framework.Celemin&Ruiz-del-Solar (112) found that COACHoutperformed
existing frameworks.

Facial analysis techniques have become a crucial component of human–machine interaction
in the fields of assistive and humanoid robotics. However, robustness against variations in head
pose is a substantial challenge.Grupp et al. (113) proposed a real-time-capable 3-D face-modeling
framework for 2-D in-the-wild images using a fully automatic landmark-based approach for fitting
a 3-Dmorphablemodel.They performed real-time processing using in-the-wild images that serve
as a preprocessing method for various facial analysis tasks.

Domestic robots must be able to collect various information regarding people to perform tasks
and conduct socially acceptable human–robot interactions. Saraydaryan et al. (114) proposed a
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framework for extracting high-level human features from a 2-D camera in addition to tracking
people over time. Recognition of people’s poses and postures, clothing colors, and faces is com-
bined with tracking and reidentification abilities. This framework was successfully used with a
Pepper robot in the 2018 RoboCup@Home competition.

The 2018 champion team in the RoboCup@Home Domestic Standard Platform League,
Hibikino-Musashi@Home, developed a very-large-scale integration (VLSI) chip based on the
Time-Domain Analog Computing with Transient States (TACT) approach for intelligent pro-
cessing on robots. This chip was integrated into a robot via ROS interfaces. The team demon-
strated a human-tracking robot and received the Best Live Demonstration Award at the 2019
IEEE International Symposium on Circuits and Systems (115). They also implemented a brain-
inspired amygdala model in hardware and applied the proposed amygdala model to a robot waiter
task in a restaurant. In this experiment, the model learned a customer’s preferences after only a few
human–robot interactions, outperformimg a software implementation on an Intel Core i5-3470
CPU (116).

Linguistic communication is essential for domestic robots to assist humans at home. Specif-
ically, it is necessary for robots to connect natural language to the physical world to manipulate
objects through a reasoning process. Lu & Chen (117) proposed an architecture that combines
grounding and planning to enable robots to solve such a problem. The grounding system de-
pends on the robot’s sensors and generation of a knowledge base for the physical environment.
The planning system utilizes the knowledge base to infer a plan for object manipulation.

In the case of human–robot language communication, the robot often cannot understand hu-
man commands because of the robot’s uncertainty of the situation and human misunderstanding
of the robot’s comprehension of the situation. Gemignani et al. (118) addressed the problem of
allowing a human to understand a robot’s internal representation through dialogue. They intro-
duced the concept of sensing descriptors, which the robot uses to recognize unknown properties
in the human’s commands and then warn the human about them. Unknown properties can be
learned over time by leveraging past interactions to enhance the grounding capabilities of the
robot (see Supplemental Figure 16).

Matamoros et al. (119) addressed the language communication performance levels of the
RoboCup@Home domain in general and created a pipelined road map for stimulating research
in the area of natural language understanding as it applies to domestic service robotics. Seman-
tic parsing is one way of converting natural language commands into executable representations.
However, the current semantic parsing has an application limitation. To address this issue,Walker
et al. (120) proposed an approach that leverages neural semantic parsing methods in combination
with contextual word embedding to enable the training of a semantic parser with few data and
without domain-specific parser engineering. Their results show that neural semantic parsers can
predict the logical form of unseen commands with 89% accuracy.

Regarding the issue of architecture in the RoboCup@Home domain, Jumel et al. (121) pro-
posed an architecture dedicated to the orchestration of high-level abilities for humanoid robots
such as Pepper. The architecture was required to perform tasks similar to the ones proposed in
the RoboCup@Home competitions. Context awareness is a key feature of their system. Peña
et al. (122) discussed a modular agent architecture for an interactive system that integrates
two frameworks (an in-house virtual social agent and a robot agent framework) and enables
social multimodal human–robot interaction with the Toyota HSR. Their pilot study revealed no
significant differences in enjoyment, friendliness, competence, uncanniness, and other categories
when comparing Toyota HSRs with and without an embodied empathetic virtual agent (eEVA).
They concluded that the eEVA’s character does not make the Toyota HSR more uncanny, boring,
or annoying.

