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Abstract 
Melanoma is the deadliest form of skin cancer. While curable with early detection, only highly 
trained specialists are capable of accurately recognizing the disease. As expertise is in limited 
supply, automated systems capable of identifying disease could save lives, reduce unnecessary 
biopsies, and reduce costs. Toward this goal, we propose a system that combines recent 
developments in deep learning with established machine learning approaches, creating 
ensembles of methods that are capable of segmenting skin lesions, as well as analyzing the 
detected area and surrounding tissue for melanoma detection. The system is evaluated using the 
largest publicly available benchmark dataset of dermoscopic images, containing 900 training and 
379 testing images. New state-of-the-art performance levels are demonstrated, leading to an 
improvement in the area under receiver operating characteristic curve of 7.5% (0.843 vs. 0.783), 
in average precision of 4% (0.649 vs. 0.624), and in specificity measured at the clinically 
relevant 95% sensitivity operating point 2.9 times higher than the previous state-of-the-art 
(36.8% specificity compared to 12.5%). Compared to the average of 8 expert dermatologists on a 
subset of 100 test images, the proposed system produces a higher accuracy (76% vs. 70.5%), and 
specificity (62% vs. 59%) evaluated at an equivalent sensitivity (82%). 

Introduction 
Skin cancer is the most common cancer in the United States, with over 5 million cases diagnosed 
each year [1]. Melanoma, the deadliest form of skin cancer, is involved in approximately 
100,000 new instances every year in the United States, and over 9,000 deaths [2]. The cost to the 
U.S. healthcare system exceeds $8 billion [3]. Internationally, skin cancer also poses a major 
public health threat.  In Australia, there are over 13,000 new instances of melanoma yearly, 
leading to over 1,200 deaths [4]. In Europe, melanoma causes over 20,000 deaths a year [5].  
In order to combat the rising mortality of melanoma, early detection is critical. Currently, highly 
trained experts and professional equipment are necessary for accurate and early detection of 
melanoma. Dermoscopy is a specialized method of high-resolution imaging of the skin that 
reduces skin surface reflectance, allowing clinicians to visualize deeper underlying structures. 
Using this device, specially trained clinicians have demonstrated a diagnostic accuracy as high as 
75-84% [7]. However, recognition performance drops significantly when the clinicians are not 
adequately trained [8, 9].  

While in the United States there are over 10,000 dermatologists, in other areas of the world the 
supply of expertise is limited. For example, in Australia, the number of registered dermatologists 
in 2004 was approximately 340 [10], and in New Zealand, there were 16 [11]. Restricted access 
to expert consultation leads to additional challenges in providing adequate levels of care to the 
populations that are at risk.   
In order to address the limited supply of experts, there has been effort in the research community 
to develop automated image analysis systems to detect disease from dermoscopy images. Such 
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technology could be used as a diagnostic tool by primary care physicians and staff for regular 
screening, or by clinicians who are otherwise not trained to interpret dermoscopy images. 
Review articles covering a spectrum of publications have been recently presented [7, 12-15]. The 
variety of automated image analysis techniques discussed is broad, but mostly restricted within 
the space of classical computer vision approaches, typically using combinations of low-level 
visual feature representations (color, edge, and texture descriptors, quantification of melanin 
based on color, etc.), rule-based image processing or segmentation algorithms, and classical 
machine learning techniques, such as k-nearest neighbor (kNN) and support vector machines 
(SVM). Some publications have presented algorithms that include segmentation of the lesion 
[16-21]. A team from the Pedro Hispano Hospital of Portugal sought to evaluate the performance 
of several (e.g., SVM and kNN) machine learning classifiers based on color, edge, and texture 
descriptors [22,23]. Other teams employed ensemble learning approaches [24-26]. Interestingly, 
some earlier work employed neural network machine learning approaches [27-31]. However, 
these were built on top of hand-coded low-level features.  

More recent work has begun to examine the efficacy of the state-of-the-art deep learning 
approaches to image recognition within the dermatology and dermoscopy application domain 
[32,33]. Representations learned from the natural photo domain were leveraged, in conjunction 
with unsupervised and hand-coded features, to achieve state-of-the-art performance in a data of 
over 2,000 dermoscopy images [32]. However, the work was limited to lesion images that had 
been manually pre-segmented: images were already cropped around the lesion of interest.   

In 2016, the International Skin Imaging Collaboration (ISIC) organized an international effort to 
aggregate a dataset of dermoscopic images from multiple institutions for the purposes of 
developing and evaluating clinical and automated techniques for the diagnosis of melanoma [34]. 
A snapshot of the dataset that contained the most complete set of annotations was selected to 
host a melanoma recognition challenge at the 2016 International Symposium on Biomedical 
Imaging (ISBI 2016). The challenge was titled “Skin Lesion Analysis toward Melanoma 
Detection” [35]. In total, 38 individual participants contributed 79 submissions across 3 image 
analysis tasks, including 43 submissions toward disease classification. This was the first publicly 
organized large-scale standardized evaluation of algorithms for the detection of melanoma. Top 
performing techniques involved deep learning approaches, including Deep Residual Networks 
for classification [36], and fully convolutional networks for segmentation [37,38].  
In this work, we combine hand-coded feature extractors, sparse-coding methods, and SVMs, 
with more recent machine learning techniques, including deep residual networks and fully 
convolutional neural networks, into ensembles focused toward the task of melanoma recognition 
and segmentation in dermoscopy images. We have chosen to use the ISBI 2016 dataset for 
evaluation, which provides an immediate comparison to dozens of prior algorithms, and 
opportunity for future comparisons. New state-of-the-art performance levels are demonstrated 
across a variety of evaluation metrics, including an almost tripling of specificity measured at 
95% sensitivity. These results emphasize that combining a multitude of machine learning 
approaches can yield higher performance than relying on any one method alone, especially in 
regards to recognition of melanoma in dermoscopic images.  

