
Published in the IBM System Journal, Vol. 36, No.1, (1/97)

 Submitted to IBM Systems Journal

The Effects of the Business Model on Object-
Oriented Software Development Productivity

by T. E. Potok
 M. A. Vouk

We intend to demonstrate that if the business model cannot adjust to new technology,
by recognizing a) its limitations, b) the ability of the organization to control it, and c) by
adjusting its deadlines to take advantage of the methodology potentials, it is unlikely
that an investment in the technology will result in real productivity benefits.

As software development cycles shorten, and software markets become more competitive,
improved software development productivity continues to be a major concern in the
software industry. Many believe that object-oriented technology provides a breakthrough
solution to this problem, but there is little quantitative evidence for this belief. Furthermore,
most studies related to object-oriented productivity do not consider it in conjunction with the
business constraints under which the software is developed. Business models tend to focus
on cost and calendar events and tend to form deadlines that are governed by marketing
windows and pressures. In this paper we explore the relationship between the business
model and the productivity that a software development methodology can achieve in a
commercial environment. We first examine empirical data from several commercial
products developed under the same business model and an iterative software development
process. The results indicate that lack of incentives for early completion of intermediate
project tasks, and a rigorous enforcement of final project deadlines, may trigger Parkinson's
Law delays and negatively affect software development productivity, especially when
projects are developed using object-oriented methods. We then model and simulate the
impact of software task completion incentives and imposed deadlines on productivity that
might be expected from potentially high-productivity technology, such as object-orientation.
We show how and why some common business practices might lower project productivity
and project completion probability. We also discuss to what extent poor software process
control and/or use of immature technology compounds the problem.

Introduction
It is widely believed that object-oriented development has considerable potential for
increasing software development productivity. The reasons for the gains range from reuse,
through better problem understanding, to better (less complex and less costly) designs and
implementations. However, there is little quantitative evidence that productivity of real-
life object-oriented software development is indeed consistently better than that of
"classical" or "procedural" software development. Most studies related to object-oriented
development productivity do not consider it in conjunction with the business practices under
which the software is being developed. Since commercial development always takes place

Potok and Vouk 2

DRAFT Potok & Vouk 2

in the context of a business model, an understanding of how business constraints influence
commercial software development is imperative. According to Jacobson et al.

a business model shows what the company’s environment is and how the
company acts in relation to this environment. By environment we mean
everything the company interacts with to perform its business processes,
such as customers, partners, subcontractors and so on. It shows employees
at every level what must be done and when and how it should be done
[Jacobson et al. (1994)].

Business models tend to focus on cost and calendar events (e.g., quarterly reports) and tend
to form deadlines that are governed by marketing windows and other pressures, often
regardless of the real software engineering capabilities of the organization. Software
engineering development models tend to focus on the complexity of a software project and
the capabilities of the development team and software methodologies. In a meaningful
evaluation of project viability we need to consider both aspects.

In this paper we quantitatively explore and model the relationship between the business
incentives and deadlines and the productivity that a software development methodology can
achieve in a commercial environment.

Related Work. Lewis et al. performed an experiment with undergraduate software
engineering students to study the effects of reuse [Lewis et al. (1991)]. Based on means tests
of the recorded productivity metrics, Lewis et al. concluded that the object-oriented
paradigm can improve productivity by about 50% when reuse1 is present. However, they
did not find any statistically significant evidence that the object-oriented paradigm has
higher productivity than procedural methods when reuse is not a factor. Melo et al.
conducted an experiment with graduate students that resulted in seven projects ranging is
size from 5000 - 25000 lines of code [Melo et al. (1995)]. The projects were developed

using a Waterfall process model, object-oriented design, C++, and varying levels of reuse.
Their results support the conclusion that reuse rates can increase programmer productivity
as much as two to three times2. Optimistic economic models of reuse indicate that break-
even reuse levels may be as low as 10-20% [Henderson-Sellers (1993)], while pessimistic
models show that break-even levels may be difficult to achieve even under very high levels
of reuse [Schimsky (1992)]. There is also evidence that different development
methodologies have differing impacts on the software development process. Boehm-Davis et
al. report on a comparison of Jackson program design, object-oriented design, and functional
decomposition, using professional programmers [Boehm-Davis et al. (1992)]. Some of the
insights from the study are that Jackson’s method, and object-oriented methodologies
produce more complete solutions, require less time to design and code a problem, and
produce less complex designs than functional decomposition. However, a quantitative
comparison of productivity associated with different methodologies was not given. Zweben
et al., again in an experiment with graduate and undergraduate students, show that layering

