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We intend to demonstrate that if the business model cannot adjust to new technology, 
by recognizing a) its limitations, b) the ability of the organization to control it, and c) by 
adjusting its deadlines to take advantage of the methodology potentials, it is unlikely 
that an investment in the technology will result in real productivity benefits. 

As software development cycles shorten, and software markets become more competitive, 
improved software development productivity continues to be a major concern in the 
software industry. Many believe that object-oriented  technology provides a breakthrough 
solution to this problem, but there is little quantitative evidence for this belief. Furthermore, 
most studies related to object-oriented productivity do not consider it in conjunction with the 
business constraints under which the software is developed. Business models tend to focus 
on cost and calendar events and tend to form deadlines that are governed by marketing 
windows and pressures. In this paper we explore the relationship between the business 
model and the productivity that a software development methodology can achieve in a 
commercial environment. We first examine empirical data from several commercial 
products developed under the same business model and an iterative software development 
process. The results indicate that lack of incentives for early completion of intermediate 
project tasks, and a rigorous enforcement of final project deadlines, may trigger Parkinson's 
Law delays and negatively affect software development productivity, especially when 
projects are developed using object-oriented methods. We then model and simulate the 
impact of software task completion incentives and imposed deadlines on productivity that 
might be expected from potentially high-productivity technology, such as object-orientation. 
We show how and why some common business practices might lower project productivity 
and project completion probability. We also discuss to what extent poor software process 
control and/or use of immature technology compounds the problem. 

Introduction 
It is widely believed that object-oriented development has considerable potential for 
increasing software development productivity. The reasons for the gains range from reuse, 
through better problem understanding, to better (less complex and less costly ) designs  and 
implementations. However, there is little quantitative evidence that productivity of  real-
life object-oriented software development is indeed consistently better than that of  
"classical" or "procedural" software development. Most studies related to object-oriented 
development productivity do not consider it in conjunction with the business practices under 
which the software is being developed. Since commercial development always takes place 
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in the context of a business model, an understanding of how business constraints influence 
commercial software development is imperative. According to Jacobson et al. 

a business model shows what the company’s environment is and how the 
company acts in relation to this environment. By environment we mean 
everything the company interacts with to perform its business processes, 
such as customers, partners, subcontractors and so on. It shows employees 
at every level what must be done and when and how it should be done 
[Jacobson et al. (1994)]. 

Business models tend to focus on cost and calendar events (e.g., quarterly reports) and tend 
to form deadlines that are governed by marketing windows and other pressures, often 
regardless of the real software engineering capabilities of the organization. Software 
engineering development models tend to focus on the complexity of a software project and 
the capabilities of the development team and software methodologies.  In a meaningful 
evaluation of project viability we need to consider both aspects.  

In this paper we quantitatively explore and model the relationship between the business 
incentives and deadlines and the productivity that a software development methodology can 
achieve in a commercial environment. 

Related Work. Lewis et al.  performed an experiment with undergraduate software 
engineering students to study the effects of reuse [Lewis et al. (1991)]. Based on means tests 
of the recorded  productivity metrics, Lewis et al. concluded  that the object-oriented 
paradigm can improve  productivity by about 50% when reuse1 is present. However, they 
did not find any statistically significant evidence that the object-oriented paradigm has 
higher productivity than procedural methods when reuse is not a factor. Melo et al. 
conducted an  experiment  with graduate students that  resulted in seven projects ranging is 
size from 5000 - 25000 lines of code [Melo et al. (1995)]. The projects were developed 

using a Waterfall process model, object-oriented  design,  C++, and varying levels of reuse. 
Their results support the conclusion that reuse rates can increase  programmer  productivity 
as much as two to three times2. Optimistic economic models of reuse indicate that break-
even reuse levels may be as  low as 10-20% [Henderson-Sellers (1993)], while pessimistic 
models show that break-even levels may be difficult to achieve even under very high levels 
of reuse [Schimsky (1992)]. There is also evidence that different development 
methodologies have differing impacts on the software development process. Boehm-Davis et 
al. report on a comparison of Jackson program design, object-oriented design, and functional 
decomposition, using professional programmers [Boehm-Davis et al. (1992)].  Some of the 
insights from the study are that Jackson’s method, and object-oriented methodologies 
produce more complete solutions, require less time to design and code a problem, and 
produce less complex designs than functional decomposition. However, a quantitative  
comparison of productivity associated with different methodologies was not given. Zweben 
et al., again in an experiment with graduate and undergraduate students, show that layering 

                                                 
1 In this experiment, the reuse level may have been as high as 25% in some cases. 

2 For high-end productivity gains reuse levels were in range 40-50%. 



Potok and Vouk  3 

DRAFT Potok & Vouk 3 

and encapsulation in Ada (an object-oriented trait)  may reduce development effort  
[Zweben et al. (1995)].   

There are many other studies and books concerned with the value of the object-oriented 
approach [e.g., Booch (1991), deChampeaux et al. (1993), Rumbaugh (1991), Wirfs-Brock 
(1990), Coleman et al. (1994), Hayes et al. (1991), Monarchi et al. (1992),  Henderson-
Sellers et al. (1994), to name a few]. There are also many studies of the value of reuse 
[Berlin (1990), Dunn et al. (1991), Gamma et al. (1993), Griss et al. (1991), Henderson-
Sellers (1993), Wessale et al. (1993)].  However, what is missing, to a large extent, are 
quantitative studies that focus on productivity related to software developed for 
commercial use by professional programmers who use object-oriented  methods.  

In fact, a recent paper by Hansen indicates that commercial software development should 
always be considered in the context of the business model [Hansen (1996)]. Our own work 
supports this. We believe that object-oriented development productivity is strongly 
influenced by the underlying business factors [Potok and Vouk (1995)]. For example, our 
results indicate that although the introduction of object-oriented technology does not appear 
to hinder overall productivity on commercial projects, it neither seems to improve it in a 
systematic way, at least not in the first two product generations. The data show that the 
governing influence may not be the methodology, but the business model which includes 
market and business constraints imposed on schedules, tasks, and resources. We also found 
that two business model related effects,  Parkinson’s Law [Parkinson (1957), Gutierrez 
(1991)] and the Deadline Effect [Boehm (1981), Borger et al. (1991)], appear to be very 
important influences in commercial software development. 