460 Asada • von Stryk

https://www.annualreviews.org/doi/suppl/10.1146/annurev-control-100719-064806


AS03CH17_Asada ARjats.cls April 2, 2020 15:19

9. MULTIROBOT SYSTEMS

Multiagent teamwork is one of the most essential issues in RoboCup. How can collaborative and
competitive behaviors be explicitly preprogrammed or made to implicitly emerge through learn-
ing? To decide whether to pass a ball to a teammate (expecting it to either shoot or make another
pass) or to shoot the ball itself, a robot needs to estimate the capabilities of its teammates in a
dynamically changing environment. The 2-D Simulation League, SSL, and MSL are considering
this issue, and the order here indicates the increased difficulty in addressing it.

In the 2-D Simulation League, the evaluation functions used for the decision-making process
are among themost influential factors.Fukushima et al. (123) proposed amethod that improves the
performance of a team by mimicking a stronger team. They employed a neural network to model
an expert team’s evaluation function using positive and negative episodes of action sequences that
are extracted from game logs, and the proposed method successfully improved the performance
(e.g., win rate and scored goals) of their team. Wiretapping has been permitted in this league
from the beginning, although its main purpose is to share information among teammates. Gabel
et al. (124) proposed an approach to wiretapping and decoding opponent communication and
systematically evaluating its impact. Consequently, a team that wiretaps its opponent and exploits
intercepted information appropriately can significantly boost its own playing performance.

Ball manipulation for an individual robot already in possession of the ball is a typical issue in the
SSL.The robotmust intelligentlymove the ball to its target destinationwhile keeping it away from
opponents. Cooksey et al. (125) presented and compared complementary ball manipulation skills
and described an approach to selecting the appropriate skill given the situation. Adachi et al. (126)
proposed a method for identifying strategies by classifying an observed sequence of basic actions
selected by an opponent during a game. The strategies of their own team are evaluated against
those of four opponent teams using a Rand index, and the resultant value of 0.877 (where >0.840
is a high value) indicates a high level of classification algorithm performance. A skills, tactics, and
plays (STP) architecture was developed by the CMDragons team and was very popular for many
years. Schwab et al. (127) demonstrated howmodern deep RL techniques can be incorporated into
an existing STP architecture. They used the deep deterministic policy gradient algorithm to learn
skills, compared the learned skills with existing ones, and demonstrated how RL can be leveraged
to learn simple skills that can be fused by humans into high-level tactics that allow an agent to
navigate a ball, aim, and shoot a goal. They also found that the positioning of the opponent’s team
becomes increasingly important as the SSL game increases in complexity. Laureano &Tonidandel
(128) proposed the use of a particle swarm optimization algorithm as an option for determining
the positioning during a match and demonstrated the feasibility of applying this algorithm to
finding the robots’ positions.

In an adversarial multiagent environment, a balance between the advantages and disadvantages
of completely decentralized solutions and centralized ones is a key issue, and RoboCupSoccer
typically provides such situations. Dias et al. (129) weighed in on this issue and proposed the
solution of electing a leader from among the robots on the team. Their proposed solution builds
on the Raft algorithm, which has two limitations: It fails to elect a leader when fewer than three
nodes are available, and it does not prioritize among candidates. To overcome these limitations,
they adopted a backup system and a preferred leader agent (see Supplemental Figure 17).
Their team, CAMBADA (Cooperative Autonomous Mobile Robots with Advanced Distributed
Architecture), applied this method in their team play (130). More centralized architectures
were used by the Tech United Eindhoven (131) and Water (132) teams, both of which showed
brilliantly performed passes at the MSL final of RoboCup 2019. Another issue in an adversarial
multiagent environment is circumnavigation control, such as entrapping a hostile target. Yao et al.
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(133) proposed distributed circumnavigation control with dynamic spacing for a heterogeneous
multirobot system. They introduced utility and formation guidelines to address dynamic spacing
according to the robots’ properties and presented a theoretical analysis using graph theory along
with experiments to prove the effectiveness of the proposed algorithm based on utilities.

