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In many network and IT (information technology) systems, users
submit loosely defined (or ‘‘fuzzy’’) requests to obtain answers,
solutions, or resources. Fuzzy requests are often presented in
problem tickets and processed by an IT service management
system. In such a system, problems are typically reported using
vague user-generated descriptions of the symptoms (e.g., ‘‘my
e-mail is not working’’). Making use of the reported symptoms, the
incident management system is then responsible for identifying the
component causing the problem. An accurate and quick diagnosis
from the fuzzy symptoms becomes critical for an efficient and
timely resolution of the problem. In this paper, we propose a system
for automated incident management using historical information
(AIM-HI), a framework for autonomous routing of requests in
large-scale IT global service delivery. AIM-HI incorporates
historical request resolution information and frequency, together
with queue bouncing trends to extrapolate algorithms for
streamlining and automating the dispatch of requests or work
among support groups and IT specialists. The simplicity and
scalability of AIM-HI should lead to deployment in actual real
operational systems in the future.

Introduction
In the global (worldwide) service delivery of IT

(information technology), a user reporting a problem or

failure will typically not know the actual root cause of the

problem. Instead, a user provides a vague description of

the symptoms in order to request service. Such ‘‘fuzzy’’

requests often require intervention by several IT

specialists before the failed network or IT system resource

is identified and the problem is resolved. The challenge of

a timely resolution is amplified in an outsourced IT

environment, where a service provider is often responsible

for managing multiple large IT environments. In such an

environment, thousands of fuzzy requests are generated

every day with respect to diverse sets of issues related to

numerous kinds of network, application, and middleware

components. Support groups, organized around the

managed infrastructures, need to correctly and quickly

resolve such requests in order to meet various service-

level agreements (SLAs).

A typical service request goes through two primary

phases. During generation, each request is assigned a

technology signature based on the reported problem

symptoms. The signature reflects the likely failed system,

component, and module. On the basis of the assigned

signature, during routing or dispatching, a routing

directory lookup identifies the support group best skilled

to resolve the request. The request is then routed (through

the incident management application) to the selected

group. However, requests often are rerouted multiple

times before being resolved, due to 1) the need for

sequential interventions by multiple support groups and

specialists and 2) misrouting. In this paper, we focus on

misrouting, which is primarily caused by the coarse

granularity of the assigned signature, in which each

distinct signature may correspond to a diverse set of

problems.

To help improve the request routing efficiency in IT

global service delivery, we propose automated incident

management using historical information (AIM-HI) that

involves adaptively learning about both the generated

requests and the specialists involved, and that applies the
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derived knowledge to make more informed routing

decisions for future requests. The AIM-HI system

examines the assigned technology signature of each

request and applies supervised learning algorithms [1] to

evaluate the historical likelihood that the particular

signature corresponds to specific problem symptoms.

Prior performances of support groups are then analyzed

to identify groups that have the required skill to resolve

the diagnosed problem symptoms. In a related work,

Shao et al. [2] apply a variable-order Markov model to

determine potential resolver groups for a request.

However, identifying the correct support group does

not guarantee that the request will be resolved in a single

hop (i.e., redirection), since resolution efficiency of

specialists varies, within the group, for each problem

addressed by the group. For moderately sized groups,

redirections of a request within a support group can add

significant delays to the resolution of a request even when

the request must go through a small finite sequence of

groups, as in [2], before being resolved. In order to

minimize the number of redirections, AIM-HI

autonomously evaluates the performance of the

specialists. The performance of a specialist is determined

by her historical ability to handle a diverse set of

problems and the efficiency with which she can resolve

each type of problem. Preliminary evaluations suggest

that AIM-HI can quickly route a new request to a

potential support group and identify the appropriate

specialist within the group to resolve the request.

This paper is organized as follows. First we provide a

detailed quantitative overview of the outsourcing

environment. Next, we describe the proposed AIM-HI

framework in detail, and then we evaluate and analyze

the performance of AIM-HI, and conclude the paper.