Parkinson’s Law states that work will expand to fill the allocated time. For example, if a 
project is given to three similar development teams with three easily achievable, but 
different deadlines, the projects will not complete at the same time, but according to the 
deadlines set. The Deadline Effect occurs when programmers are compelled to work extra 
effort in order to complete a task by a given deadline. If a deadline is set, and there is strong 
pressure to meet the deadline, people will work additional hours solely to meet the deadline. 
These effects are supported by industrial psychology literature  on “goal theory” that reports 
significant evidence that productivity increases with specific, challenging goals [Locke et al. 
(1990), Latham et al. (1982)]. This theory states that there is a linear relationship between 
the degree of difficulty of a goal, and the performance required to achieve it. As of 1990, 
over 400 experiments have been performed testing this theory, with over 90% supporting it. 
The basic structure of such experiments involves participants performing a group of tasks. 
Some of the participants are given a specific, hard goal that they are expected to achieve, 
while the others are told to “do their best.” In most cases, the participants given hard goals 
significantly out performed the other participants.  This supports the notion that programmer 
productivity can be a strong function of the schedule goals, and that team productivity for 
hard, specific, schedules will most likely be higher (within reason), than it is for less 
challenging schedules. 

Approach. In this study we focus on the effects that some business practices may have on 
productivity observed in software projects.  We use empirical information to identify the 
effects and help formulate a detailed simulation model of interactions among the iterative 
software development process, its maturity, and the applied business model. We then use 
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this model to explore how business constraints can affect productivity and time to market 
when potentially high-productivity methodologies, such as object-oriented development, are 
used.  

In the next section we present the empirical data that relate business practices and software 
development productivity.  In the section that follows we formulate a simulation model of 
the interactions, and then we use the model to study the impact of business imposed 
incentives and deadlines on software development productivity that might be expected from 
object-oriented methodology. Summary and conclusions are given in the last section. 

Empirical Results3 
Process and Origin of Data.  The empirical data was collected at the IBM Software 
Solutions Laboratory in Research Triangle Park, North Carolina. The laboratory was ISO 
9000 Certified in 1994, and it has consistently received high marks in internal assessment 
against the Malcolm Baldrige Criteria. The general business model that drives software 
development at that laboratory recognizes two major software product sub-categories: 
versions and  releases. A new version is typically quite large, and contains a significant 
product enhancement, or change in functionality. A version is ordinarily followed by one or 
more maintenance releases that are usually much smaller than a version, and contain fixes to 
defects, and minor enhancements. The calendar-time duration for development of both 
versions and releases is strongly driven by market forces. Versions tend to take longer than 
releases, but are within an 18-24 month window common to the industry today. Release 
development will normally not be shorter than 9-12 months. There are a number of reasons 
for this, some of which are distribution costs, arrival rate of release-type fixes and changes, 
and possibly the issue of user-perceived quality (e.g., scheduling of a release very soon after 
a version can give the impression of quality problems). While all new development must be 
completed with a limited number of personnel, existing projects will have an established 
team, and typically an effort is made to maintain or even increase the size of the team 
because it may not be cost-effective to dismantle the team between versions. Therefore, it is 
not unusual to have a large version developed with tight resource and time constraints, yet 
have a smaller follow-up maintenance release developed over a more relaxed schedule 
using the same team.   

The development of both versions and releases is subject to frequent high-level reviews of 
their schedule status against key development dates (or milestones) established at the 
beginning of the product cycle. The progress towards these dates is reviewed regularly and 
in detail, and schedule slips in any major milestones are strongly discouraged. Detailed 
project schedules are required at the beginning of the product development cycle, and they 
trigger business processes including funding, planning, marketing, supporting, and 
certification of the quality of a product. The most prevalent software development process 
followed in the organization is called the “iterative” process. The iterative process is a 
variant of a combination of evolutionary prototyping [Boehm (1981)] and successive 
versioning approach [Fairley (1985)]. In theory, each software iteration is fully planned, 
                                                 
3 Data used by permission.  The scales appearing on the axes of all graphs, and any product and date-related information, 

have been altered to provide discretion.  
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designed, coded, and tested, before work begins on the next iteration. The duration and 
amount of code produced for each iterations is approximately the same.  A typical project 
activity diagram is illustrated in Figure 1. 
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Figure 1 Development process used for a second generation object-oriented project. 
 

Figure 1 shows a high-level PERT diagram of the process used for one of the commercial 
products developed at the laboratory. The product was a second generation object-oriented 
port between platforms. In this diagram, edges represent activities, and have durations 
associated with them, while nodes are milestones. Different activities and milestones are 
described in Table 1. The final product has approximately 64 thousand lines of C++ code, 
the port required over 8 person-years of effort, and took 16 months to complete. A Booch 
type object-oriented methodology was used.  

There are five (unfolded) iteration cycles. The first iteration ends with milestones 7 and 8, 
the second with 13 and 14, the third with 19 and 20, the fourth one with 25 and 26, and the 
final iteration with node 30. The system testing activities run in parallel but are mainly 
aimed at the software emerging out of the final cycle. When an iteration is complete the work 
is reviewed, and the suggested changes and enhancements examined in the planning phase of 
the next iteration. When all development iterations are completed, and depending on the 
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measured product quality, the product may either be ready for delivery, or for some 
additional system testing.  

Table 1 Description of Figure 1 activities. 