10. EDUCATION AND EDUTAINMENT

RoboCup is a proven excellent model for conducting project-based learning that provides young
students with experiences and training in fundamental STEM subjects in very practical situations
and helps them understand how robots work through the competitions. The RoboCupJunior
domain focuses on creative robot performance (e.g., dancing) and evaluates the total performance
from a variety of perspectives, such as artistic impressions for appearance and movements.

Wong et al. (134) reported the success of their activities in the Hunter region of New South
Wales, Australia, in 2012 and 2017 in terms of the number of participants and their fields, STEM
scores, and gender balance. Moreover, they reported the high potential of the older boys and
girls to proceed to future activities in science and technology. Hughes et al. (135) reviewed robot
rescue simulation platforms for robotics education, focusing on a natural learning curve to provide
appropriate rescue challenges for different age groups. They discussed the requirements for such
a platform and compared several different platforms. They concluded that the case study of a
sample game-field rescue simulation platform was suitable for students at different points along
the learning curve.

Recently, several new activities have strengthened the collaboration between the major and ju-
nior leagues: the RapidlyManufactured Robot Challenge (a RoboCupJunior Rescue competition)
and new entry levels in the RoboCupRescue Simulation League, RoboCup@Home domain, and
RoboCupSoccer Humanoid League.

11. APPLICATIONS AND BENCHMARKING

Another unique aspect of RoboCup is in the design of performance evaluation. The game itself
is a good indicator of the total performance on the system level. Nevertheless, each league has
its own technical challenges to evaluate achievements on module and functionality levels toward
the league’s goal. These benchmarks are good indicators of whether the technologies fostered in
RoboCup are broadly applicable across different fields.

The robot hardware and software constitute the infrastructure for any robotics study. In the
case of RoboCup, research on robot hardware and software appears to be geared specifically to-
ward a final goal. However, this work does not merely facilitate the application of technologies
fostered in RoboCup to tasks aimed at achieving RoboCup’s ultimate goal. Even partially achieved
technologies, such as those of Kiva Systems (now Amazon Robotics), can potentially be channeled
to practical applications at any point in their development.

11.1. Challenge and Task Design

Both of the RoboCupIndustrial leagues (RoboCup@Work and the RCLL) focus on industrial
application (automated reasoning and planning, and mobile manipulation), with slightly different
specifications. Zug et al. (136) proposed a crossover challenge to foster closer cooperation between
the two leagues. They outlined four integration milestones and proposed a specific scenario and
task for the first milestone.

Making progress toward the ultimate goal requires more researchers and universities that
might bring advanced technologies and new perspectives to research. And attracting new
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researchers requires an easy entry path for new teams that is suitable for undergraduate students
and universities with limited budgets. Gerndt et al. (137) proposed an entry-level league with a
reduced set of requirements that can bridge the gap between the junior level and the advanced
robots and teams in the Humanoid League. They called it the “Humanoid Rookie (Sub-) League
(HRL)” and suggested that it would give new researchers and teams the time to gather the expe-
rience and funds needed to successfully participate in and contribute to the Humanoid League’s
progress toward the 2050 goal. This proposal addresses the general challenge of bridging the gap
between the highly advanced teams and robots in the major leagues and the resulting high and
continuously rising entry level for newer teams.

Generally, robots require long-termmemory for coherent interaction and communication with
humans. In the RoboCup@Home domain, a robot should be a continuous being in order to main-
tain long-term relationships with humans. Pavez et al. (138) observed that such a capability is
essential for a home robot to perform some domestic tasks and proposed a new challenge: the
verification of the capability of long-term memory in robots.