1 In this experiment, the reuse level may have been as high as 25% in some cases.

2 For high-end productivity gains reuse levels were in range 40-50%.

Potok and Vouk 3

DRAFT Potok & Vouk 3

and encapsulation in Ada (an object-oriented trait) may reduce development effort
[Zweben et al. (1995)].

There are many other studies and books concerned with the value of the object-oriented
approach [e.g., Booch (1991), deChampeaux et al. (1993), Rumbaugh (1991), Wirfs-Brock
(1990), Coleman et al. (1994), Hayes et al. (1991), Monarchi et al. (1992), Henderson-
Sellers et al. (1994), to name a few]. There are also many studies of the value of reuse
[Berlin (1990), Dunn et al. (1991), Gamma et al. (1993), Griss et al. (1991), Henderson-
Sellers (1993), Wessale et al. (1993)]. However, what is missing, to a large extent, are
quantitative studies that focus on productivity related to software developed for
commercial use by professional programmers who use object-oriented methods.

In fact, a recent paper by Hansen indicates that commercial software development should
always be considered in the context of the business model [Hansen (1996)]. Our own work
supports this. We believe that object-oriented development productivity is strongly
influenced by the underlying business factors [Potok and Vouk (1995)]. For example, our
results indicate that although the introduction of object-oriented technology does not appear
to hinder overall productivity on commercial projects, it neither seems to improve it in a
systematic way, at least not in the first two product generations. The data show that the
governing influence may not be the methodology, but the business model which includes
market and business constraints imposed on schedules, tasks, and resources. We also found
that two business model related effects, Parkinson’s Law [Parkinson (1957), Gutierrez
(1991)] and the Deadline Effect [Boehm (1981), Borger et al. (1991)], appear to be very
important influences in commercial software development.

Parkinson’s Law states that work will expand to fill the allocated time. For example, if a
project is given to three similar development teams with three easily achievable, but
different deadlines, the projects will not complete at the same time, but according to the
deadlines set. The Deadline Effect occurs when programmers are compelled to work extra
effort in order to complete a task by a given deadline. If a deadline is set, and there is strong
pressure to meet the deadline, people will work additional hours solely to meet the deadline.
These effects are supported by industrial psychology literature on “goal theory” that reports
significant evidence that productivity increases with specific, challenging goals [Locke et al.
(1990), Latham et al. (1982)]. This theory states that there is a linear relationship between
the degree of difficulty of a goal, and the performance required to achieve it. As of 1990,
over 400 experiments have been performed testing this theory, with over 90% supporting it.
The basic structure of such experiments involves participants performing a group of tasks.
Some of the participants are given a specific, hard goal that they are expected to achieve,
while the others are told to “do their best.” In most cases, the participants given hard goals
significantly out performed the other participants. This supports the notion that programmer
productivity can be a strong function of the schedule goals, and that team productivity for
hard, specific, schedules will most likely be higher (within reason), than it is for less
challenging schedules.

Approach. In this study we focus on the effects that some business practices may have on
productivity observed in software projects. We use empirical information to identify the
effects and help formulate a detailed simulation model of interactions among the iterative
software development process, its maturity, and the applied business model. We then use

Potok and Vouk 4

DRAFT Potok & Vouk 4

this model to explore how business constraints can affect productivity and time to market
when potentially high-productivity methodologies, such as object-oriented development, are
used.

In the next section we present the empirical data that relate business practices and software
development productivity. In the section that follows we formulate a simulation model of
the interactions, and then we use the model to study the impact of business imposed
incentives and deadlines on software development productivity that might be expected from
object-oriented methodology. Summary and conclusions are given in the last section.

