
Quantitative modeling in
disaster management: A
literature review
The number, magnitude, complexity, and impact of natural disasters
have been steadily increasing in various parts of the world. When
preparing for, responding to, and recovering from a disaster, multiple
organizations make decisions and take actions considering the needs,
available resources, and priorities of the affected communities,
emergency supply chains, and infrastructures. Most of the prior
research focuses on decision-making for independent systems (e.g.,
single critical infrastructure networks or distinct relief resources). An
emerging research area extends the focus to interdependent systems
(i.e., multiple dependent networks or resources). In this article, we
survey the literature on modeling approaches for disaster
management problems on independent systems, discuss some recent
work on problems involving demand, resource, and/or network
interdependencies, and offer future research directions to add to this
growing research area.
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1. Introduction
Disaster management activities typically take place in four

phases: mitigation, preparedness, response, and recovery [1,

2]. Many governmental and non-governmental

organizations and companies in the private sector [3] make

disaster preparedness and response plans and participate,

sometimes collaboratively, in the corresponding activities

[4]. During the preparedness phase, logistical decisions

(where to locate distribution centers, prepositioning of

relief supplies, planning of evacuation routes, debris

management plans, etc.) are made to increase the

effectiveness of the response and recovery operations.

During the response and recovery phases, the delivery of

and access to goods (e.g., blankets, water, food, and

medical supplies) and services (e.g., search and rescue,

medical) depend on the overall condition of the

infrastructure and the operational capabilities and capacities

of the supply chains. Given the magnitude of post-disaster

relief requirements and the complex relationships between

supply chains, infrastructure network restoration and

resource allocation/distribution decisions are non-trivial.

Large-scale disasters often require extensive restoration

and response efforts; given the negative consequences of

prolonged disruptions, efficient (prompt) and effective

action is essential. For example, the effects of Hurricane

Mar�ıa in the six months following the storm are now

estimated to have caused a death toll of nearly 3,000 [5] due

to prolonged effects of unrestored services (electricity, water

distribution, etc.) to communities. However, the initial

estimate from the Puerto Rican government was 63, which

only reflected the deaths due to the immediate consequences

of the hurricane. Optimization of disaster management

decisions is critical not only for enabling immediate action,

but also for avoiding long-term negative consequences due

to lack of access to essential goods and services.

This article provides a review of the current literature on

mathematical modeling of independent systems associated

with disaster preparedness, resource allocation during the

response phase, and infrastructure restoration efforts in both

the response and recovery phases. We also include some

relevant literature on non-disaster emergency services

management. Additionally, we present some of the

emerging literature focused on improving disaster

management efforts given system-level interdependencies

among and between infrastructure networks and relief

resources. For example, resources such as ambulances and

water rescue services may need to coordinate to meet

demand in the wake of a hurricane. From an infrastructure

perspective, individuals in need of medical services may be

unable to contact healthcare facilities if cellular networks
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are down; repair of power lines may be delayed due to

damage or debris on the roads. Decisions associated with

resource allocation and network restoration may impact

each other; for instance, the efficient distribution of relief

resources is dependent on the repair of transportation

networks. Potential cascading effects add to the difficulty of

these decisions. Incorporating interdependencies adds

another layer of complexity to the decisions. Therefore, we

first provide a survey of independent systems and then

discuss potential interdependencies.

This article focuses on the methodological aspects of

disaster management, acknowledging that the development

of accurate and useful models is often motivated by human

agency and empirical results. For reviews of the growing

literature on empirical research as well as strategic

interactions between decision-makers in disaster

management, we refer the reader to [6–8] and [9, 10],

respectively.

The remainder of this article is structured as follows. In

Section 2, we discuss the preparedness phase of disaster

management, focusing on prepositioning and facility

location problems. Section 3 provides a review of resource

allocation literature during disaster and emergency

response, addressing relief routing/delivery and scheduling.

In Section 4, we examine network restoration in the

response and recovery phases, including incremental

network design and network improvement and vehicle

routing and scheduling. In each section, we survey the

literature on independent systems, limiting our review to

recent work (within the past 20 years), with the majority of

the papers published within the last decade. We then define

the types of interdependencies that may exist in each

setting, provide examples, and discuss future research

directions.

2. Prepositioning and facility location
Many logistical decisions are made during the preparedness

phase of disaster management, such as response planning

(including training and exercises), assessments of

infrastructure and supply chain functionality, evacuation

planning [11], locations of distribution centers and supply

prepositioning, infrastructure network vulnerability analysis

[12–14] and design, etc. Various papers [15–26] address the

problem of prepositioning supplies for disaster management,

which is an example of supply chain network design.

Making facility location and supply prepositioning decisions

prior to a disaster is necessary to mitigate post-event supply

chain disruptions. Effective prepositioning of relief supplies

can reduce the overall supply chain costs and post-disaster

response time [27]. The goal is to minimize travel time from

supply locations to demand locations and/or achieve

maximum satisfaction of realized demand (post-disaster).