After the Fukushima Daiichi nuclear power plant disaster, the RoboCupRescue Robot League
changed the regulations of its competitions to reflect real disaster situations as much as possible.
This trend became mainstream in the league, and firefighters, police personnel, and other respon-
ders are now invited from all over the world. At RoboCup 2019 in Sydney, Australia, the New
South Wales Police Rescue and Bomb Disposal Unit played a vital role in preparing the arena.
They also brought their brand-new robots to test them within the arena and exhibit them to the
researchers and students (see Supplemental Figure 18). Observing these changes, Shimizu &
Takahashi (139) proposed a new standard task based on ordinary tasks in the RoboCupRescue
Simulation League. They surveyed the rescue competitions and realized the potential of the vir-
tual league to imitate actual situations.

11.2. Performance Check

It is necessary to evaluate RoboCup games to tackle all the germane issues, such as the multiagent
team strategy. A 2-D simulation league is suitable for this purpose owing to the rich game data
available. Gabel et al. (140) evaluated the game quality across the past 20 years, observing that
although the first decade showed amazing progress, the second did not. Michael et al. (141)
proposed a new approach for identifying situations and behaviors. Their goal was to identify
situations from data in an unsupervised way without making use of predefined soccer-specific
concepts, such as passing or dribbling.The system can segment games into sequences of situations
that are learned in an unsupervised way and learn conceptors that are useful for predicting the
near future of each situation. Suzuki & Nakashima (142) proposed a forward simulation for
situation evaluation (FOSSE) approach for evaluating game situations. FOSSE generates future
game situations using forward simulation. Computational experiments were conducted to verify
the effectiveness of the proposed approach.

Because game evaluation can be enhanced by using richer data with less noise, data generation
is a powerful tool for that purpose. Michael et al. (143) generated game data with incomplete
and noisy percepts (as sent to each player) in addition to a ground-truth log file created by the
simulator (global, complete, noise-free information on all objects on the field). These data were
made available as comma-separated value (CSV) files as well as in the original soccer simulator
formats. Pomas & Nakashima (144) proposed a CNN that assesses a situation at one point of
a RoboCup 2-D soccer game and predicts which team will score next and when using only the
soccer field images as input. The next goal is predicted using SituationScores, which estimates the
remaining number of frames; the average error of SituationScores was less than that of the existing
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methods. SituationScores are also used for soccer monitoring, to make the experience of watching
games more entertaining (145). Fukushima et al. (146) discussed the validity of similarity measures
for action trajectories based on kick distributions, which were used to estimate the dissimilarity
(or distance) between the strategies of two teams. They demonstrated that the similarity analysis
methods have a positive correlation with human subjectivity, implying that their method is valid
for the similarity analysis. In addition, the calculation time could be reduced by using continuous
kick probability distributions (see Supplemental Figure 19).

Ball detection is widely studied in relation to RoboCup, as mentioned in Section 6.1, as well as
in other studies. Gabel et al. (147) proposed a patch-based approach and evaluated the ball detec-
tion performance at RoboCup 2017 using several methods, such as Harr, AlexNet, and Inception,
with different steps and epochs. These networks are for generic use and can thus be modified for
RoboCup specifications. Speck et al. (148) proposed a state-of-the-art ball detection model and
made training and test data sets (comprising more than 35,000 and more than 2,000 images, re-
spectively) publicly available for teams to train the models under real-time requirements and with
the limited computing power of humanoid robots. They frequently release new versions to enable
teams to hone their performance.