Dataset 
For the training and evaluation, we used the dataset released by the International Skin Imaging 
Collaboration (ISIC) for the 2016 International Symposium on Biomedical Imaging (ISBI 2016) 
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challenge titled “Skin Lesion Analysis toward Melanoma Detection” [35]. The ISBI 2016 
challenge dataset contains 900 annotated dermoscopic images for training (173 melanomas), and 
379 images in a held-out test set for evaluation (75 melanomas). Figure 1 shows sample images 
from this dataset. The challenge consisted of three parts: Part 1) Lesion Segmentation, Part 2) 
Lesion Dermoscopic Feature Extraction, and Part 3) Lesion Classification. Parts 2 and 3 were 
further broken into Parts 2 and 2B, and Parts 3 and 3B. Part 2 represented the dermoscopic 
feature extraction problem as a classification task, whereas 2B represented the problem as a 
segmentation task. The purpose of this breakdown was to quantify how the framing of the 
problem influenced end system performance. Part 3 presented the disease classification task 
withholding ground truth (GT) segmentations from the held-out test dataset, whereas Part 3B 
provided the GT lesion segmentations with the held-out test dataset.  The purpose of this 
breakdown was to understand how knowledge of ground truth segmentation affects disease 
classification performance. 
For lesion segmentation tasks, outputs were represented as binary image masks. Pixels inside the 
lesions were represented by the pixel intensity value of 255, and pixels outside the lesions 
(background normal skin) were represented by pixel intensity values of 0. Participants were 
ranked according to the Jaccard index (JACC) [35]. Other segmentation performance metrics 
such as pixel-wise accuracy (ACC), sensitivity (SENS), and specificity (SPEC) were also 
reported. For lesion classification tasks, participants were ranked according to the average 
precision (AP). Additional performance metrics such as classification accuracy (ACC), 
sensitivity (SENS), specificity (SPEC), area under the receiver operator curve (AUC), and 
specificity measured at the clinically relevant 95% sensitivity threshold (SP95), were reported as 
well. The last metric is particularly important, as clinicians tend to desire systems that are set at a 
sensitivity level not likely to miss instances of disease. A detailed description of the definition of 
each metric is given in the ISBI challenge report [35]. 
The scope of this paper encompasses Parts 1 and 3 of the ISBI challenge. Part 2, and the 
potential influence of dermoscopic feature extraction towards the detection of disease, is left for 
a future study.  

Visual Recognition System 
The proposed visual recognition system consists of two primary components: segmentation and 
classification. With segmentation, the skin lesion is identified in the dermoscopic image and 
distinguished from background healthy skin. This allows the system to subsequently perform 
analysis within two contexts. The first context is focused within the lesion itself, the potentially 
diseased tissue, and the second context is focused within the entire image, including the 
surrounding area that may exhibit other patterns indicative of the disease state of the lesion. 

Segmentation  
For lesion segmentation, a fully convolutional network structure [38], similar to that used for the 
U-Net architecture [37], was implemented using Theano, Lasagne, and Nolearn python packages 
(master branch versions as of March 15, 2016). Generally speaking, the approach is a modeling 
framework that learns a functional mapping from an input image to an output image. The input 
image is the original image, and the output image is a segmentation mask. The structure of the 
network involves a series of convolution and pooling operations, followed by a single fully 
connected layer, and followed-up with a series of unpooling and deconvolution operations. Skip 



4 

 

connections are used to link convolutional data prior to pooling operations with the 
deconvolution operations. This enables the network to model functional residuals, as well to 
supply higher resolution information to the output layers, in order to improve performance of the 
network in comparison to networks without the skip connections.  

The network structure is depicted in Figure 2. In the proposed model, three stages of 
convolutions (abbreviated as “conv” in figures and tables) and pooling operations are followed 
by a fully-connected layer (abbreviated as “fc” in figures and tables), whereupon the process is 
symmetrically reversed with 3 stages of unpooling and deconvolution layers. In each stage prior 
to the fully connected layer, there are 3 convolution operations, followed by 1 pooling operation. 
The number of convolution filters for each convolution layer is doubled across stages, so that the 
second stage has twice as many filters as the first stage, and the third stage has 4 times as many 
filters as the first stage. After the fully connected layer, the ordering of the layers is simply 
reversed to 1 unpooling layer followed by 3 deconvolutional layers. Skip-connections (also 
referred to as concatenation layers) directly link the output of the last convolutional layer of 
stages prior to the fully connected layer, to the corresponding unpooling layer in the symmetrical 
stage on the opposite side of the fully connected layer. Across each stage after the fully 
connected layer, the number of convolution filters is halved, so that the last stage has as many 
filters again as the first stage before the fully connected layer.  