A common approach to formulate the prepositioning

problem is a two-stage scenario-based programmingmodel

[15–24] in which the first stage focuses on decisions prior to

the disaster (i.e., under some uncertainty) and the second stage

considers decisions after the realization of a specific post-

disaster demand scenario. First-stage decisions include supply

prepositioning locations and inventory levels at each location,

initial investment, operating costs, average response timewith

or without prepositioning, etc. Under the realization of a

demand scenario, second-stage decisions determine the

quantities of supply to send to demand locations from supply

locations, transshipment of supplies between supply

locations, delivery times, etc. The objectives include

minimizing the expected average response time [15, 16],

maximizing the total expected demand coverage [17],

minimizing the expected number of casualties [18],

minimizing costs [19–21] (including the cost of facilities,

inventories, delivering supplies, and penalties for unmet

demand), or achieving a particular service level or overall

social impact [22] while keeping logistical costs low. Both

[23] and [24] consider multiobjective models. Bozorgi-Amiri

et al. [23] use compromise programming to solve their model

with the objectives of minimizing expected costs and

maximizing the satisfaction of affected areas byminimizing

the sum of the maximum supply shortage.Mohammadi et al.

[24] propose a multiobjective particle swarm optimization

algorithm to solve their model with the objectives of

minimizing costs, maximizing total expected demand

covered, and minimizing the maximum difference in the

satisfaction rate between the demand locations in each

scenario. In contrast to the aforementioned papers,

Manopiniwes et al. [25] develop a deterministic model with a

single demand scenario (i.e., demand is known in advance)

with the objective of minimizing total operational costs.

Many interdependencies can arise in the facility location

and supply prepositioning problem. For instance, supply

points may need to collaborate to reposition relief supplies

in the event of facility damages across the network.

Additionally, if multiple commodities are being

prepositioned, then certain commodities may depend on the

presence of other commodities. For example, facilities that

store food might also have to store water. While including

these interdependencies in models adds complexity, doing

so can create a more accurate representation of the disaster

scenario. Within the supply prepositioning and facility

location literature, Davis et al. [26] consider coordination

among supply points. They categorize their supply locations

(warehouses or distribution centers) as affected and non-

affected. Affected warehouses fall within the geographical

range of a disaster (i.e., are subject to facility damage) and

non-affected warehouses fall outside the potential disaster

area. There is no coordination between warehouses if there

is no reserve capacity or inventory for relief operations at

warehouses that have been deemed non-affected. Limited

coordination occurs when there is no inventory available at

non-affected warehouses to support relief operations, but
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there is capacity to accept incoming supply from affected

warehouses prior to the disaster event.

Potential future work can continue to expand on the

aforementioned interdependent situations. There is limited

literature on incorporating potential dependencies among

supply locations in the relief chain. For example, locations

of shelter facilities may be fixed prior to a hurricane.

However, current technology cannot always predict the path

of a hurricane, and the disaster realization may leave

facilities damaged. These facilities would then rely on

collaboration with undamaged facilities in the surrounding

area to meet relief demand. During Hurricane Katrina, more

than 30,000 people had taken shelter at the Mercedes-Benz

Superdome in New Orleans, LA, USA. As the Superdome

became damaged and resources were depleted, about

25,000 Katrina victims were bussed to Houston, TX, to take

shelter in Houston’s Astrodome [28]. Furthermore,

determining the locations of facilities may depend on the

resiliency of other infrastructure networks (i.e.,

transportation network, power network, etc.). For example,

when determining the location of supply facilities, planners

may need to consider the likelihood of potential damage to

the surrounding transportation network that could prevent

delivery of supplies to demand locations. Future research

could address such network interdependencies when

making facility location and supply prepositioning

decisions.

3. Resource allocation during disaster and
emergency response

In the immediate aftermath of a disaster, relief supply

chains are activated (since commercial supply chains are

typically inadequate to meet demand); delivering goods and

services to the affected communities [2] and restoring the

infrastructure become major focus areas. In this section, we

discuss resource allocation decisions during disaster

response, primarily focusing on the delivery of goods and

services to affected populations, given the current state of

the infrastructure and available resources. The uncertainty

and changing nature (type, location, magnitude, etc.) of

demand and supply and the potential interdependencies

between decisions and their system-wide impacts contribute

to the complexity of resource allocation decisions.

3.1. Relief routing/delivery
During disaster response, vehicles carrying relief supplies

must be routed (assigned a sequence of tasks/demands in

different locations in a network) and dispatched (if tasks

arrive dynamically, e.g., first-come–first-served) to

minimize the cost/time of delivery while ensuring that relief

demand is satisfied. In this section, we discuss delivery of

disaster relief supplies/services and deployment of

emergency medical services.

3.1.1. Distribution of relief supplies

Distribution of relief supplies is one of the major problems

studied in the disaster response phase and is addressed within

the vehicle routing literature. In particular, the roads and

locations (of demand, supply, and other transition points) are

often modeled as a network with edges and nodes,

respectively, and vehicles are routed across this network to

meet demand for relief items in the affected areas. These

decisions may be affected by some types of uncertainty (e.g.,

the type and quantity of demand and supply across different

locations in the network, damage on the roads/edges limiting

passage or access to certain areas). Furthermore, given the

urgency of disaster response, routing decisions can be

subject to unique constraints (e.g., delivery time restrictions,

penalties for unmet demand). De la Torre et al. [29] provide a

recent survey of relief routing models.

Various papers [30–32] present mixed integer

programming models to determine vehicle routing and

resource allocation decisions during humanitarian relief

operations. De Angelis et al. [30] study efficient emergency

food delivery by air for the World Food Programme (WFP)

with the objective of maximizing total satisfied demand. In

contrast, [31, 32] consider multiple objectives. Viswanath

and Peeta [31] identify critical supply delivery routes for

earthquake response, seeking to minimize total travel time

over the selected routes and maximize demand coverage.