In the RoboCup@Home domain, the number of objects that the robot needs to recognize
and manipulate is much larger than that of the RoboCupSoccer domain. Recent progress in deep
learning, especially in CNNs, has enabled the recognition of various types of objects. However,
the data set for RoboCup@Home use is limited. Massouh et al. (149) proposed a benchmark for
object recognition, including a large-scale training set of 196,000 images labeled with classes de-
rived from RoboCup@Home rule books (the RoboCup@Home-Objects data), two medium-scale
test sets (one taken with a Pepper robot) with different objects and different backgrounds with re-
spect to the training set, a robot behavior for image acquisition, and several useful analyses of the
results.The RoboCup@Home-Objects data are very useful, not only for the teams participating in
RoboCupSoccer but also for the technical committee designing and evaluating the competition.

Natural language communication is another issue in the RoboCup@Home general-purpose
service robot category,which involves supporting humans in the context of domestic tasks.Kramer
et al. (150) analyzed a comparative study and proposed the benchmarking of four natural language
understanding models, called Mbot, Rasa, LU4R, and ECG. They evaluated the four models in
the competitions and concluded that both Mbot and Rasa are suitable for robot command under-
standing; however, Mbot is slightly more suitable, as Rasa has difficulty differentiating between
certain location entities, such as destination and source categories.

The RCLL generates a massive amount of data regarding the state changes of the game and
communication with the robots. Niemueller et al. (151) analyzed the data from the 2014 compe-
tition through key performance indicators. Applying adapted key performance indicators to the
RCLL provides interesting insights regarding the strategies of the robot teams. In progressing
toward more realistic industrial properties with 24/7 production, teams should perform in shifts
(i.e., without an intermediate environment reset).

12. CONCLUDING REMARKS

Now in its 24th year, RoboCup is still unique in multiple ways. It was the first organization to
introduce competitions and benchmarking through formidable and publicly appealing visionary
challenges for research in robotics and AI. The initial vision of a team of humanoid robots that are
physically andmentally on par with aWorld Cup champion human soccer team has been extended
to the deployment of intelligent robots that can directly address societal challenges and disaster
response (with Industry 4.0 and Society 5.0 also being forerunners in these domains). RoboCup
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is supported and self-funded by a large and truly international community consisting of approxi-
mately 1,000 and 10,000major and junior teams, respectively, that work cooperatively and enthusi-
astically toward the common goals of RoboCup. RoboCup successfully eliminates the boundaries
between fundamental research and evaluation and benchmarking on a full-system level, between
organizers and participants, between academia and industry, between university-level research
and project-oriented STEM education, between mere short-term acceleration of research and
development through robotics competitions and their long-term sustainability, and—last but not
least—between researchers, students, and teachers with different cultural backgrounds from ap-
proximately 45 nations and regions around the world.

This article has provided an overview of research activities from the perspective of RoboCup,
focusing mainly on selected studies from recent years. Toward the realization of RoboCup’s ulti-
mate goal, the unique cycle of deliberation (new idea or challenge), implementation (design and
realization), and verification (competition) will continue to involve new teams, researchers, and
supporters. In the annual RoboCup event, which is open to the public, the large variety of test
fields and competitions developed can be observed, along with the high level of enthusiasm of re-
searchers and students in the competitions.Themost recent RoboCupwas held in Sydney in 2019,
and the next two will take place in 2020 in Bordeaux, France, and in 2021 in Bangkok, Thailand.

Although RoboCup already incorporates an amazing variety of research issues from differ-
ent disciplines of robotics and AI, it could further benefit from stronger incorporation of addi-
tional topics. These topics include (a) higher-level cognitive architectures with features such as
self-consciousness, attention, and emotion (e.g., 152, 153) to help robots achieve their mission;
(b) compliant robotics technology (soft robotics) to enable more dynamic motions, such as run-
ning and jumping, with human-like dexterity, in addition to greater energy efficiency in humanoid
robots; and (c) the use of neuromorphic chips and devices for energy conservation and efficient
computation [e.g., the Neuromorphic Dynamics Project (http://www.ams.eng.osaka-u.ac.jp/
nedo-nmd/?lang=en)], which only a few teams have attempted to implement (115, 116).
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