Node Edge Description Node Edge Description Node Edge Description 
1 1-2 Project Start 12 12-13 Unit test  24-26  
 1-31   12-14  25 25-38 Update analysis model 
  1-35   13 13-19 Update analysis model 26 26-27 Review iteration 
2 2-3 Define Analysis 

Model 
14 14-15 Review iteration 27 27-28 Plan iteration 

3 3-4 Plan iteration 15 15-16 Plan iteration 28 28-29 Define design model 
4 4-5 Define design model 16 16-17 Define design model 29 29-30 Code 
5 5-6 Code 17 17-18 Code  29-33  
 5-9  18 18-19 Unit test 30 30-36 Review iteration 
6 6-7 Unit test  18-20  31 31-32 Function test prep 
 6-8  19 19-25 Update analysis model 32 32-33 Define test plan 
7 7-13 Update analysis model 20 20-21 Review iteration 33 33-34 Function test 
8 8-9 Review iteration 21 21-22 Plan iteration 34 34-38 Test report 
9 9-10 Plan iteration 22 22-23 Define design model 35 35-36 Customer validation 

Prep 
10 10-11 Define design model 23 23-24 Code 36 36-37 Customer validation 
11 11-12 Code 24 24-25 Unit test 37 37-38 First customer ship 
 11-15     38  Project End 

 

Business Model Influence.  We examined 19 commercially available software 
products from the IBM Software Solutions Laboratory. There were three distinct categories 
of products, those developed using procedural methods, those developed using object-
oriented methods, and those developed using object-oriented methods and later ported to 
another platform. Our results show that although the introduction of object-oriented 
technology does not appear to hinder overall productivity on commercial projects, it neither 
seems to improve it in a systematic way, at least not in the first two product generations 
[Potok and Vouk (1995)]. The prompted further study into the productivity drivers that may 
influence software developed in this environment, revealing an unusual economy of scale for 
both object-oriented and procedural software that is difficult to explain with traditional 
productivity drivers.  Additionally, there is evidence that dynamic schedule enforcement and 
compression took place, and may have been a factor in achieving the milestone compliance.  
It appears that programmer productivity increases as the project size increases. Similarly, 
team productivity increases, and the time required to develop a thousand line-of-code 
decreases as projects get larger. In general, small projects have very low productivity, 
while large projects have high productivity. From this evidence is formed the hypothesis that 
the productivity of the projects in this study are strongly influenced by schedules, 
specifically the effects of Parkinson’s Law and the Deadline Effect.  These schedules are 
used by management, in accordance with the defined business processes and culture, to 
control product development and delivery.  Therefore, the business model appears to have 
significant influence over the productivity of a software development team [Potok and Vouk 
(1996)].   
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This prompted us take a closer look at the interactions between the employed software 
methodology and processes, and the business-related drivers.  For several projects we were 
able to obtain the following raw scheduling information for each major project task:  
1) planned start time, 2) planned end time, 3) actual start time, and 4) actual end time. The 
planned end time represents the task deadline or milestone. Each task may have its own 
deadline, or there may be a common deadline for several consecutive tasks. The granularity 
of the task schedules was typically from 1 to 4 weeks and involved from 1 to 3 software 
professionals. Examples of tasks are design-level reviews, design of a small component, 
unit test of a component, etc. (see Table 1). From this data a variety of information can be 
derived, such as planned task duration, actual task duration, early task starts, late task starts, 
and so on. It is important to understand that development schedules are often established by 
the market pressures, and that failure to meet a key deadline usually has strong negative 
consequences.  

Metrics and Definitions. In the context of this paper we define productivity in terms of 
new and changed product lines of code (LOC), but with an understanding that the effort (or 
time) expended includes many non-coding activities that are necessary in developing a 
viable commercial product. We define average productivity of a software professional in 
LOC per person-month. A software team may consist of one or more software professionals, 
not all of which need to be engaged in software coding and testing activities. To focus on the 
calendar-time nature of the marketing windows and other business-related drivers, we will 
express software team productivity in terms of thousands of LOC (KLOC) per calendar 
month.   

When modeling, we will assume that a software product is a commercially available 
software system that includes the packaged software, documentation, and support. The 
software product is thoroughly tested, and its quality certified prior to release. It can be 
developed using "classical" procedural4 methods, or object-oriented methods. A software 
product is referenced by  version and release. We will refer to second and later versions or 
releases, as  follow-on versions or releases. A software product schedule is the schedule 
that directs the executions and completion of a series of tasks from the initial planning 
stages, through the final product shipment. A task or activity is a unit of work that requires a 
finite amount of time to complete. Tasks can be viewed as individual segments of a project 
starting at the completion of the previous task, which we call individual tasks. The 
significant schedule dates are called milestones. In the context of the iterative process, we 
will distinguish project iterations as conglomerates of individual tasks. 

The statistic that seems to best highlight the influence of the business-related drivers over 
software development tasks is the completion of tasks relative to a planned deadline. We 
call it task completion delay (see Figure 2). This value is determined from the difference 
between the planned end date and the actual end date for a given task. A negative value 
indicates that the task finished early, a zero value indicates the task was on schedule, and a 
positive value shows that the task was finished late. We use this delay variable to eliminate 
differences in the individual task start and completion dates so that we can compare the tasks 
as a population.  
                                                 
4 Procedural software development uses structured analysis, design and coding, or similar techniques, to develop and 

implement a software product.  
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Planned Start

Actual Start Planned End

Actual  End

Task Completion Delay
 

Figure 2 Terminology associated with actual and planned software tasks. 

 

Results. In this subsection we present results for three very different product types 
developed under the iterative process model described above, and under the same business 
model. The set includes a follow-on maintenance release of a product where the 
development team followed a procedural methodology producing 6 KLOCs of C code, a 
first generation product version (38 KLOC of C++) developed using object-oriented methods, 
and a second generation product version that was a port of a 64 KLOC of C++ code also 
developed using object-oriented methods (Figure 1). In addition to the variation in product 
sizes, the projects showed wide variation in the average team productivity5. The procedural 
project had the lowest team productivity, the team productivity rate for the first generation 
object-oriented project was two and a half times greater than that of the procedural project, 
while the ported object-oriented project had team productivity rate nearly ten times that of 
the first generation object-oriented project. Although we hope that at least some of the credit 
for these differences in productivity can be given to the object-oriented methodology, other 
factors can produce similar variability. It is worth noting that while software ports are 
expected to exhibit higher productivity [Vouk (1984)], it was surprising to see that, on the 
average, there was no significant difference between object-oriented and procedural 
software development productivity [Potok and Vouk (1995)]. Further analysis of task 
completion delays observed for the three projects above showed some interesting patterns. 