Huang et al. [32] consider three metrics: efficiency (i.e.,

total travel time), efficacy (i.e., response time and

sufficiency of deliveries), and equity (i.e., deviation in

demand satisfaction across the network). These metrics are

important for humanitarian relief distribution as aid

organizations need to consider both the potential logistical

costs and the expected demand coverage in affected areas,

under limited resources or budget.

Given the unpredictable nature of disaster scenarios,

recent papers have included aspects of uncertainty in their

models (e.g., uncertainty of demand in affected areas,

uncertainty of supply damage/availability, etc.). A common

approach is to use two-stage stochastic optimization models

[33–37], where the first stage represents the initial decisions

(typically made prior to the disaster) and the second stage

includes (corrective) decisions made post-disaster after the

realization of a particular scenario. The models in [33–35]

combine the facility location and supply prepositioning

problemwith the relief routing and delivery problem. The

first stage decides distribution center locations and inventory

decisions. After demand has been realized, the second stage

determines delivery amounts and vehicle routes. The

objectives in these models include minimizing the total costs

and transportation time, where [33, 34] include a penalty for

unfulfilled demand. The first-stage decisions in [36, 37]

involve efficient route planning (i.e., which routes to

consider for relief delivery in the given network); however,

their second-stage decisions differ. Tricoire et al. [36]
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determine the supply amounts to deliver across the routes.

Shen et al. [37] develop a recourse strategy that allows for

multiple route adjustments in the second (operational) stage,

where they may adjust the resource quantity sent by each

vehicle, modify the selected routes, or re-plan the optimal

routing after demand realization.

When deciding how to efficiently route and dispatch

resources during disaster response, there may be several

interdependencies in the system. For example, if multiple,

nonhomogeneous resources need to be delivered, this could

require coordination between the vehicle fleet to route all

resources across the network and meet respective demands

(i.e., resource interdependencies). Furthermore, different

routing systems (i.e., relief routing, evacuation routing,

rescue operations, etc.) may require collaboration in order to

efficiently use the shared network (i.e., these operations are

dependent on the underlying transportation network).

Some of these interdependencies have been addressed in

the literature [38–41]. Balcik et al. [38] classify relief

resources based on their demand characteristics (Type 1 and

Type 2). Type 1 items are required once at the beginning of

the planning horizon (e.g., tents, blankets, mosquito nets,

etc.) and accumulate penalty costs over time for each unit of

unsatisfied demand. Type 2 items are required regularly

throughout the planning horizon (e.g., food, hygiene kits,

etc.) and cannot be backordered (i.e., unmet demand is lost).

Each vehicle can accommodate both types of items

(nonhomogeneous loads). Their modeling approach has two

phases: Phase 1 generates all feasible delivery routes for each

vehicle. Phase 2 determines which delivery routes to use

(from the set generated in Phase 1), delivery amounts of each

type of item, and vehicle loads for the coming periods with

the objective of minimizing routing costs and penalty costs

for backordered Type 1 demand and lost Type 2 demand.

Coordination of logistics support and evacuation operations

in disaster response is considered in [39] and [40]. Both

papers develop a multicommodity network flowmodel to

minimize the weighted sum of unsatisfied demand over all

commodities and the weighted sum of unserved wounded

people. Finally, Zhang et al. [41] study the allocation of

emergency resources considering the possibility of secondary

disasters (e.g., extreme flooding causing a mudslide).

Interdependencies in the distribution of relief supplies

during the humanitarian response phase are an important

area of research that has not been well studied. The case of

nonhomogeneous relief routing with multiple decision-

makers could be examined; for example, emergency

response may depend on the prompt delivery of medical

supplies as well as personnel to the affected regions so that

medical treatment can be provided to those in need.

Additionally, the dependency of relief routing on the state

of the underlying transportation network can be addressed.

After Hurricane Dorian, the governor of Puerto Rico stated

that a major issue was finding transportation to distribute

relief aid. The mayor of one affected mountain municipality

said that because of debris-covered roads, their community

was “waiting for food and water, even though nine pallets

sent by the federal government sat at a regional distribution

center an hour away” [42].

3.1.2. Ambulance dispatching

Ambulance dispatching is an example of a relief service

distribution. Ambulances are assigned to requests according

to some dispatching rule (e.g., first-come–first-served) in

order to minimize the travel/wait time of a service request

and/or maximize the number of requests serviced with a

certain time horizon. Efficient delivery of ambulance

services is critical; ideally, ambulance response time should

be short (e.g., within 9 minutes of a request). For a thorough

review of the ambulance dispatching literature, we refer the

reader to recent reviews [43, 44].

In the static (offline), deterministic version of the

ambulance dispatching problem, all requests for emergency

medical services are known ahead of time. Gong and Batta

[45] and Van den Berg and Van Essen [46] develop

deterministic models to allocate ambulances for a post-

disaster relief operation, considering a single type and two

types of ambulances (advanced and basic life support),

respectively.

To capture the dynamic arrival of demand and decisions

over time, ambulance dispatching problems are often

modeled as queues with the objective of maximizing the

expected coverage (number of requests served) in a

specified amount of time, under the following common

assumptions.