Quantitative overview of IT global delivery
The IT global service delivery we consider supports

several hundred outsourced customer accounts that have

generated more than 2 million service requests over the

span of 10 months. Typically, for each supported

technology (e.g., e-mail application or Linux** operating

system), one or more workgroups services the associated

requests. Each workgroup is assigned to one or more

accounts and contains a variable number of subject

matter experts (SMEs). A request goes through two

primary phases: generation and dispatch. Regardless of

whether the request is customer or machine generated,

what is typically reported is the symptom, not the root

cause of the problem.

When a request is customer generated, request routing

is further complicated because problem symptoms are

conveyed by both technical and nontechnical users. As

mentioned in the previous section, based on the reported

(and perhaps vague) problem symptoms, each request is

assigned a technology or problem domain signature

(PDS) that provides a hierarchical classification of the

problem symptoms. For instance, the signature identifies

the likely troubled system, component, module, and so

forth.

At the dispatch phase, the primary challenge is to

identify the correct workgroup that can solve the

problem. Once the signature (PDS) is created, a potential

workgroup is chosen from the routing directory, and the

request is forwarded to the selected group. As mentioned,

since symptoms may fail to capture the root cause of a

problem, with the exception of simple issues (e.g.,

password reset), requests are often rerouted within and

across workgroups before being resolved, as shown in

Figure 1. The workgroup that resolves the problem is

referred as the resolver group. Table 1 provides a brief

explanation of key terms used in this paper.

Given the large amount of requests available, we

present results for four of the accounts that are

representative of the complete set. The four accounts in

Table 2 are chosen such that they not only have a large

number of requests, but also exhibit diversity in terms of

the types of requests generated and the number of

workgroups and SMEs responsible to service those

requests.

Request routing efficiency

We begin with an analysis of the efficiency of the existing

routing system. This also serves as a baseline for

comparing proposed improvements with respect to the
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Overview of the global service delivery. (Republished with

permission from Reference [3]; �2008 IEEE.)
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existing system. The routing efficiency of a request is

measured in terms of the number of redirections, or hops,

required for request resolution. The routing path is

typically captured by the problem management system

and can be easily retraced.

The analysis suggests that only 20% of the requests in

account A are resolved in a single hop, compared to 56%,

70%, and 63% for accounts B, C, and D, respectively.

Single-hop resolutions are those typically handled by

level 1 support (e.g., password resets). In general, the

percentage of single-hop resolutions in an account is a

measure of 1) the complexity of the requests serviced and

2) the scope for improving the routing efficiency. For

example, account C has a large number of simple

requests, probably associated with issues mostly handled

by level 1 support. On the other hand, account A provides

a large opportunity for improvement since only 20% of its

requests are resolved in a single hop by the existing

routing system.

Technology signatures mapping

Since a request is routed on the basis of its assigned

signature (i.e., PDS), analyzing the mapping from PDS to

resolver group will provide key insights into the causes of

misrouting. First, we determine how well a particular

PDS captures specific problem symptoms. This can be

inferred from tracking the number of distinct resolver

groups that have resolved requests assigned this distinct

PDS. Intuitively, if a PDS maps to multiple resolver

groups during its life cycle (the observed period of several

months), then there is a clear ambiguity about the correct

resolver group for requests that are assigned such a PDS.

Our analysis shows that 55% of the signatures in accounts

A and C map to multiple resolver groups compared to

24% and 27% for accounts B and D, respectively.

Interestingly, a PDS may map up to 25, 30, 10, and 60

different resolver groups in accounts A, B, C, and D,

respectively.

The mapping cardinality of a PDS does not capture the

temporal variation of its mapping to a resolver group.

More specifically, for a PDS, the mapping cardinality

does not determine 1) the duration of each mapping and

2) the transition frequency between mappings. Both

parameters are critical for building an efficient time-

evolving request routing system, described later in the

AIM-HI overview section.