In Figures 3, 4, and 5 we plot histograms of individual task completion delays for the three 
projects (rounded to the nearest week). While all three projects met the original planned 
shipping deadline, the distribution of task completion delays shows that a number of 
intermediate milestones have not been met. For example, the plot in Figure 3 shows the 
fraction of tasks with a given completion delay (in weeks) for the first version product 
developed using object-oriented methods. The distribution has a peak at zero, indicating that 
about 45% of the tasks required to develop this project finished on the deadline they were 
planned for (note that all tasks planned for the final shipping date are in this category). 
However, the remaining 55%  of the tasks missed the deadline against which they were 
planned to various extents. For instance, the secondary peak around week five is due to a 
four to five week slip in several of the coding and driver build tasks, while the third peak at 

                                                 
5 Remember that team productivity is in terms of KLOC/calendar_month. 
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week 12 was due to administrative delays in getting the design specification approval 
signatures.   
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Figure 3 Task completion delays for the first generation object-oriented project. 
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Figure 4 Task completion delays for the second generation ported object-oriented project. 
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Figure 5 Milestone completion delays for the procedural project. 

Figure 4 shows the completion delay distribution for the tasks in the ported object-oriented 
project (the project shown in Figure 1). This distribution shows that most of the tasks 
finished on schedule, over 60%. Again, all tasks scheduled for the final (aggregate) deadline 
were in this category. However, while this team had the highest productivity level of the 
three, only one task finished early. 

Finally, Figure 5 shows the task completion delay distribution for the procedurally 
developed project. We again see that most of the tasks did complete on time. This includes 
all tasks scheduled for the final deadline. However, the fraction of on-time tasks was 
smaller than in other two projects, and there is a much larger range in the delay distribution. 
Some intermediate tasks were as many as 23 weeks late. This project was developed at a 
low productivity rate, which may account for the wider variance in the delay distribution 
than is seen in the higher productivity projects. 

Although projects were quite different in nature, they show some interesting similarities: 

1. In all three projects the most frequent value for the task completion delay was zero. 
About 35%-60% of the tasks finished on the date originally planned. This includes all 
tasks scheduled for the final, aggregate, project deadline. It is an indicator that a very 
strong mechanism for enforcement of the final deadline was in effect.  

2. Apparently, it is uncommon to finish a task early. Only one project showed a task 
completing early. 
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3. In all three cases, a small group of intermediate or low priority tasks was significantly 
late, from 7 to 23 weeks after the original deadline. 

A brief review of previous results shows no apparent productivity difference between 
object-oriented and procedural projects.  This contradicts other object-oriented productivity 
studies done in a non-commercial environment, leading to the question of the business 
influences over object-oriented development.  The data shows a very strong economy of 
scale, so that as a project increases in size, the programmer and team productivity increase 
as well [Potok and Vouk (1996)].  This result, although not unique, counters most previous 
studies [Boehm (1981) and references within].  Further, there is no obvious explanation as 
to why this result has occurred.  A review of detailed project data reveals that the actual 
project duration appears to be controlled by enforcement of the key milestones.  
Additionally, all of the projects finished on schedule, with most tasks within the projects 
finishing on schedule as well. Very few tasks finished early, and a small number of 
intermediate tasks finished late, but did not cause the overall project to finish late.   

Reviewing these results in light of the business model described above provides what 
appears to be the only plausible explanation for the contradiction observed.  The business 
model used to guide these projects provides strong discouragement to finishing key 
milestones late, i.e., monthly executive reviews.  However, the same model does not 
provide strong incentives for early completion of intermediate milestone tasks.  Indeed, 
examination of the significantly late tasks reveals that these tasks were not only of low 
priority, but they did not in any way gate the development of their product.  Releases 
typically produce small amounts of code, while versions can be quite large.  The size of the 
programming team is relatively constant, as is the development cycle.  Key deadlines are 
strictly enforced, which leads to releases being comparatively overstaffed, with ample 
development time, and little incentive to complete early, while releases are comparatively 
understaffed, with short development time, and strong incentive to finish on-time.  In simpler 
terms, teams working on product releases take all the time available to them to complete the 
project, often known as Parkinson’s Law.  While teams working on versions are compelled 
to put forth extra effort to meet key deadlines, often called the Deadline Effect.  This leads to 
the conjecture that the business model drives smaller releases to have low productivity, and 
larger versions to have higher productivity.  Furthermore, it may be possible that the 
business model exerts influence over the productivity of object-oriented software 
development, and this influence may offset potential gains in the methodology. 

Model 
To understand the business model effects on a new technology, such as object-orientation, 
we have developed a process simulation framework. We represent task durations as 
functions of team productivity over calendar time, and we incorporate the influence of  
business-related drivers by allowing for the Parkinson's Law and the Deadline Effect.  

Assumptions. The assumptions we used to build the model are the following: 

1. The organization is capable of meeting given deadlines. This means that the maturity of 
the organization is such that it has in place i) technological capabilities for developing 
required software within the defined schedule, ii)  software process and risk 
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management structures and mechanisms that are capable of ensuring with high 
probability that the deadlines are met [Paulk et al. (1993)]. 

2. The projects are driven by calendar schedules, and all changes in the project 
requirements, personnel, or milestones can be represented as changes in effective team 
productivity over a period of time. 