Empirical Results3
Process and Origin of Data. The empirical data was collected at the IBM Software
Solutions Laboratory in Research Triangle Park, North Carolina. The laboratory was ISO
9000 Certified in 1994, and it has consistently received high marks in internal assessment
against the Malcolm Baldrige Criteria. The general business model that drives software
development at that laboratory recognizes two major software product sub-categories:
versions and releases. A new version is typically quite large, and contains a significant
product enhancement, or change in functionality. A version is ordinarily followed by one or
more maintenance releases that are usually much smaller than a version, and contain fixes to
defects, and minor enhancements. The calendar-time duration for development of both
versions and releases is strongly driven by market forces. Versions tend to take longer than
releases, but are within an 18-24 month window common to the industry today. Release
development will normally not be shorter than 9-12 months. There are a number of reasons
for this, some of which are distribution costs, arrival rate of release-type fixes and changes,
and possibly the issue of user-perceived quality (e.g., scheduling of a release very soon after
a version can give the impression of quality problems). While all new development must be
completed with a limited number of personnel, existing projects will have an established
team, and typically an effort is made to maintain or even increase the size of the team
because it may not be cost-effective to dismantle the team between versions. Therefore, it is
not unusual to have a large version developed with tight resource and time constraints, yet
have a smaller follow-up maintenance release developed over a more relaxed schedule
using the same team.

The development of both versions and releases is subject to frequent high-level reviews of
their schedule status against key development dates (or milestones) established at the
beginning of the product cycle. The progress towards these dates is reviewed regularly and
in detail, and schedule slips in any major milestones are strongly discouraged. Detailed
project schedules are required at the beginning of the product development cycle, and they
trigger business processes including funding, planning, marketing, supporting, and
certification of the quality of a product. The most prevalent software development process
followed in the organization is called the “iterative” process. The iterative process is a
variant of a combination of evolutionary prototyping [Boehm (1981)] and successive
versioning approach [Fairley (1985)]. In theory, each software iteration is fully planned,

3 Data used by permission. The scales appearing on the axes of all graphs, and any product and date-related information,

have been altered to provide discretion.

Potok and Vouk 5

DRAFT Potok & Vouk 5

designed, coded, and tested, before work begins on the next iteration. The duration and
amount of code produced for each iterations is approximately the same. A typical project
activity diagram is illustrated in Figure 1.

15 16 17 18

20

19

21 22 23 24

26

25

3 4 5 6

8

7

9 10 11 12

14

13

1

2

27 28 29 30

31 32 33 34

38

35 36 37

Figure 1 Development process used for a second generation object-oriented project.

Figure 1 shows a high-level PERT diagram of the process used for one of the commercial
products developed at the laboratory. The product was a second generation object-oriented
port between platforms. In this diagram, edges represent activities, and have durations
associated with them, while nodes are milestones. Different activities and milestones are
described in Table 1. The final product has approximately 64 thousand lines of C++ code,
the port required over 8 person-years of effort, and took 16 months to complete. A Booch
type object-oriented methodology was used.

There are five (unfolded) iteration cycles. The first iteration ends with milestones 7 and 8,
the second with 13 and 14, the third with 19 and 20, the fourth one with 25 and 26, and the
final iteration with node 30. The system testing activities run in parallel but are mainly
aimed at the software emerging out of the final cycle. When an iteration is complete the work
is reviewed, and the suggested changes and enhancements examined in the planning phase of
the next iteration. When all development iterations are completed, and depending on the

Potok and Vouk 6

DRAFT Potok & Vouk 6

measured product quality, the product may either be ready for delivery, or for some
additional system testing.

Table 1 Description of Figure 1 activities.

Node Edge Description Node Edge Description Node Edge Description
1 1-2 Project Start 12 12-13 Unit test 24-26
 1-31 12-14 25 25-38 Update analysis model
 1-35 13 13-19 Update analysis model 26 26-27 Review iteration
2 2-3 Define Analysis

Model
14 14-15 Review iteration 27 27-28 Plan iteration

3 3-4 Plan iteration 15 15-16 Plan iteration 28 28-29 Define design model
4 4-5 Define design model 16 16-17 Define design model 29 29-30 Code
5 5-6 Code 17 17-18 Code 29-33
 5-9 18 18-19 Unit test 30 30-36 Review iteration
6 6-7 Unit test 18-20 31 31-32 Function test prep
 6-8 19 19-25 Update analysis model 32 32-33 Define test plan
7 7-13 Update analysis model 20 20-21 Review iteration 33 33-34 Function test
8 8-9 Review iteration 21 21-22 Plan iteration 34 34-38 Test report
9 9-10 Plan iteration 22 22-23 Define design model 35 35-36 Customer validation