1) Requests for service arrive at independent rates fol-

lowing a Poisson process.

2) One server/unit is dispatched in response to each

incoming request.

3) The request is added to a queue (wait for a server to

become available) if there are no free units.

4) The queue operates on a first-come-first-served

(FCFS) basis.

Various papers relax and/or extend some of these

assumptions. Yoon and Albert [47] consider one type of

ambulance, whereas [48, 49] consider two types. In both

[47] and [48], the FCFS assumption is relaxed; instead,

incoming calls are prioritized based on severity (i.e.,

urgency of medical assistance).

Various papers [50, 51, 54] model the single-type

ambulance dispatching problem as a Markov decision

process. Maxwell et al. [50] consider non-Markovian

elements in the system, such as service times that follow a

general (not necessarily exponential) distribution and

deterministic travel times. Both [50] and [54] prioritize

calls based on severity.
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McLay [49] considers advanced life support (ALS) and

basic life support (BLS) ambulances and classifies requests

(Priority 1, 2, and 3). Priority 1 and 2 requests are or could

be life-threatening, respectively, while Priority 3 requests

are not life-threatening. When both ALS and BLS units are

available, deployment protocol is to send ALS units to

Priority 1 requests, either type to Priority 2 requests (with

ALS preferred), and BLS units to Priority 3 requests. In

addition, if no ALS units are available, BLS units may be

dispatched to Priority 1 requests in order to stabilize the

patient until an ALS unit becomes available. If a BLS unit

is dispatched first to a Priority 1 request, an ALS unit must

also be dispatched when available. The objective is to

maximize the expected number of Priority 1 requests

serviced, given the interdependencies between the two

types of ambulances.

Future research could consider the dependencies among

different types of emergency response vehicles

(ambulances, fire engines, police, etc.) and how these

dependencies affect resource allocation and coordination

decisions. Furthermore, these different vehicle fleets may

belong to and be operated by different agencies. Potential

research includes addressing how these different agencies

could collaborate to meet the requests, considering the fact

that some requests might need multiple resources

simultaneously or successively. For example, after a major

multicar traffic accident, multiple ambulances may need to

respond while coordinating with police and/or fire trucks.

3.2. Scheduling
In the aftermath of a disaster, resources are limited and the

prioritization/scheduling of resources and services (e.g.,

search and rescue, relief supplies, medical personnel) across

different geographic areas and populations has impact on

response efforts both short- and long-term. The value of

post-disaster relief allocation decisions often changes with

time. Given widespread high demand, it is important to

consider the different impacts and consequences of delays

in the deliveries of goods or services to different demand

locations. Relief distribution scheduling decisions include

the assignment and delivery times of relief supplies to

demand locations to minimize time-based objectives

subject to resource availability constraints.

Various papers [52, 53, 55–58] model efficient

scheduling of emergency resources that are categorized by

their capabilities. Each demand incident has specified

requirements (e.g., fire brigade, search-and-rescue teams,

police) and can be served by those resources that have the

required capabilities. The allocation of resource units

(agents) to disaster incidents with the objective of

minimizing the total weighted completion times over all

incidents has been studied in [52, 53, 55, 56], utilizing

mixed integer quadratic programs [52, 53] and mixed

integer linear programs [55–58]. Altay [57] developed a

multiobjective model, minimizing the weighted sum of total

deployment (travel) time and total capability deficit (i.e.,

unfulfilled demand). Su et al. [58] focused on minimizing

the weighted sum of travel times and total cost.

Many instances of relief scheduling during disaster

response involve coordination and collaboration between

different resources and disaster agencies. If resources have

different capabilities or characteristics, then multiple units

may need to collaborate to meet demand either by being

scheduled sequentially or simultaneously. The relief

scheduling literature [52, 55, 56, 58–61] addresses these

interdependencies between resources.

During disaster response, after a certain demand has been

satisfied, non-renewable resources (e.g., medical and relief

supplies, food, etc.) are depleted, whereas renewable

resources (e.g., emergency personnel, ambulances, rescue

teams, etc.) can be made available again to meet additional

demand. The models presented in [59–61] consider the

efficient scheduling of both renewable and non-renewable

resources. Bodaghi et al. [59] introduce a biobjective

optimization model to minimize the total weighted time of

meeting demand as well as the overall makespan of the

relief operation (i.e., the distribution of emergency

resources to the affected areas). Scheduling in [59] relies on

coordinating the delivery sequence of renewable resources

while dispatching non-renewable resources from

distribution centers. The models developed in [60] and [61]

consider coordinating the assignment and scheduling of

non-renewable (medical and emergency supplies) and

renewable (disaster medical assistance teams) resources

with the objective of minimizing the total tardiness penalty

across demand nodes. Lei et al. [61] use a rolling-horizon-

based greedy heuristic to determine how to allocate medical

supplies from distribution centers to patients.

Some papers address the multiresource scheduling

problem in which there is some coordination or

collaboration among resources with different capabilities

[52, 55, 56, 58]. Collaboration is needed when not all of the

requirements of a certain demand can be met by a single

resource, i.e., multiple resources may be needed

(simultaneously or sequentially) to meet a demand.

Collaboration can be tight [58] or loose [52, 55, 56]. Loose

collaboration allows for resource units to work

independently to meet demand. Tight collaboration requires

that all resource units needed by a particular demand be

simultaneously available to meet that demand.