The mapping duration of a PDS to a particular resolver

group is captured by the run length of the mapping. This

run length is the number of consecutive requests with the

same PDS being resolved by the same group. As an

example, in Figure 2, the run lengths of mappings for a

PDS with resolver groups R2, R3, R1, and R4 are 1, 2, 2,

and 3, respectively. Intuitively, a longer duration per

mapping often reflects higher routing accuracy and fewer

organizational changes. Our analysis of the requests

shows that 30%, 15%, 8%, and 18% of the PDSs map to

the same resolver group for a duration of only one run

Table 1 Terminology table.

Term Description

Problem domain

signature (PDS)

Technology signature associated

with a request. This provides

a hierarchical classification

of the problem symptoms.

SMEs Subject matter experts.

Workgroup A group of SMEs that are in charge

of a service domain.

Dispatcher A person or system that assigns the

requests to a workgroup.

Resolver group A final workgroup that resolved

the problem.

Table 2 Account summary.

Account Number of SMEs Number of workgroups

A 1,836 171

B 443 95

C 353 118

D 1,092 261

Requests with

the same PDS

over time 

Run-length

duration � 2

Transition frequency � 3

R4

R1

R2

R3

Three different requests

(all with same PDS)

mapping to resolver-

group R4

Time

Resolver

group

Figure 2

An example of transition frequency and run-length duration. The

y-axis is used to denote different resolver groups.
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length in accounts A, B, C, and D, respectively. This

implies a heavy oscillation in the mapping.

In order to understand the degree of oscillation in

mapping, we determine the frequency of such transitions.

In the illustrated example in Figure 2, the PDS undergoes

three transitions in its mapping to resolver groups. In

general, a higher transition frequency reveals a more

unpredictable mapping from a PDS. The analyses of the

accounts suggest that 35% of the PDSs in accounts A and

C undergo two or more transitions. In contrast,

approximately 50% of the PDSs exhibit two or more

transitions in accounts B and D.

Workgroup compositions

Thus far, we have analyzed the dataset at the workgroup

level. In reality, a workgroup consists of a large number

of SMEs (as shown in Table 2), and requests often are

redirected multiple times within a group before being

resolved or forwarded to another workgroup.

Furthermore, workgroups usually share SMEs, as an

SME may belong to multiple workgroups. The

assignment of an SME to a workgroup is based on his

role as well as skill level and breadth of expertise. A more

skillful SME may have the required skill to resolve

requests originating from multiple problem domains and,

thus, can contribute to multiple groups. Our analysis

suggests 9%, 14%, 24%, and 25% of the SMEs work for

more than one group for accounts A, B, C, and D,

respectively.

AIM-HI overview
As mentioned, AIM-HI provides a framework for

autonomous routing of requests in IT global service

delivery. AIM-HI adaptively learns from historical

routing information to build an efficient route prediction

model for future requests. AIM-HI applies various

supervised learning algorithms to determine the historical

likelihood of a group to resolve requests exhibiting

specific symptoms. AIM-HI also analyzes past

performances of SMEs in handling requests in order to

make more informed decisions about selecting SMEs for

future requests. The architecture of AIM-HI is presented

in Figure 3. The details of AIM-HI are presented in the

following subsections.

Resolver-group selection

For each newly arrived request, AIM-HI identifies a set

of workgroups that can potentially resolve the request.

Since a request is routed on the basis of its assigned PDS,

analyzing historical resolver groups for a PDS can

potentially lead to more informed routing decisions for

similar requests in the future. In order to evaluate

historical mappings between a PDS and resolver groups,

AIM-HI applies several supervised learning techniques

[1], for which each new request is first classified using the

current classifier, followed by a learning phase to update

the current classifier with the mapping information in the

recently examined request. In order to classify the

categorical features of a PDS, we choose the following

classification methods: maximum likelihood estimate

(MLE), naı̈ve Bayes, and decision tree. The classifiers are

chosen according to their complexity, efficiency, and

interpretability. In this work, our goal is not to perform a

comprehensive evaluation of different learning

algorithms. Rather, we are interested in comparing the

performances of simpler, computationally less-expensive

learning algorithms such as MLE and naı̈ve Bayes with

an algorithm such as decision tree that has more dynamic

characteristics to potentially better classify categorical

features.