The hyperbolic tangent was selected as the nonlinear squashing function for all neuron outputs. 
Gaussian noise layers were inserted after the input layer, after each pooling layer prior to the 
fully connected layer, and to the fully connected layer itself.  Dropout was applied to all pooling 
layers before the fully connected layer, to the fully connected layer itself, and to all 
concatenation layers.  
Images were input into the network using six color channels, including Red-Green-Blue (RGB) 
and Hue-Saturation-Value (HSV) color spaces. Empirical experimentation found improvements 
in performance on training data using 6 color channels as opposed to 3. All images were resized 
to 128-by-128 dimensions using bilinear interpolation. (Although the size of the input can be 
changed, for reduction of problem complexity, we held this value constant.) Input images are 
standard normalized by subtracting the mean pixel intensity and dividing the standard deviation 
for each image and each color channel independently. Output masks were normalized by 
dividing by the maximum pixel value (255), subtracting by 0.5, and multiplying by 1.9. This 
caused pixels in the mask representing background skin to take on values near -1, and pixels in 
the mask representing lesion to take on values near 1 (to convert network outputs back to image 
masks, this range is simply rescaled back to the range between 0 and 255). Output images were 
kept the same size as the input images.  
Images input to the network were subjected to data augmentation within each training batch. 
Images are rotated, flipped, rescaled, shifted, cropped, and further subjected to non-linear 
distortions (sinusoidal remapping with varying phase, frequency, and amplitude, in both X and Y 
directions) [37]. The motivation for non-linear distortion is that it appropriately models the 
variation of soft-tissue biological structures. 

The network has several tunable parameters. The first is the size of the convolution kernels, 
which is held constant across all stages before the fully connected layer, but is doubled and 
incremented in the first convolutional layers of stages on the opposite side of the fully connected 
layer. The second is the number of convolution filters in the convolutional layers of the first 
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stage. The third parameter is the standard deviation of the noise in each Gaussian noise layer. 
The fourth is the degree of dropout used both prior to the fully connected layer, within the fully 
connected layer, and after the fully connected layer. The last two parameters are the learning rate 
and the momentum. 

Training data for segmentation was split into two partitions of 80% (720) for training and 20% 
(180) for validation. Network parameters were trained on the 80%, and the loss function was 
computed on the 20%. Early stopping was employed if performance on the validation dataset did 
not improve within 100 epochs, if training ceased, and if the set of network weights that 
produced best performance on the validation split were saved to disk. In addition, the learning 
rate and momentum parameters were adapted as follows during the training phase: both were 
linearly adjusted from their initial starting values, which may vary based on the input, to 0.001 
and 0.99, respectively, from the first epoch to the maximum epoch. This led to a gradual 
decrease in the learning rate and a gradual increase in momentum over the successive epochs. 
The network was trained as a regression problem using a squared-error loss function. The output 
of the network therefore represents a “soft” confidence spectrum rather than a hard binary 
decision, which helps the network model the segmentation function in the presence of ambiguity 
and human variability in ground truth annotations. 
Two sets of experiments were conducted to train and assess the performance of the fully 
convolutional U-Net architecture for semantic segmentation of dermoscopic lesions. In the first 
experiment, a grid-search optimization process was employed to examine the configuration of 
tunable network parameters to minimize the final loss function value on the 20% validation 
dataset. The network that yielded the best performance on the validation split was applied to the 
test set to perform final segmentation. In the second, an ensemble of 10 networks, each with 
different parameter values, was created. The outputs of the 10 were averaged to create a 
combined segmentation prediction. 

Classification 
For disease classification, we employ an ensemble of recent machine learning methods, 
including deep residual networks [36], convolutional neural networks [39], and fully 
convolutional U-Net architecture [37], as well as the established machine learning procedures, 
such as sparse coding, and hand-coded feature representations. Our method is an improvement 
over the previous methods used in the literature (e.g., [32]) in terms of use of automated 
segmentation, multi-contextual analysis, and additional machine learning techniques. Each 
machine learning technique was used to extract information in the form of a feature vector from 
the dermoscopic image in up to two contexts: that from the entire image, and that from a region 
tightly cropped around the lesion segmented by the segmentation procedure. Other prior reports 
have found this technique of considering more than one context to yield improvements in 
recognition performance [23,27]. Once the feature vectors have been extracted, a non-linear 
support vector machine (SVM) was used to learn a classifier over the feature vector to 
discriminate for melanoma. A histogram intersection kernel was employed, along with sigmoid 
feature normalization. The output of the SVM was calibrated to a logistic function (using three-
fold cross-validation), roughly approximating the probability of melanoma on an image, 
assuming a balanced prior [32, 40-42].  After score calibration, the output of the SVMs trained 
over each feature independently was averaged, producing a final disease confidence score 
between 0.0 and 1.0 (0% and 100%), with a default decision threshold of 0.5 (50%). A visual 
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overview of the approach is shown in Figure 3. In the following subsections, we describe each 
method used to extract features from the dermoscopic images.  

Hand-coded Feature Extraction 
Low-level visual features used in this work included color histogram, edge histogram, and a 
multi-scale variant of color local binary patterns (LBP) [42,43]. All of these features have been 
used in systems presented in prior literature that have achieved top performance in various 
medical image datasets [42], including those of dermoscopic images [32].  
The color histogram distribution represents a 166-dimensional histogram in HSV color space. 
The edge histogram contains 8 edge direction bins and 8 edge magnitude bins, based on a Sobel 
filter (64-dimensional). Multiscale color LBP is an extension of the common grayscale LBP, 
whereby LBP descriptors are extracted across 4 color channels (Red, Green, Blue, and Hue), 
with one histogram per color channel. For each color channel, LBP descriptors are extracted 
across multiple scales (1/1, 1/2, 1/4, and 1/8th image size), and aggregated into a single 
histogram, weighted by the inverse of the spatial scale. For a 59-bin LBP histogram, this results 
in 59×4 = 236 total bins. These features were extracted from the two contexts of whole image, 
and lesion cropped regions. 