Current disaster relief scheduling research where there is

collaboration between resources with different capabilities

mainly focuses on loose collaboration, i.e., relief resources

can arrive in any order to meet demand. Future research

could develop strategies to address cases in which resources

may need to arrive at demand incidents sequentially. For

example, a demand incident may require a search-and-

rescue team prior to the arrival of emergency medical
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services. There are also instances where tight collaboration

might be necessary. During Hurricane Harvey, Montgomery

County, TX, experienced severe flooding that cut off many

patients’ access to emergency medical services [62]; water

rescue teams and emergency medical services had to

coordinate to enable medical personnel to reach patients who

were trapped in their homes. Further research into efficient

tight collaboration strategies would be beneficial to

accurately model and effectively address scenarios such as

this. It would also be valuable to extend current resource

scheduling models to address potential uncertainty in supply

and consider demand incidents that arrive dynamically

throughout the time horizon.

4. Network restoration
Restoring disrupted services to some level of normalcy (and

enabling effective relief efforts) often hinges on repairing

infrastructure networks. Transportation, electricity,

communication, water, and other networks are essential to

daily operations and survival. The more prolonged

disrupted conditions become, the more danger is posed to

community members due to limited access to basic services

and supplies. A recent survey of disaster response literature

(including network restoration) is provided by Çelik [63].

According to Rinaldi et al. [64], two networks are

interdependent if “the state of each infrastructure influences

or is correlated to the state of the other.” The authors define

types of interdependencies that exist between infrastructure

networks: physical, cyber, geographic, and logical. Physical

interdependence occurs when two networks’ states depend

on “material outputs” from each other. Cyber

interdependence occurs when an infrastructure relies on the

transmission of information. Geographic interdependence

occurs when infrastructure networks in close proximity are

affected by the same environmental event. Finally, logical

interdependence occurs when the states of two networks

depend on each other in ways other than the aforementioned

relationships. In the following sections, we review existing

infrastructure restoration literature and discuss the ways in

which interdependencies are or could be considered,

motivated by real-world examples.

4.1. Incremental network design and network
improvement

Network design for infrastructure planning, facility

location, or supply prepositioning (see Section 2) affect

post-disaster response and recovery/restoration efforts.

Network design literature is vast [65–70]. Decisions in

network design often focus on resilience (“which includes

the ability to withstand and recover rapidly from. . .natural

disasters” [69] or “adapt to changing conditions, and reduce

the magnitude and/or duration of disruptive events” [70])

considering the potential occurrence of disruptive events

(natural or man-made disasters, deliberate attacks, large-

scale system malfunctions or accidents, etc.). Disaster

preparedness activities such as supply prepositioning and

facility location are examples of emergency supply chain

network design.

The aforementioned planning and preparedness activities

directly impact recovery and response efforts. In this

section, we provide examples from the incremental network

design and network improvement literature focused on

post-disaster infrastructure restoration. Rather than

considering the design of a network from scratch, in

incremental design or network improvement, there is a pre-

existing network and decisions focused on restoring and/or

improving that network. The goal is to achieve a particular

intermediate performance level in the partially functional

system, or a particular final design given some restrictions

imposed by the pre-existing network.

4.1.1. Incremental network design

In the aftermath of a disaster, response and recovery efforts

might focus on restoring the network (incrementally) to its

previous state as quickly as possible while simultaneously

minimizing the negative impact on the affected populations.

In some cases, restoration efforts can include redesigning or

rebuilding certain parts of the network to better meet

current and future needs. A common feature of this

literature is the focus on network performance throughout

the planning period; at each stage of the restoration process,

an objective is evaluated such as maximizing flow of relief

supplies to demand points (i.e., to ensure that as much relief

as possible is delivered while the network is partially

functioning). The decisions include which edges of the

network to restore or install at various points in time.

Incremental network design problems (IND) [71–73]

provide insights into the process of making sequential

decisions about the configuration of a network. The decision-

maker sequentially selects single edges to add (or restore).

The goal is to prioritize the edges to achieve the best

cumulative objective (e.g., maximum flow, shortest path,

minimum spanning tree) over the planning horizon. Note that

“in some situations, the benefits of building a link will only

materialize when other links have been built as well” [72].

This challenge is particularly prevalent in interdependent

network restoration; the benefits of restoring particular edges

often vary with time and each decision can have cascading

effects throughout the network(s). Earlier literature provides

a strong foundation for network design approaches to

restoration problems on single networks; there are

opportunities for development of similar fundamental results

for interdependent network problems (general problem class

complexity results, approximation algorithms, etc.).

4.1.2. Network improvement

Network improvement (or arc upgrading) starts with a pre-

existing network design (a realistic characteristic of post-
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disaster restoration efforts) and restores and/or upgrades

certain edges over time. In the context of disaster response,

given a disrupted network (e.g., a road network), the

decisions are which arcs to restore, enhance, or construct

(and when) under various limitations (budget, time,

resource availability, fixed relief facility locations, etc.).

The goal is to establish a certain structure in the partially

restored network subject to the constraints imposed by the

design of the original network and factors such as the

capabilities and speeds of the restoration crews.