MLE [4, 5] is chosen from a family of classifiers that

provide simplicity and efficiency during both learning and

classification phases. However, MLE may require a large

training set to build an efficient classifier for each distinct

PDS.

On the other hand, a naı̈ve Bayes [6, 7] classifier

requires a smaller training set, which is useful for an

outsourcing environment that experiences rapid increases

in newly supported accounts, typically with little

historical data. An obvious drawback associated with the

classifier is the assumption about the independence of

each attribute in the PDS.

Finally, decision tree is one of the most widely applied

data-mining algorithms for classifying categorical data

[8]. It has dynamic properties such as powerful function

approximation, and it facilitates easy interpretation of the

classification results. The tree structure provides a useful

balance between model complexity and accuracy,

although construction of the tree is usually quite

AIM-HI

Directory

Request

Workgroup

classifier

Training

Potential SMEs

(ranked order)

Potential

resolver group(s)

(ranked order) 

Information

aging

SME

selection

Figure 3

The AIM-HI architecture.
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complicated. We consider a standard C4.5 decision tree [9]

algorithm that has a very useful combination of error

sampling rate and response time [10].

Since a dynamic classification performs an online

update of the classifier with each newly served request, a

critical design issue involves the amount of historical

mapping information that needs to be considered for the

update. Maintaining portions of the history is desirable

for two reasons. First, as discussed in the quantitative

overview of IT global delivery section, the mapping

between a PDS and resolver groups can have a one-to-

many relationship; thus, historical mappings can be used

to filter noise, such as infrequent routing errors. Second,

if a PDS has a historical mapping to only a single resolver

group (i.e., a one-to-one mapping), then discarding such a

PDS will lead to loss of information about a stable PDS-

to-resolver-group mapping. We consider two mechanisms

to determine the amount of historical mapping

information that needs to be maintained: sliding window

and exponential forgetting.

Sliding window

A sliding-window-based classifier is constructed by

tracking the PDS-to-resolver-groups mapping of the

recently observed requests. Specifically, a classifier Cn is

updated with the mapping information from the most

recent W requests frn�Wþ1, . . ., rng, where rn is the most

recently serviced request. Mapping information of prior

requests beyond W is discarded, and each of the

mappings within the W request is given an equal weight

during the update of Cn. By only considering requests

that arrive within W, useful mapping information from

other prior requests is ignored.

Exponential forgetting

As an alternative, exponential forgetting ages information

with time, and new requests are given higher weights than

the older ones during the update cycle of a classifier. As a

result, all of the historical mapping vectors have certain

effects when updating the classifier model, although the

weight or importance of the information degrades with

time.

SME selection

Once a set of potential resolver groups is selected, the

goal is to identify efficient SMEs from the set to resolve

the request. A random selection of SMEs tends to be

inefficient, as SMEs within a group are not equally

proficient in resolving each problem handled by the

group. Moreover, a large number of random selections

might be required to find the appropriate SME, even

within a group of moderate size. Consequently, each

redirection of the request adds delays to the resolution of

the request. To avoid random selections of SMEs,

AIM-HI maintains an efficiency score for each SME

and chooses SMEs according to their scores.

The efficiencies of SMEs are determined by analyzing

prior performances of the SMEs in resolving requests.