Sparse Coding 
Sparse coding (SC) is a class of unsupervised methods that learns a dictionary of sparse codes 
from which a given dataset can be reconstructed. The SPArse Modeling Software (SPAMS) 
sparse coding dictionary learning algorithm [44] is an online optimization approach for this 
method, based on stochastic approximations. Because the algorithm is efficient and has been 
used in the prior state-of-the-art melanoma recognition systems [32], the SPAMS algorithm was 
employed to learn dictionaries on this dataset. Four dictionaries were constructed in RGB and 
grayscale color spaces, across both the whole image context and the lesion cropped region 
context. Images were resized to 128×128 pixel dimensions before extraction of 8×8 patches, to 
learn dictionaries of 1024 elements. We used default parameters (λ = 0.15, and the number of 
iterations = 1000) recommended in the SPAMS implementation for minimization of the 
objective function. These features were extracted from the two contexts of whole image, and 
lesion cropped regions. 
Convolutional Neural Network 

The Caffe convolutional neural network (CNN) architecture developed at Berkeley [45] was 
used to extract image descriptors, similar to prior work [32]. A pre-trained model from the Image 
Large Scale Visual Recognition Challenge (ILSVRC) 2012 is provided for download from the 
website. This pre-trained model includes 5 convolutional layers, 2 fully connected layers, and a 
final 1000-dimensional concept detector layer. In this work, the first fully connected layer (4096 
dimensions, referred to as “FC6”), is used as a visual descriptor for dermoscopy images. These 
features were extracted from the two contexts of whole image, and lesion cropped regions. 
Deep Residual Network 

The Deep Residual Network (DRN) is the most recent network structure to win the ImageNet 
recognition challenge [36]. The network containing 101 layers was used to extract a 1000-
dimensional concept detector vector from dermoscopy images at the context of the whole image 
level. Prior state-of-the-art medical image recognition works have found that concept detector 
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feature vectors contribute complimentary information to classification systems, improving 
performance over baselines lacking the feature vectors [32,42]. This feature was extracted only 
from the whole image context. 
Fully Convolutional U-Net 

The fully convolutional U-Net architecture used in this work for lesion segmentation was also 
used in the classification framework as a shape descriptor. The fully connected layer, which 
maximally compresses information required to reconstruct the image segmentation, was 
extracted from the network for every image in the dataset to serve as this feature vector. We 
trained an independent U-Net network and limit the dimensionality of the fully connected layer 
to 1024 dimensions to maintain compactness of the representation. This feature was extracted 
only from the whole image context, as the network is designed to operate within this context.  

Experimental Results 
Segmentation 
Table 1 presents a summary of the segmentation experiments. For the first experiment using an 
optimized single U-Net structure, we used a convolution kernel size of 5×5, pooling layers of 
2×2, 32 convolution filters at the first stage, an 8192-dimensional fully connected layer, a 
dropout of 0.5 at all dropout layers, Gaussian noise with standard deviation of 0.025 applied to 
all noise layers, an initial learning rate of 0.01, an initial momentum of 0.95, and a maximum 
number of epochs set to 2000. This set of parameters produced the minimal error (0.0962) on the 
validation dataset split during grid-search over the parameter space. On the 379 images in the 
held-out test data, this network produced a Jaccard index of 0.836, an accuracy of 94.9%, 
sensitivity of 91.4%, and specificity of 96.3%. This performance places it at the second rank in 
the 2016 ISBI challenge on melanoma detection, 0.007 points below the Jaccard index of the top 
performer. Without data augmentation techniques beyond standard rotations and flips, 
performance of the network dropped to a 0.828 Jaccard Index, 94.7% accuracy, 91.2% 
sensitivity, and 96% specificity. Additionally, eliminating Gaussian noise and dropout reduced 
performance further to a 0.812 Jaccard Index, 94.1% accuracy, 89.8% sensitivity, and 95.9% 
specificity.  
In the second experiment, a U-Net Ensemble of networks, each with varied network parameters, 
was employed, rather than relying on a single optimized network alone. 10 independently trained 
networks were created. For each network, parameters were selected to achieve a reasonable 
spectrum across network topology and dropout parameter values: the major network topology 
and dropout parameters are configured in at least 2 different values. The exact parameters used 
across all 10 networks are shown in Table 2. The resulting predictions of all 10 networks were 
averaged before being subjected to binary thresholding at a pixel value of 128. The resulting 
Jaccard index was 0.841, with corresponding accuracy of 95.1%, sensitivity of 91.1%, and 
specificity of 96.7%. This performance still places the network at the second rank in the 
challenge, but behind by merely 0.002 points as opposed to 0.007, a reduction of 71.4% of the 
remaining error behind the top ranked submission. Example segmentations prior to thresholding, 
along with the original image and the ground truth segmentation, are shown in Figure 4.  

The residual error between automated algorithms and the ground truth was at least in part related 
to segmentation variability in the ground truth itself, which results from intrinsic differences in 
human annotation, low contrast, presence of hair, or visual adjacency of the lesion to other 
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lesions in the peripheral surrounding skin. In order to better understand variability in this context, 
three clinical experts generated ground truth segmentations on a subset of 100 images from the 
held-out test set. The Jaccard Index between the 3 pairs of clinicians was computed as a measure 
of agreement between experts. The resultant Jaccard index measurements were 0.743, 0.754, and 
0.861, yielding an average of 0.786.  
In summary, these results demonstrate that the segmentation network approach described here 
produced competitive segmentation performance to state-of-the-art, and showed agreement with 
the ground truth that was within the range of human experts, making it satisfactory for use in 
subsequent disease classification processing steps. The network was used as both a segmenter as 
well as a visual descriptor of lesion shape by saving the outputs of the most compressed fully-
connected layer. 