Objectives of network improvement problems for

infrastructure restoration vary across the literature, but the

goal is often to ensure accessibility (i.e., enabling all

individuals to obtain aid and supplies) across the network

by establishing routes that allow travel to hubs such as

cities, airports, relief distribution sites, and shelters. For

example, in certain developing countries, rural communities

rely on unpaved pathways for travel. During periods of

heavy rain, these paths may become dangerous or

impassable. While [74–76] seek to increase general

accessibility of rural communities to essential services,

their modeling choices differ. Murawski and Church [74]

aim to maximize the number of residents who have access

to healthcare facilities (located according to a

predetermined network design) by improving roads under a

limited budget. In contrast to the exact solution obtained by

these authors, heuristic approaches are explored in the other

two papers and are shown to provide high-quality solutions.

Scaparra and Church [75] seek to maximize route efficiency

in addition to all-weather road connectivity; the authors

create a greedy randomized adaptive search procedure and

path relinking heuristic to obtain approximate solutions.

Maya Duque et al. [76] also consider rural road

improvement via the accessibility arc upgrading problem

(AAUP) in lesser developed communities. The authors

provide two solution approaches: One exploits properties of

the knapsack problem in cases where the AAUP network is

a star or tree structure, and the other uses a neighborhood

search method. Heuristic solution approaches such as these

are valuable tools in practice where decisions need to be

made in a timely manner.

Equity-constrained network design problems (i.e., fairness

in benefits gained by network users due to improvements/

upgrades) are addressed in [77] and [78]. Meng and Yang

[77] consider the continuous network design problem

(CNDP) under deterministic user equilibrium (DUE),

choosing the arcs in a network on which to increase capacity.

The authors use a bilevel optimization model that includes

an equity constraint; by changing parameters of the problem,

the authors can guarantee a certain level of equity in reduced

travel costs associated with capacity changes. Chen and

Yang [78] also study optimal arc capacity changes in CNDP

subject to equity requirements and DUE in addition to a

stochastic network design model. The longer term planning

methods in [77] and [78] could be useful once the initial

connectedness conditions in infrastructure networks are

satisfied and decision-making shifts to extended-period

restoration. Krumke et al. [79] provide several results

regarding the quality and speed of approximation algorithms

for node- and edge-based upgrading problems under various

other restrictions and three objectives.

Interdependencies may affect which arcs are feasible to

restore or upgrade at different points in an IND or network

improvement model. For example, certain areas of the

network need to be physically accessible before they can be

restored (i.e., a disrupted arc in a graph cannot be restored if

there is no feasible path to that arc from the nodes where the

restoration resources are located). Restoration of a particular

arc may be delayed due to other types of interdependencies

as well; for example, it may be impossible to re-establish

communication between two networks if the power supply to

one or both of them has failed. Gay et al. [80] discuss how

damage to radiation clinics, lack of communication between

radiation oncologists, and lack of telephone and Internet

services after Hurricane Mar�ıa resulted in a multitude of

complications for radiation patients, who require precise

treatment on a regular schedule. Some patients had to visit

clinics and physicians that unfamiliar to them. The inability

to communicate between facilities and access medical

records posed complications for continuing treatment. These

challenges highlighted the need for rapid restoration of

reliable forms of communication post-disaster.

Changing environmental conditions, material and

information flow, and resource availability in a community

add complexity to restoration decisions by affecting

multiple infrastructure networks and their interactions. In

reality, design and improvement decisions for one

infrastructure network are influenced by the state of other

networks. At each decision point, the state of the system of

infrastructure networks as a whole should be considered.

Cascading benefits and penalties such as these have the

potential to significantly impact decision-making.

Disruptive events provide an opportunity to potentially

improve the underlying network design by improving or

upgrading existing network components or constructing

new ones. Future work in network improvement and

incremental network design could incorporate measures of

vulnerability or resilience in models in an effort to improve

the ability of infrastructures to withstand damaging events

in the future. Additionally, future research could examine

the tradeoffs between investments in upgrades on different

infrastructure networks with the goal of guaranteeing some

level of accessibility [74].

4.2. Scheduling and vehicle routing
In infrastructure restoration, there is often a time-dependent

reward (penalty) for restoring (failing to restore)

connectivity to a particular node or section of a network;
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objectives in these scenarios include maximizing total

reward, minimizing total penalty, minimizing the maximum

time necessary to restore a particular part of the network,

etc. The ability to simultaneously consider assigning and

routing of restoration crews to tasks and the timeline for

completing those tasks is important for interdependent

network restoration. Scheduling approaches determine

which restoration tasks to complete and when to complete

them (and thus, what penalty or reward is accrued) using

which restoration resources. Typically, each crew leaves

from (and may return to) a particular location (depot) in the

network.

In most post-disaster response settings, it is important to

establish paths (connectivity) between the nodes in an

infrastructure network to ensure accessibility. Kasaei and

Salman [81] study two problems: one that is appropriate for

ensuring fairness in decision-making (arc routing for

connectivity, or ARCP) and one that allows prioritization of

certain network components via the assignment of prize

values (prize-collecting ARCP, or PC-ARCP). Depending

on the objectives of decision-makers in post-disaster

restoration scenarios, one of these models may be applicable.

Maya Duque et al. [82] study restoration on a sparse

network; their model creates paths from a depot to each node

in the network and ensures that path lengths do not exceed a

threshold (i.e., the nodes in the network are within a specified

distance from the depot). By using a sparse network

representation, the authors capture the challenges of

connecting isolated demand locations (such as shelters, relief

aid distribution points, and rural communities) to a central

supply location such as a city or airport (i.e., the depot). Both

[81] and [82] consider a single infrastructure network, a

single depot (which can be interpreted as supply storage or

another important hub of activity), and a single work crew

that performs all restoration tasks.