3. When in effect, the Parkinson’s Law is assumed to affect all deadlines. 

4. Project deadlines are enforced only at specified milestones. The most likely deadline to 
be enforced is the final deadline, however, any set of deadlines can be enforced.  

Project Iterations. The granularity of our model is at the level of project iterations 
(collections of tasks that make a project iteration). Therefore, in addition to an individual 
iteration, we recognize aggregate iterations. The start of an aggregate iteration is conditioned 
on completion of the iterations that precede it. Representing the duration of a project 
iteration as a function of team productivity requires estimation of the effective size or 
complexity of a project iteration (e.g., in terms equivalent KLOC), and of the average  team 
productivity over the iteration in the same units (e.g., in KLOC/(calendar development 
month). The duration of an iteration is then [Badiru (1995)] 

 Iteration Duration = 
Iteration Size

 Team Productivity  (1) 

The relationship between iteration duration and size is linear if and only if team productivity 
is constant with size and time. Once an iteration completion time is determined, the duration 
of the overall  project can be computed by adding the estimated durations of the iterations on 
the critical path(s) of the project, as is typically done with a PERT network.  For the 
remainder of this discussion, we will assume that we operate on the critical path of the 
project.  
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Figure 6 The planned (shaded box) and actual  (heavy line) iteration durations and the 
corresponding minimum and maximum iteration durations.     

One of the characteristics of the schedules we analyzed is wide variance in the average team 
productivity.  To incorporate this variance in the iteration duration estimates, we define the 
minimum and maximum team productivity and use this range to estimate the minimum and 
maximum iteration duration range (IDR). The minimum duration for an iteration can be 
achieved only if the programming team is working at their maximum productivity, this will 
almost certainly include code developed from overtime work. The maximum iteration 
duration is theoretically infinite, but in practice is usually limited by market forces, such as a 
fraction of an 18 month development cycle. Figures 6 illustrates the quantitative 
characteristics of an iteration.  

Figure 6 shows the metrics we define for an individual iteration. Let the duration of an 
iteration be t. For each iteration i we define the actual iteration duration, which we denote 
by ti,act, the planned duration ti,plan, the maximum duration ti,max, and the minimum duration 
ti,min. If we assume that the size of the problem being solved in an iteration remains 
essentially constant during that iteration, then the minimum and maximum durations are 
functions of maximum and minimum team productivity, respectively, in that iteration. In 
practice, a new project iteration will not start before the previous iteration has completed. 
Hence, for each iteration we can also recognize the chain of events that lead to it, i.e., its 
aggregate duration, d, that includes durations of all the sequential iterations that precede it. 
The aggregate duration of iteration i is a function of the preceding sequence of iterations, 
di=Σti. For example, d1=t1, d2=t1+t2, etc. As with the individual tasks and iterations, there 
are four aggregate durations:  actual, planned, maximum, and minimum.  

The  minimum and maximum duration times for an iteration define a range of possible 
completion times for that iteration. We represent the duration of iteration i with the random 
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variable Ti .  Ti can assume the values between the minimum duration time ti,min, and the 
maximum duration ti,max. Duration of a project with n iterations is a random variable D 
defined by 

 D=T1+ T2+...+Tn (2) 

For example, adding the minimum iteration duration time from each iteration on the critical 
path, Σti,min, gives the minimum duration time for the overall project, dn,min. Adding the 
maximum task duration times, Σti,max, gives the maximum duration time for the project, dn,max. 

To simulate the duration of a project whose iterations fall within the intervals [ti,min, ti,max], 
i=1,...,n, we take a sample from each interval according to the distribution assigned to that 
interval.  This provides an estimate of the individual iteration duration times for the project. 
From this estimate, the aggregate durations can be determined, as well as the overall project 
duration time. We repeat this sampling until the required simulation accuracy is achieved.  
Note that, while in this approach we do no account for possible inter-iteration duration 
correlation, our experience is that in practice inter-iteration delay correlation is a low-order 
effect.  

One could argue that a triangular or beta distribution may be a good starting representation 
for the iteration duration. However, there is no evidence that unconstrained iteration 
durations have a specific distribution, so we have opted for the more general uniform 
distribution. Note that introduction of business effects such as the Deadline and Parkinson’s 
Effect will require constrained samples of these intervals, and that the resulting conditional 
distributions are not uniform. We will now first quantify the Parkinson’s Law and the 
deadline enforcement, then we will apply these effects to the derived iteration and project 
duration distribution.  

Parkinson’s Law. Cyril Parkinson published a collection of aphorisms about economics 
in 1957, the most remembered is that “work expands to fill the time, ” or as originally stated, 
“work expands so as to fill the time available for its completion” [Parkinson (1957)]. 
Gutierrez et al. have developed a stochastic model to represent the effects of Parkinson’s 
Law on a project [Gutierrez et al. (1991)]. One of the fundamental concepts they propose is 
that unconstrained activity modeling (such as that seen in PERT models) may be 
inappropriate to represent real projects, and that completion time should be a function of the 
time scheduled for a project. If we consider a project iteration as a single task, then the basis 
for their model can be expressed as 

 dn,act=Σti,act+w(dn,plan) (3) 

where w(dn,plan) is the work expansion function, and dn,plan is the project deadline. Projects 
under Parkinson’s Law will generally not have an aggregate duration of less than the 
scheduled duration. That is, if d1,plan, d2,plan ,..., dn,plan are the scheduled durations for 
iteration aggregates, then, iteration 1 is planned to complete by time d1,plan, iterations 1 and 2 
are planned to complete by time d2,plan, and so on. We model Parkinson’s Law by delaying 
the aggregate completion times that are less than the planned duration times. An aggregate 
duration that would normally be shorter than the planned deadline is expanded so that it 
meets the deadline, while an iteration that would normally finish after the deadline is not 
modified. Tasks under Parkinson’s Law either finish, or are expanded to finish, within the 
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interval [di,plan-ε, di,max], where ε  is a small time period, typically one or two weeks. The 
lower bound is defined by the planned aggregate  iteration duration, while the upper bound 
is the actual maximum duration for the aggregate. 