Classification 
Automated classification results are summarized in Table 3. Performance for systems utilizing 
each image context was assessed individually, including “Whole Image (WI)” (which considers 
the entire dermoscopic image), “Crop (CR)” (which considers only the bounding box tightly 
cropping the region segmented by the automatic segmentation), and “Crop GT (CRGT)” (which 
considers the bounding box tightly cropping the region segmented by the ground truth 
segmentation). Fusions of these individual systems are subsequently computed in “Part 3B: 
AVG/VOTE(WI, CRGT),” which combines the whole image context with the cropped region 
context from the ground truth segmentation, using average and voting fusions, respectively (and 
corresponds to Part 3B of the ISBI challenge), and “Part 3: AVG/VOTE(WI, CR),” which 
combines the whole image context with the cropped region context from the automatically 
generated segmentation, using average and voting fusions, respectively (and corresponds to Part 
3 of the ISBI challenge tasks). The baseline prior state-of-the-art (winning challenge submission) 
for Parts 3 and 3B of the ISBI challenge are listed in the rows of the table labeled “Top Rank.” In 
addition, two prior published methods, which we re-implemented and evaluated on this dataset, 
are listed in the bottom four rows of the table. These involve ensembles of low-level, 
unsupervised, and deep features without automated segmentation, as well as ensembles of low-
level features alone. 

While average precision results for Parts 3 and 3B demonstrate a 1.3% (0.645 vs. 0.637) and 4% 
(0.649 vs. 0.624) improvement over the prior state-of-the-art, AUC measurements exhibit a 4.2% 
(0.838 vs. 0.804) and 7.7% (0.843 vs 0.783) relative improvement, respectively. In addition, 
specificity measured at the clinically relevant sensitivity operating point of 95%, demonstrates a 
43.6% (32.6% vs. 22.7%) and 194.4% (36.8% vs. 12.5%) relative improvement, respectively.  
Curiously, the prior state-of-the-art showed improved average precision with automatically 
generated segmentation masks rather than relying on the ground truth segmentations (0.637 vs. 
0.624). In this study, average precision performance of the system utilizing the ground truth 
segmentations showed a higher, but very similar, performance to that relying on automatically 
generated segmentation masks (0.649 vs. 0.645). These measurements may be the result of 
automated segmentation performance falling in the range of human performance and variability. 
Figure 5 shows the entire receiver operating characteristic (ROC) curve for both the proposed 
system and the prior state-of-the-art on both image classification tasks. Performance 
improvements are noted across multiple operating points, but particularly in areas corresponding 
to the highest sensitivity levels, which are clinically the most relevant system operating points. 
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The performance of the proposed system was also compared directly to the performance of 
expert dermatologists. On a random subset of 100 images in the test set (containing 50 
melanomas and 50 non-melanomas), the average diagnostic performance of 8 dermatology 
experts, with an average 13.5 years of experience in dermoscopy (ranging from 6 to 27 years), 
was measured and reported [46]. Compared to the performance of these clinical experts on the 
subset of 100 images from the held-out test dataset, the proposed system using automatic 
segmentation produces a higher specificity performance level (62% vs. 59%) evaluated at an 
equivalent sensitivity operating point to the clinical experts (82%). In addition, evaluated at the 
learned threshold of 50% machine confidence, the system produced a higher accuracy than the 
average of the group of dermatologists (76% vs. 70.5%). When using ground truth 
segmentations, the system produced a specificity of 60% at the 82% sensitivity operating point, 
and an accuracy of 77% evaluated at the threshold of 50% machine confidence.  

Next, we sought to assess the impact on system performance of using two ensemble component 
selection algorithms, as opposed to simple score averaging or voting of all components for 
ensemble fusion. While the initial selection of components to our system was informed by work 
done in the literature [22,23,32], we examined whether system performance can be further 
improved by selecting only those components of the system that lead to best performance on a 3-
fold cross-validation within the training set. The two selection algorithms studied were greedy 
selection and forward model selection [47]. Greedy selection ranks each component based on its 
individual performance, combining them in order, until performance ceases to improve. Forward 
model selection runs in multiple iterations, where in each iteration, a search is performed to find 
the model that, when combined with the existing ensemble, improves recognition performance 
the most.  
Our findings demonstrate that both selection algorithms, while modest in terms of the number of 
parameters learned, reduced performance on the held-out test set. Greedy model selection 
produced average precision for Parts 3 & 3B of 0.638 and 0.646, respectively. The intermediate 
steps and results of greedy model selection on the 3-fold cross-validation training data are shown 
in Table 4. Forward model selection produced 0.614 and 0.612, respectively. The intermediate 
steps and results of forward model selection on the 3-fold cross-validation training data are 
shown in Table 5. Between the two algorithms, forward model selection produced the best 
performance result on the 3-fold cross-validation dataset, but the worst performance on the held-
out test dataset, suggesting that model selection routines might be overfitting the data. Table 6 
shows the average precision of each individual system component on the held-out test dataset, 
showing that each piece has learned a meaningful association with disease.  

Finally, we quantified the contribution of the 1000-dimensions DRN concept detector vector to 
overall system performance by way of exclusion. If the component is individually removed from 
the ensemble of our system, performance decreases. Comparing the system using automatically 
generated segmentations, average precision drops from 0.645 to 0.632. Comparing the system 
using ground truth segmentations, the average precision drops from 0.649 to 0.633. These 
experiments confirm earlier reports that vectors of concept detectors from deep networks can 
contribute meaningful information to melanoma recognition in dermoscopy images [32]. 