In practice, it may be useful to incorporate a time limit on

the restoration activities for an infrastructure network;

decision-makers may determine that a certain level of

connectivity must be achieved before, for example, a

predicted secondary disaster or some point in time after

which conditions for community members are considered

increasingly dangerous. Akbari and Salman [83] present a

model that assigns prize values to restoration tasks on a

road network (similar to Kasaei and Salman [81]). The

objective is to maximize the total collected prize value

while requiring that restoration crews’ routes are completed

within a time limit. Similarly, Tuzun Aksu and Ozdamar

[84] assign priorities to a predetermined set of road paths

(which, upon restoration, will allow access to all locations

in the network) and decide the order in which to repair arcs

on the paths. The objective function incentivizes restoring

high-traffic arcs early. The goal of this work is to ensure

that evacuation efforts are able to proceed in a timely

fashion, thus reducing extended risks to community

members. This model also optimizes restoration resource

allocation to districts in the community so that each area is

addressed equitably. Kim et al. [85] explore the

unpredictable nature of post-disaster operations

immediately after the event. The authors determine a

restoration schedule that minimizes total damages as well as

the completion time of the restoration. This work’s purpose

is to capture the potentially rapidly changing conditions

under which restoration crews must work; after a certain

amount of time, the damage to the isolated components of

the network drastically increases; hence, the model

incentivizes early establishment of access to all areas in the

network. Çelik et al. [86] study the stochastic debris

clearance problem; a road network is partially blocked by

post-disaster debris (thus hindering relief distribution),

where the debris amounts (and corresponding clearance

capacity and times) are uncertain. Debris clearance must

occur in the first days following a disaster to allow further

restoration and recovery activities. In each time period,

debris clearance and relief distribution decisions are made

to maximize the benefit gained from satisfying demand;

new information about the debris amounts in recently

connected parts of the network becomes available (which

impacts future clearance and flow decisions) in each time

period. The authors model this problem as a partially

observable Markov decision process and propose heuristic

solution approaches. The above papers consider multiple

[83, 84] and single [85, 86] restoration crews, respectively.

The papers reviewed in the remainder of this section all

consider multiple crews.

The availability of multiple crews (resources) enables

simultaneous restoration activities (i.e., addressing multiple

components in the network concurrently). Network

restoration literature with multiple resources considers

resource/crew interdependencies and coordination,

assignment of network components to crews, and efficient

travel of crews on the network (routing). The scheduling of

each crew depends on which arcs are accessible at a given

time and, thus, depends on the previous actions of all other

crews.

There is limited literature on collaboration between

restoration resources. Averbakh [87] minimizes the

makespan (the recovery time of the last node) of restoration

in a transportation network. Their model allows restoration

crews to work together to complete tasks; when this occurs,

the new restoration speed is the sum of the speeds of the

crews. Morshedlou et al. [88] also model dynamic restoration

rates (i.e., the effects of collaboration between crews) and, in

addition, incorporate travel times of restoration crews while

scheduling and routing repair vehicles on an unaffected road

network to repair damaged components of another network

(e.g., a power network). Using a measure for infrastructure

resilience (a function of network performance), they compare

partial and full restoration at the network component level. In
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partial restoration, disrupted components can contribute to

the overall performance of the network before their

restoration is complete (i.e., they may be usable, but at a

decreased capacity).

Ulusan and Ergun [89] decide resource flow and the

schedule of work crews on a disrupted road network such

that the cumulative benefit (which decreases exponentially

over time) for satisfying demand is maximized over the

planning horizon. The goal is to achieve adequate operation

of the emergency service network (distribution of relief

supplies and transportation of casualties) such that all

disaster sites can be served as quickly as possible. They

introduce a new measure for the criticality of disrupted

transportation network edges that is used in a heuristic

solution approach to prioritize the restoration of network

components. Similarly, Iloglu and Albert [90] study the

interdependency between road network recovery and

emergency response services. Restoration/addition of arcs

(repair of roads) in the network are scheduled over the time

horizon; emergency responders are able to travel on arcs

(roads) once they are completed. The objective is to

minimize the cumulative weighted distance (over time)

between demand points and emergency responders.

Integrated network design and scheduling (INDS)

problems were proposed by Nurre et al. [91] and are closely

related to incremental network design [71–73]; network

performance is measured at intermediate steps (after

implementing design decisions) in the restoration process

(as opposed to only on the completed network), and the

objective is to optimize cumulative performance over the

planning period. Because performance is evaluated

repeatedly, scheduling decisions greatly impact the overall

objective. Parallel identical machines (i.e., restoration

crews with identical work speeds) INDS problems are

examined by Nurre and Sharkey [92]. The authors explore a

variety of metrics (maximum flow, minimum-cost flow,

three versions of shortest path, and minimum spanning

tree), each with two objective function variations

(cumulative network performance over time and minimum

time to achieve a threshold level of performance) for a total

of 12 problems. The parallel identical machine INDS

problem is shown to be NP-hard for all explored versions.

Given the complexity of the problems, the authors introduce

dispatching rules for work crews that result in near-optimal

solutions for the objectives considered.