Deadline Effect. Boehm defines the Deadline Effect  in the phrase “the amount of energy 
and effort to an activity is strongly accelerated as one approaches the deadline for 
completing the activity” [Boehm (1981)]. This effect on software is widely known, but 
surprisingly little studied. However, in industrial psychology this effect has been thoroughly 
described and studied through goal theory [Locke and Latham (1982)]. The goal theory 
supports both the Parkinson’s Law, performance is lower if goals are easy, and the Deadline 
Effect, performance is higher if the deadline is challenging. The Deadline Effect depends on 
enforcement of milestone (task/iteration) deadlines. We model this by discarding the cases 
for which any of the hard deadline aggregate tasks in the case finish after their deadline.  

The combined effect of the Parkinson’s Law and the deadline enforcement over a set of 
possible iteration and project durations is described by the algorithm given below. When 
simulating software development, we generate a number of case samples (j = 1, ...k, e.g., 
k=100,000) each of which represents one complete set of project iterations (i = 1, .., n). 
Function HARD() returns true if the deadline is "hard", and false if it is "soft" (i.e., allows 
slippage). 

       For (j = 1, ..., k) do 
          Acquire sample t1,act,...,tn,act for case j 
          Calculate d1,act,...,dn,act 
          Loop through all iterations (1, ..., n) 
             If d

i,act < (di,plan -ε) then  
                expand iteration duration to the deadline  
                recompute current and all remaining d

i,act
 (i, .., 

n) 
             EndIf 
          EndLoop 
          Loop through all d

i,plan (1, ..., n) 
             If [HARD(d

i,plan
) and d

i,act > di,plan ] then 
                discard this case and exit loop 
             EndIf 
          EndLoop 
       EndFor 
 

This algorithm, which is equivalent to constrained discrete convolution of iteration 
completion times, provides a model for how iterations complete around a given milestone. 
The iteration durations are bound by upper and lower productivity ranges, and are under the 
influence of both Parkinson’s Law and deadline enforcement.  

 

Maturity. It is worth noting, that the same simulation models allows us to examine the 
influence of the organizational software process maturity, and of the maturity of software 
development technology, by varying the iteration (task) productivity ranges (or IDRs). For 
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example, with reference to Figure 6, we would expect that mature software process and 
technology would promote small productivity variance (i.e., smaller duration range), while 
poor process control or immature technology may result in a much wider range of 
productivities and consequently larger iteration (task) duration ranges. We now have the 
capability to evaluate the business model influence on the productivity of a software 
development methodology, such as object-orientation. 

Simulation 
We first used the above simulation model to explore the impact of four business models on 
the productivity of two hypothetical projects. One project has a “normal” average 
productivity range in each iteration. The second project differs from the first one only in that 
the upper bound on its iteration productivity ranges is twice as large as the upper bound on 
the “normal” ranges. Both sets of ranges have the same lower bounds. This productivity rate 
gain is consistent with the gains that Lewis et al. and Melo et al. report in their non-
commercial studies, as well as the common lower bound for each methodology [Lewis et al. 
(1991), Melo et al. (1995)].  The normal range set could be considered as procedural 
development, and the second range set could represent a development technology that has 
potential for greater average productivity, such as object-orientation. However, note that a 
larger range  (i.e., it has higher productivity variance), implies less control over the 
development process and/or less mature methodology. We will sometimes refer to the high 
average productivity project as the “object-oriented project” and to the other one as the 
“procedural project”. When a business model is applied, both projects operate under the 
same milestones and constraints. When Parkinson’s Law is in effect, the iteration 
distribution range (IDR), see Figure 6,  lower bound is no earlier than one week before the 
deadline. When the deadline enforcement is active on iteration i, its IDR upper bound is the 
same as the planned deadline (di,plan). These restrictions are consistent with our 
empirical data. 

Both simulated projects had five equally sized iterations. The planned duration for each 
iteration is set to 10 weeks. This translates to planned deadlines at 10, 20, 30, 40 and 50 
weeks, respectively. We also assume that an equivalent of 10 KLOC is developed during 
each iteration. We further assume that the development team productivity6 for the procedural 
project is from 500 LOC/week  to 1250 LOC/week, while the range for the object-oriented 
project team is from 500 LOC/week  to 2500 LOC/week. From equation (1) it follows that 
each procedural project iteration has duration range between 8 to 20 weeks, while the 
object-oriented project has IDRs from 4 to 20 weeks. Iteration duration times were sampled 
from these ranges assuming a uniform distribution. 

                                                 
6 It is also assumed that the average team size is around 10 software professionals. 
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Comparison of Projects under Business Model A
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Figure 7 Cumulative distributions for high and low productivity projects without milestone 
constraints. 

Our first case, Model A, simulates the effect of a business practice that provide incentive to 
finish a project as soon as possible, with no penalty for finishing late. This represents the 
situation where the process can be viewed as being free from both the Deadline and the 
Parkinson’s Effects. The cumulative distributions for the duration of the projects under this 
model are shown in Figure 7. The mean completion time for an object-oriented project is 
59.3 weeks, with a variance of 10.0 weeks, while the mean for the procedural project is 
68.0 weeks, with a variance of 7.8 weeks. Further, only about 20% of the object-oriented 
samples finish at or before the week 50 milestone, and only about 1% of the procedural 
samples complete in this time frame. It is obvious that, for the type of project in question, the 
50 week deadline is quite aggressive and exceeds the capability of either technology to 
reliably meet it. However, an object-oriented approach still has a better chance than the 
procedural project of making the 50 week milestone. On the other hand, if we assume that the 
final project deadline is 72 weeks, we see that the higher-productivity methodology has over 
90% chance of meeting it. For comparison, the COCOMO [Boehm 1981] average for a 50 
KLOC project is between 145 (organic) to 240 person-months (semidetached) with a 
completion time of 17 months (or about 68-70 weeks) . 
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Comparision of Projects under Business Model B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93