Discussion 
There are a number of important insights that come from the results presented in this work. The 
first relates to the evaluation methodology of the classification tasks within ISBI challenge itself. 
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The organizers had decided to rank participants based on average precision, likely for its 
precedent in being commonly used to evaluate other public computer vision benchmarks, such as 
TRECVID [48]. While average precision is a useful retrieval metric for search based 
applications, it is clear from our results that it does not fully reflect the value of a system to the 
clinical workflow. As an example, our fully automated pipeline for Part 3 of the challenge was 
only 0.008 points in average precision above the prior state-of-the-art (a modest 1.3% 
improvement). However, inspecting the AUC metric revealed a difference of 0.034 (a 4.2% 
improvement). Focusing specifically on high sensitivity operating points of the ROC, where the 
system operation is clinically viable (so as to minimize the number of inadvertently missed 
disease states), specificity is increased by 9.9 points, representing over a 40% relative 
improvement. These comparisons, while clinically important and of pertinent use, are not 
reflected in the small change in average precision, suggesting that a different evaluation metric 
should be used to rank participants in subsequent challenges.  
The second relates to the fundamental algorithm design as being an ensemble of a multitude of 
approaches. Since the high success rate of deep learning algorithms in the computer vision field, 
most technical research has focused on optimizing and building higher performing network 
structures. However, our results demonstrate that a traditional approach of generating ensembles 
across multiple techniques still holds value. For segmentation, we were able to create an 
ensemble of fully convolutional U-Nets to improve performance beyond that of the best 
performing single network itself. For classification, by combining a variety of both deep learning 
and classical computer vision techniques, our system demonstrated significant improvements 
over the state-of-the-art systems that used deep learning alone [35]. In the scope of this work, a 
naïve ensemble constituting simple prediction averaging among all components was found to 
outperform simple ensemble model selection methods such as greedy and forward model 
selection routines. This is likely an artifact of the small size of the dataset at this time, rather than 
the inherent utility of the selection methods. As the ISIC dataset grows, these ensemble learning 
experiments should be repeated, perhaps including more complex algorithms.   
The third insight is that we have produced further evidence that complex non-linear data 
augmentation has rendered large neural networks better able to train on datasets with limited 
examples. The fully convolutional U-Net structure presented here contains over 543,888,390 
parameters, and yet was trained from a dataset of only 900 examples (as a reference, VGG 
(Visual Geometry Group) Face [49], DeepFace [50], and FaceNet [51] used 2.6 million, 4.4 
million, and 200 million faces, respectively, for training face recognition networks). When 
creating an ensemble of networks, the number of parameters further increases, roughly 
proportional to the number of networks. What is important to observe here is that the augmented 
data was not statically generated prior to training, but is generated dynamically during each mini-
batch. In this manner, the size of the dataset effectively increases to infinity, as random 
perturbations are constantly introduced.  

The fourth insight is that, surprisingly, deep residual networks trained on natural photographs 
from ImageNet contribute meaningful diagnostic information when the 1000 concept detector 
outputs are used as a descriptive image vector. This is consistent with past reports using similar 
methods from other networks [32]. In practice, it is common for human experts to describe 
patterns seen in lesions by analogies to other common objects in everyday life [32]. This was the 
initial intuition behind attempting to use these concept detectors as feature detectors in 
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dermoscopic images. Our work is now the second published report to show positive results 
utilizing such a technique. 

There are two limitations of the study. The first involves a lack of statistical significance of 
comparisons. Performance evaluations were carried out on a fixed dataset partition, which is 
necessary for a public challenge to maintain a held-out blind test dataset. In addition, software 
implementations of approaches used for comparison were not available to support multiple n-
fold evaluations. The second limitation is that the diagnostic performance of clinical experts with 
dermoscopic images represents an approximation of performance in practice, where clinicians 
may benefit from the situational context of each lesion, including patient history, temporal 
evolution, comparison of the lesion to other lesions on the patient, and physical inspection.  

Conclusion and Future Work 
In this paper, we have proposed a system for the segmentation and classification of melanoma 
from dermoscopic images of skin. The method was evaluated on the largest public benchmark 
for melanoma recognition available. New state-of-the-art performance is demonstrated, leading 
to an improvement in the area under receiver operating characteristic curve of 7.5% (0.843 vs. 
0.783), in average precision of 4% (0.649 vs. 0.624), and in specificity measured at the clinically 
relevant 95% sensitivity operating point 2.9 times higher than the previous state-of-the-art 
(36.8% specificity compared to 12.5%). In addition, compared to the average disease recognition 
performance of 8 expert dermatologists, the proposed system produced a higher accuracy (76% 
vs. 70.5%) evaluated at the machine confidence threshold of 50%, and a higher specificity (62% 
vs. 59%) evaluated at the fixed sensitivity operating point of the clinicians (82%).  

As the size of the ISIC dataset expands and additional dermoscopic pattern annotations become 
available, future work may consider learning a joint pattern-disease classification model, or 
building a semantic descriptor vector of dermoscopic patterns to be used in conjunction with 
other approaches for disease classification. In addition, the use of non-linear image warping as a 
data augmentation technique may be useful for classification. Other machine learning approaches 
may bring additional performance gains, such as residual convolutional layers for semantic 
segmentation, meta-learning or boosting for selection of network ensembles to perform 
segmentation, or use of these segmentation ensembles as more complex shape descriptors for 
disease classification. Finally, the use of additional situational contexts, such as patient history, 
patient metadata, temporal evolution, and comparison of the lesion to other lesions on the 
patient, should be studied, as all may further improve system performance.  
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Figure 1: Example dermoscopic images from the ISBI 2016 Challenge “Skin Lesion Analysis 
Toward Melanoma Detection.” Dermoscopy provides high-resolution magnified images of skin 
without interference from surface skin reflection, allowing visualization of finely detailed 
dermatological structures. Even with such professional grade images, distinction between disease 
and non-diseased lesions is a difficult task. Top row: malignant melanomas. Bottom row: benign 
nevi.  
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Figure 2: Visual depiction of the implemented fully-convolutional U-Net structure with joint 
RGB and HSV channel inputs, with optimized parameters (numbers) shown. Convolutional and 
deconvolutional layers are marked as “conv” layers, with dotted lines and small grey boxes 
depicting each operation on the previous layer. Pooling layers are marked as “pool,” whereas 
unpooling layers are marked with “unpool.” The sizes of the convolution and pooling operations 
are shown nearby the dotted lines and small boxes representing them. Layers with outputs that 
are summed with zero-mean Gaussian noise are marked with green sigma. Layers with outputs 
that undergo dropout are marked with “DO” (with subscript referring to the parameter exposed to 
user to control degree of dropout). Layers undergoing concatenation with skip connections are 
shaded blue and marked as “concat” layers. The sources of the skip connections for the 
concatenation operations are outlined in solid blue. The number of convolution kernels in each 
layer is shown at the top of the layer, and the spatial resolution of each layer is written near each 
dimension edge.  
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Table 1: Segmentation results, in terms of Jaccard Index and pixel-wise accuracy, of four 
variants of fully-convolutional U-Net approaches, followed by state-of-art on the ISBI dataset, 
and of inter-observer human expert agreement. 