From the past performances, AIM-HI determines for

each SME: 1) historical likelihood to resolve a diverse set

of problems and 2) resolution efficiency for each type of

problem. The historical capability of an SME to resolve

diverse types of problems is a reflection of the breadth of

problem-solving skill of the SME. The breadth of

problem-solving skills B(Sk) of an SME Sk is defined as

the number of requests with distinct PDSs handled by the

SME. An SME who has worked on requests with diverse

PDSs is likely to interact with numerous SMEs across

various workgroups. In theory, such an SME is able to

contribute to multiple workgroups, as shown by the

analysis of workgroup compositions in the section on

workgroup compositions. Therefore, SMEs who have

resolved a more diverse set of problems are more likely to

resolve a pending request with mislabeled or newer PDSs

that might have been initially forwarded to the wrong

workgroup.

For each of the diverse types of problems handled by

an SME, AIM-HI determines the efficiency with which

each such problem is resolved by the SME. Intuitively, an

SME who is highly skilled with respect to resolving a

particular problem is expected to require minimum time

to resolve such a problem. We define each distinct PDS to

correspond to a unique problem. For each distinct PDSx,

AIM-HI defines the problem resolution depth

D(SkjPDSx) of SME Sk as the expected number of

redirections or hops required for a request, with signature

PDSx, to be resolved once it passes through Sk. An SME

who is highly knowledgeable about particular problem

symptoms will likely resolve such requests himself and

have a very low D(Sk) for that PDS. On the other hand,

an SME who lacks in-depth knowledge about a particular

PDS will have a much higher D(Sk) for resolving requests

with such a PDS, as the SME is likely to forward a larger

portion of the requests to more knowledgeable SMEs. In

its simplest form, D(SkjPDSx) can be computed as

DðS
k
jPDS

x
Þ ¼

XN
i¼1

i � PðijS
k
;PDS

x
Þ;

where i is the number of hops taken for a request with

signature PDSx to be resolved once it has passed Sk.

P(ijSk,PDSx) is the probability of taking i hops and is

computed as follows:

P ijS
k
;PDS

x

� �
¼

TðijS
k
;PDS

x
Þ

TðS
k
jPDS

x
Þ ;

where T(ijSk,PDSx) is the total instances of requests, with

PDSx, taking i hops from SME Sk to be resolved, and
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T(SkjPDSx) corresponds to the total number of requests

with PDSx handled by Sk.

On the basis of the derived performance metrics, AIM-

HI determines an overall efficiency score E(SkjPDSy) for

SME Sk to resolve a new request with signature PDSy

E S
k
jPDS

y

� �
¼ a �N 1

DðS
k
jPDS

y
Þ

 !

¼ þð1� aÞ �NðBðS
k
ÞÞ;

where N(1/(D(SkjPDSy))) and N(B(Sk)) are the

normalized scores for the depth and breadth of historical

problem-solving skills of Sk, and 0 � a � 1.

The efficiencies of the SMEs, in the workgroups

selected in the section on resolver-group selection, are

then determined on the basis of the desired selection

criterion. If an SME is to be chosen based solely on his

historical likelihood to efficiently resolve prior requests

with PDSy, then a should be maximized. Such selection

can effectively reduce the request resolution time if prior

requests with PDSy have been historically resolved by one

of the groups under consideration. On the other hand, an

SME with expanded problem-solving skills is chosen by

maximizing (1 � a). The latter policy increases the

resolution probability of requests with a misdiagnosed or

previously unobserved PDS.

Once the efficiency scores of the probable SMEs are

computed according to the desired policy, the request is

routed to an SME with a high score. It is important to

note that AIM-HI does not select the SME with the

highest efficiency score in order to ensure that particular

SMEs are not overloaded with requests. In future work,

AIM-HI will take into consideration the request load or

utilization of an SME to autonomously update the

efficiency score of each SME.

Performance evaluation
The performance of AIM-HI is evaluated with respect to

the entire sample size for each account. In creating our

plots, we measure the performance of AIM-HI over non-

overlapping 14-day intervals to provide a balance

between observing time-varying trends in our evaluation

and smoothing any anomalies that are typical in any

actual dataset. Our results have suggested that naı̈ve

Bayes, decision tree, and MLE yield very similar

performances in identifying a set of resolver groups for a

new request. In general, the similarities in performance

can be attributed to the fuzzy nature of the mapping

between a PDS and resolver groups, where requests with

the same PDS are resolved by as many as 60 different

groups over time, as discussed in the section on

technology signatures mapping. Due to the similarities in

performances, we only present in details the performance

of the dynamic MLE classifier.