Duration in Weeks

C
u

m
u

la
tiv

e 
F

re
q

u
en

cy

OO Project

Proc Project

 

 Figure 8 Cumulative distributions for high and low productivity projects conducted under 
Parkinson’s Law 

The second case, Model B, provides no incentive for finishing early, and no penalty for 
finishing late. This represents the situation where Parkinson’s effect is present for all 
milestones. Figure 8 shows the resulting project completion distribution. The mean 
completion time for the object-oriented project is now 61.8 weeks, two and a half weeks 
longer than under Model A, but with a smaller variance of 8 weeks. On the other hand, the 
procedural project results differ only slightly from the Model A case, with a mean of 68.3 
weeks, and a variance of 7.5 weeks.  Since under Model B assumptions there is no incentive 
to finish early, we would expect that any iterations that naturally complete early would be 
prolonged to complete on or near the deadline. This affects nearly 20% of object-oriented 
samples but only about 1% of the procedural samples. It is obvious that this lack of incentive 
to complete early, i.e., Parkinson’s effect, has greater impact in the case of the object-
oriented project. Deadlines are often set so that the product can be favorably marketed, for 
example, product releases may be delayed so that they can be shipped with a new version of 
an operating system. These delays can limit or negate the potential productivity gain of a 
technology such as object-orientation, or any potentially high productivity technology is 
subject to this delaying effect.  

Under this business model, the average project duration and variance become more similar 
for the two methodologies and the potential for productivity gains from object-oriented 
development is less pronounced. This is illustrated further in Figure 9 which shows the 
corresponding estimated probability density functions. We see that the delay in the “early” 
completions translates into a relaxation spike at week 50, but we also see that this effect is 
more pronounced in the case of the potentially “more productive” methodology.  
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Comparison of Projects under Business Model B 
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Figure 9 Probability density functions for high and normal productivity projects with 
Parkinson’s Law applied 

Our third case, business Model C, provides incentive for finishing early, and a penalty for 
finishing late. This is conceptually the same as enforcing the final deadline but with no 
Parkinson’s effect present. As mentioned earlier,  only about 20% of the object-oriented 
samples, and only 1% of “procedural” samples make the deadline. The mean duration for 
object-oriented projects that naturally make the deadline is 45.1 weeks with a variance of 
4.3 weeks, while the procedural projects that make the deadline naturally have average 
duration of 48.4 weeks with variance of 1.7 weeks. The average team productivity computed 
for these samples at each of the five milestones is shown in Figure 10. We see that 
successful projects have some “slack” in the first iteration, but after that software personnel 
needs to maintain an average productivity that is roughly in the middle of their productivity 
range if object-oriented development is used, and is about 80% of their maximum for 
procedural development. It is very likely that the latter requirement will put more strain on 
the software team since 80% of maximum productivity probably implies overtime work. 
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Average Team Productivity Under Model C
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Figure 10 Average team productivity required to complete the project by week 50 deadline. 

 

In practice, it is unlikely that either of the three model situations above will occur in pure 
form. For example, it is unrealistic to assume there is no penalty for late completion, and it 
is probably equally unrealistic to assume that incentives to finish early are 100% effective. 
A great deal of planning and effort is required to ship a product, and changing the ship date 
late in the cycle is costly whatever the reason and direction. Based on the work flows 
analyzed in this study, a more realistic business situation, Model D, is one where there is 
little or no incentive to finish earlier than planned, and a penalty for finishing late. 
Conceptually, this is the same as adding both the Parkinson’s Law and the deadline 
enforcement to a project. 
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Average Team Productivity Under Model D
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Figure 11 The team productivity per task for both projects  

 

In Figure 11 we show the average team productivity needed around the five modeled 
milestones assuming that all five operate under Parkinson’s Law and that only the final 
project deadline (d5,plan) is enforced. We see that the average productivity must increase as 
we approach the final deadline in order for a project to meet this deadline. It is a clear 
indication that successful projects that operate under a combination of Parkinson's Law and 
an aggressive schedule experience the Deadline Effect, an increase in the development effort 
close to a “hard” milestone [Boehm 1981]. There is another interesting feature that we see in 
Figure 11. A successful object-oriented project allows the teams more slack (lower 
productivity) in the early project stages which means that they can operate in a more relaxed 
fashion than procedural teams. In a schedule this is manifest in missing early deadlines, 
under the expectation that the final deadline is not in jeopardy. Not surprisingly, we see that 
the higher productivity project has a higher productivity gain past the second milestone. 
Relating this to the observed data one could argue that the team that developed the project 
shown in Figure 4 (the project with the highest productivity rate) was operating near their 
capacity. A team that performed at a lower productivity would either has to further narrow 
the distribution variance, or they would not be able to complete the project on schedule. On 
the other hand, if the team that developed the lowest productivity project, shown in Figure 5, 
had a greater productivity potential, then the variance in the delay distribution could be even 
broader than the one shown. 
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Comparison of Iteration Duration Distribution under Model D
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Figure 12 The marginal distribution of successful projects around the individual task 
deadlines under both the Parkinson’s and Deadline Effects. 

 

Another interesting view of the Model D is provided in Figure 12. It shows the iteration 
duration probability density distributions around the milestones for all project samples that 
meet the final deadline. The planned duration for each iteration is 10 weeks, so the deadline 
for iteration 1 is 10 weeks, for iteration 2 is 20 weeks, and so on, with the planned iteration 
5 finish at 50 weeks. At the start of each iteration we see the Parkinson relaxation spike. The 
shape of the curves shown in Figure 12 is similar to the shapes observed empirically, 
Figures 3 through 5.  