        Method Jaccard Accuracy 
Optimized Single 0.836 94.9% 
Default Augmentation 0.828 94.7% 
No Noise or Dropout 0.812 94.1% 

   Ensemble of 10 U-Nets 0.841 95.1% 
State-of-art 0.843 95.3% 

   
Human Expert Average Agreement 0.786 90.9% 
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Table 2: Fully-convolutional U-Net training parameters used in ensemble segmentation 
approach. (FC Dims.: fully connected layer dimensionality; DO: dropout (refer to Figure 2 for 
subscript interpretation); Mo.: momentum; Ep.: epochs.) 

 
Input 

Size 
Kernel 

Size  
Pool 
Size 

# Conv 
Filters 

FC 
Dim DOA DOB DOC Noise 

Learn 
Rate Mo. 

Max 
Ep. 

Valid 
Loss 

128 5 2 32 8192 0.5 0.5 0.5 0.025 0.01 0.95 2000 0.096 
128 5 2 32 4096 0.5 0.5 0.5 0.025 0.01 0.95 2000 0.102 
128 5 2 32 2048 0.5 0.5 0.5 0.025 0.01 0.95 2000 0.107 
128 5 2 32 1024 0.5 0.5 0.5 0.025 0.01 0.95 2000 0.111 
128 5 2 32 512 0.5 0.5 0.5 0.025 0.01 0.95 2000 0.106 
128 5 2 32 256 0.5 0.5 0.5 0.025 0.01 0.95 2000 0.101 
128 3 2 16 1024 0.5 0.5 0.5 0.025 0.01 0.95 2000 0.119 
128 5 2 32 8192 0.5 0.75 0.5 0.025 0.01 0.95 2000 0.126 
128 5 2 32 8192 0.25 0.5 0.25 0.025 0.01 0.95 2000 0.104 

64 5 2 32 8192 0.5 0.5 0.5 0.025 0.01 0.95 2000 0.095 
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Figure 3:  Visualization of classification framework. Various features—from rule-based feature 
extractors, unsupervised learning systems, or deep neural nets—are extracted across two scales: 
an area cropped around the lesion, and the entire dermoscopic image. Non-linear SVMs (gray 
boxes) are trained over these features, probabilistically normalized, and averaged in an ensemble, 
to produce a final disease risk score between 0.0 – 1.0 (0% - 100%). The Caffe and 101 layer 
Deep Residual Network (DRN-101) are trained from ImageNet data. (MSLBP: multiscale local 
binary patterns.)
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Figure 4:  Example results of the fully-convolutional U-Net Ensemble based segmentation 
network. Often, lesions are complex structures with ill-defined boundaries, making the 
segmentation task non-trivial. The network performs well even under these difficult 
circumstances. Top row: original image. Middle Row: ground truth segmentations. White pixels 
(intensity 255) depict areas inside the lesion, and black pixels (intensity 0) depict areas outside 
the lesion (background normal skin). Bottom row: output of the U-Net Ensemble. The network 
produces confidence scores that each pixel belongs to a lesion, with most confident being white, 
least confident being black, and varying degrees of confidence between these two values. The 
spectrum of confidence levels leads to a blurry appearance in the output. 
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Table 3: Classification performance results, with comparison to the state-of-the-art. (AP: 
average precision; ACC: accuracy; SENS: sensitivity; SPEC: specificity; SP95: specificity 
evaluated at 95% sensitivity; AUC: area under receiver operator curve; AVG(): average score 
fusion; VOTE(): voting fusion.) 

 
Method AP ACC SENS SPEC SP95 AUC 

Whole Image (WI) 0.596 0.755 0.627 0.796 0.319 0.808 
Crop (CR) 0.618 0.81 0.72 0.832 0.312 0.819 
Crop GT (CRGT) 0.629 0.781 0.707 0.799 0.382 0.827 

       Part 3B: VOTE(WI, CRGT) 0.588 0.834 0.533 0.9079 0.359 0.829 
Part 3: VOTE(WI, CR) 0.602 0.834 0.52 0.9112 0.306 0.828 

       Part 3B: AVG(WI, CRGT) 0.649 0.807 0.693 0.836 0.368 0.843 
Part 3: AVG(WI, CR) 0.645 0.805 0.693 0.832 0.326 0.838 

       Part 3B: Top Rank [35] 0.624 0.855 0.547 0.931 0.125 0.783 
Part 3: Top Rank [35] 0.637 0.855 0.507 0.941 0.227 0.804 