Prep
10 10-11 Define design model 23 23-24 Code 36 36-37 Customer validation
11 11-12 Code 24 24-25 Unit test 37 37-38 First customer ship
 11-15 38 Project End

Business Model Influence. We examined 19 commercially available software
products from the IBM Software Solutions Laboratory. There were three distinct categories
of products, those developed using procedural methods, those developed using object-
oriented methods, and those developed using object-oriented methods and later ported to
another platform. Our results show that although the introduction of object-oriented
technology does not appear to hinder overall productivity on commercial projects, it neither
seems to improve it in a systematic way, at least not in the first two product generations
[Potok and Vouk (1995)]. The prompted further study into the productivity drivers that may
influence software developed in this environment, revealing an unusual economy of scale for
both object-oriented and procedural software that is difficult to explain with traditional
productivity drivers. Additionally, there is evidence that dynamic schedule enforcement and
compression took place, and may have been a factor in achieving the milestone compliance.
It appears that programmer productivity increases as the project size increases. Similarly,
team productivity increases, and the time required to develop a thousand line-of-code
decreases as projects get larger. In general, small projects have very low productivity,
while large projects have high productivity. From this evidence is formed the hypothesis that
the productivity of the projects in this study are strongly influenced by schedules,
specifically the effects of Parkinson’s Law and the Deadline Effect. These schedules are
used by management, in accordance with the defined business processes and culture, to
control product development and delivery. Therefore, the business model appears to have
significant influence over the productivity of a software development team [Potok and Vouk
(1996)].

Potok and Vouk 7

DRAFT Potok & Vouk 7

This prompted us take a closer look at the interactions between the employed software
methodology and processes, and the business-related drivers. For several projects we were
able to obtain the following raw scheduling information for each major project task:
1) planned start time, 2) planned end time, 3) actual start time, and 4) actual end time. The
planned end time represents the task deadline or milestone. Each task may have its own
deadline, or there may be a common deadline for several consecutive tasks. The granularity
of the task schedules was typically from 1 to 4 weeks and involved from 1 to 3 software
professionals. Examples of tasks are design-level reviews, design of a small component,
unit test of a component, etc. (see Table 1). From this data a variety of information can be
derived, such as planned task duration, actual task duration, early task starts, late task starts,
and so on. It is important to understand that development schedules are often established by
the market pressures, and that failure to meet a key deadline usually has strong negative
consequences.

Metrics and Definitions. In the context of this paper we define productivity in terms of
new and changed product lines of code (LOC), but with an understanding that the effort (or
time) expended includes many non-coding activities that are necessary in developing a
viable commercial product. We define average productivity of a software professional in
LOC per person-month. A software team may consist of one or more software professionals,
not all of which need to be engaged in software coding and testing activities. To focus on the
calendar-time nature of the marketing windows and other business-related drivers, we will
express software team productivity in terms of thousands of LOC (KLOC) per calendar
month.

When modeling, we will assume that a software product is a commercially available
software system that includes the packaged software, documentation, and support. The
software product is thoroughly tested, and its quality certified prior to release. It can be
developed using "classical" procedural4 methods, or object-oriented methods. A software
product is referenced by version and release. We will refer to second and later versions or
releases, as follow-on versions or releases. A software product schedule is the schedule
that directs the executions and completion of a series of tasks from the initial planning
stages, through the final product shipment. A task or activity is a unit of work that requires a
finite amount of time to complete. Tasks can be viewed as individual segments of a project
starting at the completion of the previous task, which we call individual tasks. The
significant schedule dates are called milestones. In the context of the iterative process, we
will distinguish project iterations as conglomerates of individual tasks.

The statistic that seems to best highlight the influence of the business-related drivers over
software development tasks is the completion of tasks relative to a planned deadline. We
call it task completion delay (see Figure 2). This value is determined from the difference
between the planned end date and the actual end date for a given task. A negative value
indicates that the task finished early, a zero value indicates the task was on schedule, and a
positive value shows that the task was finished late. We use this delay variable to eliminate
differences in the individual task start and completion dates so that we can compare the tasks
as a population.