While both the procedural and the object-oriented projects finish at the same time, and with 
the same overall average productivity with respect to the calendar time, the business 
processes appears to cause a reduction in variance around the deadlines as the projects 
progress. That is, the hard deadline at the end of iteration 5 forces earlier completions in the 
iterations closer to the final deadline, and, in this way, it acts as a variance reduction 
mechanism. This is interesting, since, in an unconstrained development process, convolution 
of iteration completion times would result in a increasing, rather than decreasing duration 
variance [Elmaghraby et al. (1995)]. Furthermore, the lower productivity project (filled 
circles) requires this better process control (lower variance around the intermediate 
deadlines) in order to make the final one, while the higher productivity project (hollow 
circles) can have a wider variance (it can slip many of the intermediate milestones) and still 
make the final deadline. 
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Maturity and Process Control. So far we have assumed that the two modeled 
projects have the same lower bound on iteration productivity. This means that the worst case 
scenario in both methodologies produces projects of the same duration. It could be argued 
that a mature technology may have a productivity range with less variance than a new 
technology, even if the new technology has the potential for higher productivity. Similarly, 
an organization may have better control over projects that use a "classical" methodology, 
than it may have over those that use a new technology. This may translate into a narrower 
iteration duration range in situation where one deals with better controlled, mature processes  
We illustrate the impact of narrower IDRs in Figure 13. 

 

Comparison of Projects under Differing Capabilities
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Figure 13 A comparison of duration for two projects with differing productivity 
capabilities. 

 

In Figure 13 we show the unconstrained cumulative distribution (business Model A) for 
projects that have average team productivity of 1075 LOC/week (filled circles) and 1500 
LOC/week (hollow circles) respectively. However, the lower  average productivity project 
has a productivity range between 900 LOC/week and 1250 LOC/week, while the higher 
average productivity  project range is between 500 LOC/week and 2500 LOC/week. 
Comparison with Figure 7 shows a striking difference. With the increased control over the 
process (reduced IDRs) 90% of the procedural (1075 LOC/week) projects are now capable 
of making the 50 week deadline, a far higher percentage than is seen with the object-oriented 
approach, even though the latter has potential for twice the productivity of the procedural 
project.  
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It is obvious that control over the software process can play an even more important role 
than potential productivity gains from new technology. While business imposed incentives 
and deadlines can have an important impact on the perceived team productivity and on the 
probability that a project finishes on time, it may be even more important to select the 
methodology and the development approach that an organization has good control over and 
that yields acceptable productivity with as narrow an IDRs as possible. Doing so may 
increase the probability of project completion by a given deadline, even when the deadline 
is aggressively set by market forces.  

Next, the model is used to simulate both the methodology and process improvement effects.  
Figure 14 shows modest improvement in the software development process compared to 
similar improvements in the productivity that may be seen by using the object-oriented 
methodology. 

Comparison of Process and Methodology Improvements
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Figure 14  A comparison of duration for two projects with differing process maturity, and 
methodology. 

Looking at the duration of projects that have roughly an 80% chance of success shows that 
both the object-oriented project, and a 10% improvement in the lower bound productivity of 
the procedural project, results in approximately a 67 week development cycle.  In other 
words, to have an 80% chance of a project successfully complete within 67 weeks, there are 
two options: either double high-end productivity; or increased low-end productivity by 
10%.  The other distributions on the graph, “30% Procedural,” and “20% OO,” show a 
similar result, with an 80% chance of project success at roughly 54 weeks.  In both of these 
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projects the low-end productivity is increased.  For the object-oriented project, the low-end 
productivity is increased by 20%, while the low-end for the procedural project is increased 
30%.  Again, this illustrates the power of improving the software development process.   

It is also interesting to note the effects when combining both process improvements, and 
potential gains in productivity.  The base object-oriented project, solid circles, has a small 
probability of finishing significantly before the procedural projects, between 23-38 weeks.  
With the 20% improvement in the object-oriented project, a 47 week deadline has a 50% 
chance of success, as compared with only a 10% chance with the procedural project under a 
30% improvement in low-end productivity.  Improvements in the development process 
appear to reduce the overall project duration variance, while productivity improvements 
tend to shift the project duration distribution to earlier completion times.  Combining these 
two effects can produce a very desirable project duration distribution that is shifted to 
shorter development cycles, with relatively small variances.  However, as was seen in the 
simulations above, the business model influences can easily counteract the benefits that may 
be seen from these results. 

Conclusions 
As market pressures shorten software development cycles, increasing emphasis is being 
placed on improving software development productivity. Object-oriented software 
development has emerged as a potential solution, i.e., as technology with great potential for 
reducing product time to market. While this may be true in cases where high levels of design 
and code reuse are present (which can be achieved without object-orientation as well), there 
is little evidence that this occurs in the first few product generations, at least not for 
commercial projects operating under a common business model. 

In this paper we reported on empirical and simulation-based studies of the relationship 
between common commercial business practices, and the software productivity that might be 
expected in such an environment. Our data indicate that object-oriented projects suffer from 
Parkinson’s Law delays, and from the Deadline Effect, in much the same way that 
“procedural” projects do. Both effects tend to be the product of the applied business model. 
For example, a rigorous enforcement of final project deadlines, coupled with a lack of 
incentive to finish intermediate project tasks early may trigger Parkinson's Law delays and 
negatively influence productivity. This effect may become especially evident when projects 
are developed using potentially higher productivity methods, such as object-orientation, but 
operate under business models and deadlines that are more suited for classical, 
methodologies.   

Using simulation, we have shown that, while a methodology which has a potential for higher 
productivity may enable software development teams to operate in a less stressful mode, the 
promise of high productivity alone is not enough. An organization must be able to control the 
range of productivities in which its development teams operate. A wider range implies less 
control over the process, and a lowered ability to guarantee timely project completion.  The 
decision to use a new technology should be based not on its promised maximum, or even 
average, productivity but on the organizational ability to control it.  If the business model 
cannot adjust to new technology, by recognizing a) its limitations, b) the ability of the 
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organization to control it, and c) by adjusting its deadlines to take advantage of the 
methodology potentials, it is unlikely that an investment in the technology will result in real 
productivity benefits. 
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