       Part 3B: Codella et. al. [32] 0.591 0.836 0.253 0.98 0.312 0.815 
Part 3: Codella et. al. [32] 0.589 0.77 0.72 0.723 0.174 0.815 

       Part 3B: LL Ensemble [32] 0.532 0.726 0.693 0.734 0.151 0.603 
Part 3: LL Ensemble [32] 0.506 0.752 0.64 0.78 0.112 0.643 
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Figure 5: Receiver operating characteristic (ROC) curve plots for the proposed scheme and the 
prior state-of-the-art on both image classification tasks (3 & 3B) of the ISBI 2016 Challenge on 
Skin Lesion Analysis Toward Melanoma Detection. (TPR: true positive rate; FPR: false positive 
rate.) 
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Table 4: Iterative steps of greedy model selection using 3-fold cross-validation scores on the 
training dataset. Features are sorted according to average precision (AP), and subsequently 
combined in order of performance. The cumulative AP shows the performance of the ensemble 
when that model and all better performing models have been combined. The final ensemble 
model cumulative AP is highlighted in bold. (CRGT: cropped ground truth context; WI: whole 
image context; SC RGB: color sparse codes; SC GRAY: grayscale sparse codes; MSLBP: 
multiscale local binary patterns; DRN: deep residual network; FC6: 6th fully connected layer of 
Caffe model.)  

 
 

Context Feature 
 

    Individual AP      Cumulative AP 

CRGT Sparse Coding RGB 
 

0.472 0.472 
CRGT Caffe FC6  

 
0.46 0.504 

WI Caffe FC6  
 

0.453 0.532 
CRGT SC GRAY 

 
0.389 0.538 

WI DRN 1K Concepts 0.361 0.535 
WI Sparse Coding RGB 

 
0.36 0.53 

WI MSLBP 
 

0.359 0.545 
CRGT Color Histogram 0.349 0.558 
CRGT MSLBP 

 
0.347 0.56 

WI U-Net Shape 1024  0.345 0.567 
WI SC GRAY 

 
0.34 0.564 

WI Color Histogram 0.3 0.562 
WI Edge Histogram 0.298 0.567 
CRGT Edge Histogram 0.239 0.565 
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Table 5: Iterative steps of forward model selection process using 3-fold cross-validation on the 
training dataset. In the first iteration, the single model with maximum performance was chosen 
(highlighted in bold). In the subsequent iterations, remaining models were searched—the model 
that maximizes performance the most is selected for inclusion in the ensemble. The process stops 
when performance no longer improves (iteration 8). (CRGT: cropped ground truth context; WI: 
whole image context; SC RGB: color sparse codes; SC GRAY: grayscale sparse codes; MSLBP: 
multiscale local binary patterns; DRN: deep residual network; FC6: 6th fully connected layer of 
Caffe model.)  

 
 

 
Iteration: 1 2 3 4 5 6 7 8 

Context Feature AP AP AP AP AP AP AP AP 

CRGT SC RGB 0.472 
       CRGT Caffe FC6 0.46 0.504 0.532 0.562 

    WI Caffe FC6 0.453 0.531 
      CRGT SC GRAY 0.389 0.489 0.532 0.555 0.56 0.571 0.576 0.576 

WI DRN 1K  0.361 0.462 0.516 0.533 0.545 0.558 0.565 0.57 
WI SC RGB 0.36 0.475 0.524 0.543 0.552 0.561 0.566 0.569 
WI MSLBP 0.359 0.519 0.559 

     CRGT Color Hist. 0.349 0.488 0.537 0.559 0.567 0.574 0.576 0.574 
CRGT MSLBP 0.347 0.484 0.534 0.549 0.565 0.572 0.579 

 WI U-Net 1024  0.345 0.465 0.531 0.555 0.568 0.576 
  WI SC GRAY 0.34 0.482 0.531 0.548 0.557 0.563 0.569 0.574 

WI Color Hist. 0.3 0.469 0.522 0.548 0.556 0.564 0.565 0.57 
WI Edge Hist. 0.298 0.474 0.539 0.559 0.572 

   CRGT Edge Hist. 0.239 0.427 0.501 0.534 0.552 0.554 0.562 0.564 
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Table 6: Performance of individual machine learning components on the 379 held-out test set 
images. (CRGT: Cropped Ground Truth Context; WI: Whole Image Context; SC RGB: Color 
Sparse Codes; SC GRAY: Grayscale Sparse Codes; MSLBP: Multiscale Local Binary Patterns; 
DRN: Deep Residual Network; FC6: 6th fully connected layer of Caffe model.)  

 
 

Context Feature AP ACC SENS SPEC AUC 

CRGT Color Histogram 0.36 0.789 0.213 0.9309 0.626 

 
Caffe FC6  0.504 0.734 0.707 0.74 0.787 

 
SC GRAY 0.457 0.694 0.707 0.691 0.762 

 
SC RGB 0.435 0.702 0.64 0.717 0.736 

 
Edge Histogram 0.265 0.665 0.4 0.73 0.571 

 
MSLBP 0.479 0.694 0.6 0.717 0.716 

       WI Color Histogram 0.333 0.776 0.267 0.9013 0.615 

 
Caffe FC6  0.488 0.723 0.693 0.73 0.764 

 
SC GRAY 0.449 0.678 0.627 0.691 0.736 

 
SC RGB 0.447 0.699 0.6 0.724 0.75 

 
DRN 1K Concepts 0.466 0.726 0.507 0.78 0.749 

 
Edge Histogram 0.287 0.686 0.48 0.737 0.593 

 
MSLBP 0.416 0.694 0.587 0.72 0.723 

 
U-Net 1024  0.375 0.702 0.573 0.734 0.715 

 