The papers provided in this section thus far consider

restoration of a single infrastructure network; in practice,

however, infrastructures often rely on each other in some

way(s) to function. All of the remaining work in this section

models multiple interdependent infrastructure networks.

Both [93] and [94] use minimum-cost network flow

models to determine a restoration schedule for a system of

interdependent infrastructure networks. The models include

one type of interdependency: physical or “input”

interdependencies in which the performance of one

infrastructure network relies on service or output from

another network. Gonz�alez et al. [93] indicate the constraint

modifications that would be necessary to incorporate logical

and cyber interdependencies in their model. They present a

static, deterministic, single-time-period optimization model

but include a discussion about the potential to solve their

model repeatedly; doing so would allow for updating

parameters such as costs, budgets, and resource availability

to reflect management decisions throughout the restoration

process. In contrast, Cavdaroglu et al. [94] present a time-

indexed optimization model (i.e., decide which restoration

tasks to perform in every time period).

Network restoration scheduling under physical

interdependencies with an aim to increase resilience in

disaster-affected communities is considered in [95] and

[96]. Both papers maximize resilience while minimizing

restoration costs subject to resource and interdependency

constraints. Almoghathawi et al. [95] define a resilience

measure that is time-dependent and compares network

recovery with performance loss incurred by the

disruptive event. Barker et al. [96] introduce a social

vulnerability index that is calculated for each disrupted

node in each infrastructure network; higher restoration

priority is placed on nodes that are more vulnerable.

Some existing research [90] considers emergency

response when scheduling restoration activities; future

work in this area could further investigate the relationships

that multiple types of infrastructure networks (in addition to

road networks) have with emergency response and/or

evacuation efforts. Hurricane Harvey provides an example

of a situation in which emergency response efforts were

hindered due to conditions on another network. The

affected road infrastructure was designed so that flood

waters gathered and drained in streets rather than near

buildings. The resulting high water levels in streets caused

unforeseen difficulties in reaching community members

that needed emergency medical attention [97]. In addition

to physical access challenges, emergency medical services

may face complications if patient information is

inaccessible to medical personnel due to power network

failure or if individuals are unable to contact emergency

services due to cellular network failure.

Collaboration between specialized work crews (or

requirements for specific types or numbers of work crews

on particular tasks) could be explored in future research.

For example, power network and road network restoration

crews may have to collaborate in order to remove fallen

power lines from roadways in a safe manner. Fuel

availability for restoration resources as well as disruptions

to power supplies also create challenges, resulting in

delayed restoration efforts [98]; efficient methods of

scheduling coordinated solutions can help minimize the

impact of these and similar issues. Experiences in the field
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[97] and [98] motivate the need for further investigation of

effective decision-making and scheduling methods for post-

disaster restoration in interdependent systems. Considering

stochasticity in interdependent restoration models would

offer new insights. Uncertain elements could include

damage levels and locations; availability, location, or

capabilities of restoration crews; and the interdependency

relationships themselves. Finally, research into the effect of

emerging technologies on restoration efforts may

significantly increase the efficiency of response and

recovery operations. For example, drones have been

introduced into the commercial logistics industry for

deliveries. Similarly, the benefit of using drones to deliver

relief supplies or collect information about damage levels

and locations, isolated communities (due to a disaster), or

casualties can be examined using mathematical models.

Incorporating the capabilities of new technologies into

decision-making may lead to the definition of new problems

and solution techniques.

5. Conclusion
In this article, we provided an overview of the literature on

the allocation of resources to those in need and restoration of

infrastructure networks affected by adverse events, such as

natural disasters. The efficiency and effectiveness of these

decisions can decrease the short- and long-term negative

impact of these events on communities. We provided a

review of the recent literature on independent systems,

presented examples from the relatively limited but growing

literature that considers demand, resource, and/or network

interdependencies, and suggested potential research

directions.

Challenges in decision-making due to interdependencies

are abundant, as exhibited in the real-world examples

provided in our article. The mathematical and managerial

challenges that interdependencies introduce to operations

researchers and field agencies are evident. For example,

after the September 11, 2001, terrorist attacks on the World

Trade Center (WTC), the New York City Office of

Emergency Management (OEM) was responsible for

coordinating the response actions of approximately 150

organizations. The OEM was headquartered at the WTC,

and the attacks resulted in loss of their command center.

Failure of telephone, power, and computer systems

hindered coordination among response agencies, and police

barriers in the area slowed down officials who were

attempting to access the site. Further complications

included disruption of transportation to Lower Manhattan

and evacuation of the nearby Environmental Protection

Agency office (an organization that was partly responsible

for recovery efforts) [99].

In the aftermath of such extreme events, it is not

difficult to imagine the challenges of coordinating

search-and-rescue, response (e.g., debris clearance,

infrastructure restoration, and resource allocation), and

other response and recovery activities. The need for

increased efficiency and effectiveness in complex and/or

decentralized decision-making environments motivates

the development of modeling and solution methods that

are efficient, effective, and equitable. Quantitative

models for interdependent systems (such as those

discussed in this review) can inform and enable planning

of coordinated response efforts and increase visibility

and cooperation between agencies.

The consideration of interdependencies is crucial while

making decisions during mitigation, preparedness,

response, and recovery periods of disaster and emergency

management. We hope that this review will further spur

interest in this research direction.
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