Resolver-group selection

In evaluating AIM-HI, we first determine the accuracy of

a dynamic MLE classifier in correctly predicting the

resolver group for a new request. Due to the overlapping

timeline of AIM-HI and the Markov-based routing

model [2], a comparison of the performances of the two

models has not been possible.

As presented in the section on resolver-group selection,

AIM-HI uses two variations of dynamic supervised

classification methods to identify a potential resolver

group for the pending request. For the sliding window,

we vary the window size W from 7 days to 91 days. The

results in Figure 4 depict a few interesting observations.

First, a common dip in performance is noticeable during

testing intervals 5 through 9. This is largely due to very

few requests being served during that two-and-a-half

month period. Since the classifier is updated based on a

sliding window, mapping vectors corresponding to prior

requests are discarded. As a result, a smaller window size

performs worse than larger ones.

As a second observation, accounts A and C

consistently exhibit low and high classification accuracies,

respectively, if we ignore the intervals 5 through 9. This is

largely due to the degree of stability in the mapping of the

PDS in their respective accounts. As explained in the

section on technology signatures mapping, in terms of

number of consecutive requests, the longer a PDS maps

to the same resolver group, the more predictable the

mapping becomes, resulting in higher classification

accuracy. Since 30% of the PDSs in account A do not

have consecutive mappings to the same resolver group,

the historical mapping vector of such a PDS becomes less

useful in determining its next mapping, leading to

inaccurate classification. On the other hand, in account C

only 8% of the PDSs do not have consecutive mapping to

the same resolver-group, thus resulting in a more

predictable mapping.

As a third observation, the classification accuracy in

account D shows a dip during the last few testing

intervals. This is largely due to the arrival of requests with

previously unseen feature vectors that are classified

incorrectly due to the lack of historical mapping vectors.

Overall, across the accounts, it can be inferred that a

sliding window of only 7 days yields an accuracy similar

to the other window sizes. This implies that historical

mapping vectors may not need to be retained for longer

periods, thus providing simplicity and savings in storage

space and processing overhead.

For exponential forgetting, we vary the forgetting

coefficient k from 0.99 to 0.001 to analyze the effect of

aging historical mapping information on classification

accuracy. The results in Figure 5 highlight several

surprising results. First, during the testing intervals 5

through 9, the exponential forgetting classification yields
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a much better accuracy than the sliding window. This is

largely due to the capability of the exponential forgetting

classification to retain and incorporate all of the historical

mapping vectors when updating the classifier, and thus

overcoming unavailability of sufficient requests at discrete

intervals.

Second, one observes a trend similar to the sliding

window case, as accounts A and C consistently exhibit

low and high classification accuracies. This validates our

prior observation that the behavior is due to the degree of

stability in the mapping between a PDS/resolver-group

pair within each account. The most surprising

observation is that the accuracy acquired with a

forgetting coefficient of 0.001 is similar to other aging

variations across the accounts. This implies that

classification schemes for this type of environment only

need to ‘‘remember’’ the last correct classification. The

finding also supports the results from the sliding window,

where a window size of only 7 days yielded good

accuracy.

Our analyses suggest that the leading cause of

inaccurate classification is the instability in mappings

from a PDS to resolver groups. Interestingly, one

observes that a new request is usually associated with

finding multiple potential resolver groups in the classifier.

For instance, in accounts A, B, and D, more than 60% of

the new requests found multiple mappings compared to

35% in account C. In order to utilize multiple mappings,

for each new request, AIM-HI identifies a set of k resolver

groups that has the most potential for resolving the

request. The k groups are ordered according to their

historical likelihood to resolve the request, as determined

by the dynamic MLE classifier.

We limit k to 5 and use the dynamic MLE exponential

forgetting classifier with k¼ 0.4 to determine the top five

workgroups for a pending request. The accuracy is
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Accuracy of the sliding window classifier through time.
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measured cumulatively with respect to each workgroup to

allow the best mapped resolver group to be selected first,

followed by the second, and so forth. In Figure 6, we plot

the improvement in accuracy with respect to a single or

the top-matched workgroup selection. The results suggest

that the MLE classifier can accurately identify a very

small set of workgroups to resolve a request. However,

one can notice a performance ceiling (i.e., limit) of the

classifier, beyond which further prediction accuracy is not

gained. For example, in accounts B, C, and D, there is no

noticeable improvement in accuracy beyond choosing the

top two potential workgroups. Prediction accuracy for

requests in account A is also limited to the top four

workgroups.

SME selection

From the set of potential resolver groups, an SME is

chosen based on the efficiency score of the SME, as

described in the section on SME selection. This leads to

the following scenarios.

In case A, if the PDS of a new request matches a single

resolver group, then AIM-HI selects an SME based solely

on the resolution efficiency of the SME in resolving prior

requests with the same PDS. By identifying an SME who

is highly skilled in resolving the requests, a quicker

resolution of the request is guaranteed since the request

has already been routed to the appropriate workgroup.

In case B, if the PDS of a new request identifies

multiple potential resolver groups, then AIM-HI

determines the efficiency score for each SME in the

matched groups and routes the request to the SME with

the highest score. In this case, it is not obvious whether

the efficiency of the SMEs should be computed based on

their depth or breadth of knowledge. We propose to

analyze in detail such situations in future works.
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(a) Account A
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(c) Account C
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Figure 5

Accuracy of the exponential forgetting classifier through time.
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In case C, if a previously unobserved PDS arrives that

does not match any of the potential resolver groups, then

AIM-HI selects an SME who has, in the past, worked on

a highly diverse set of requests. The broader skills or

knowledge of such SMEs can be explored in order to

route the request to a potential resolver.

As mentioned, in all possible cases, AIM-HI avoids

instantaneous selection of the SME with the highest

efficiency score in order to avoid overloading an SME

with requests. In addition, AIM-HI selects the next-hop

SME with a degree of confidence that takes into

consideration the number of the requests an SME has

previously handled. Such a measure ensures that SMEs

who have been randomly forwarded a problem (through

misrouting) are not misleadingly assigned a high

efficiency score for that particular type of problem.

Based on a preliminary evaluation, AIM-HI is found to

attain dispatch accuracy as high as 91%. We are in the

process of performing a more detailed evaluation and

considering a limited pilot project in a production

environment.

Conclusion
With the growing demand on IT outsourcing, studying

the human aspect of request generation and resolution

has become a key issue for scalable IT operation and

management. In this paper, AIM-HI is proposed as a

request routing framework that autonomously examines

the trails (e.g., histories) of prior requests in order to build

an efficient route prediction model for future requests.

For each new request, AIM-HI first applies supervised

learning algorithms to select a set of workgroups that can

potentially resolve the request. From the selected groups,

IT specialists can then be chosen on the basis of their

derived efficiency scores. Our evaluations have shown

that a dynamic MLE classifier can identify, with high

accuracy, a small finite set of resolver groups for a

pending request. Furthermore, the appropriately skilled

specialists can also be rapidly identified from the selected

groups with high precision.

We are currently performing more detailed evaluations

of AIM-HI. Our future work will consider request loads

and queuing delays with respect to specialists as well as

the severity of the request in determining the efficiency

score of the specialists. We will also evaluate AIM-HI for

minimizing the resolution time of a request in addition to

the number of redirections. Deployment of AIM-HI in an

actual operational system is also being considered.

**Trademark, service mark, or registered trademark of Linus
Torvalds in the United States, other countries, or both.
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Figure 6

Cumulative improvement in accuracy with multihop routing.
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