4 Procedural software development uses structured analysis, design and coding, or similar techniques, to develop and

implement a software product.

Potok and Vouk 8

DRAFT Potok & Vouk 8

Planned Start

Actual Start Planned End

Actual End

Task Completion Delay

Figure 2 Terminology associated with actual and planned software tasks.

Results. In this subsection we present results for three very different product types
developed under the iterative process model described above, and under the same business
model. The set includes a follow-on maintenance release of a product where the
development team followed a procedural methodology producing 6 KLOCs of C code, a
first generation product version (38 KLOC of C++) developed using object-oriented methods,
and a second generation product version that was a port of a 64 KLOC of C++ code also
developed using object-oriented methods (Figure 1). In addition to the variation in product
sizes, the projects showed wide variation in the average team productivity5. The procedural
project had the lowest team productivity, the team productivity rate for the first generation
object-oriented project was two and a half times greater than that of the procedural project,
while the ported object-oriented project had team productivity rate nearly ten times that of
the first generation object-oriented project. Although we hope that at least some of the credit
for these differences in productivity can be given to the object-oriented methodology, other
factors can produce similar variability. It is worth noting that while software ports are
expected to exhibit higher productivity [Vouk (1984)], it was surprising to see that, on the
average, there was no significant difference between object-oriented and procedural
software development productivity [Potok and Vouk (1995)]. Further analysis of task
completion delays observed for the three projects above showed some interesting patterns.

In Figures 3, 4, and 5 we plot histograms of individual task completion delays for the three
projects (rounded to the nearest week). While all three projects met the original planned
shipping deadline, the distribution of task completion delays shows that a number of
intermediate milestones have not been met. For example, the plot in Figure 3 shows the
fraction of tasks with a given completion delay (in weeks) for the first version product
developed using object-oriented methods. The distribution has a peak at zero, indicating that
about 45% of the tasks required to develop this project finished on the deadline they were
planned for (note that all tasks planned for the final shipping date are in this category).
However, the remaining 55% of the tasks missed the deadline against which they were
planned to various extents. For instance, the secondary peak around week five is due to a
four to five week slip in several of the coding and driver build tasks, while the third peak at

5 Remember that team productivity is in terms of KLOC/calendar_month.

Potok and Vouk 9

DRAFT Potok & Vouk 9

week 12 was due to administrative delays in getting the design specification approval
signatures.

Task Completion Distribution for 1st generation OO Product

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

-1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Task Delay in Weeks

R
el

at
iv

e
Fr

eq
ue

nc
y

Figure 3 Task completion delays for the first generation object-oriented project.

Task Completion Distribution for Second Generation OO Product

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

-3 -2 -1 0 1 2 3 4 5 6 7 8

Delay in Weeks

R
el

at
iv

e
Fr

eq
ue

nc
y

Potok and Vouk 10

DRAFT Potok & Vouk 10

Figure 4 Task completion delays for the second generation ported object-oriented project.

Task Completion Distribution for Procedural Product

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

-2 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Task Delays in Weeks

R
el

at
iv

e
Fr

eq
ue

nc
y

Figure 5 Milestone completion delays for the procedural project.

Figure 4 shows the completion delay distribution for the tasks in the ported object-oriented
project (the project shown in Figure 1). This distribution shows that most of the tasks
finished on schedule, over 60%. Again, all tasks scheduled for the final (aggregate) deadline
were in this category. However, while this team had the highest productivity level of the
three, only one task finished early.

Finally, Figure 5 shows the task completion delay distribution for the procedurally
developed project. We again see that most of the tasks did complete on time. This includes
all tasks scheduled for the final deadline. However, the fraction of on-time tasks was
smaller than in other two projects, and there is a much larger range in the delay distribution.
Some intermediate tasks were as many as 23 weeks late. This project was developed at a
low productivity rate, which may account for the wider variance in the delay distribution
than is seen in the higher productivity projects.

Although projects were quite different in nature, they show some interesting similarities:

1. In all three projects the most frequent value for the task completion delay was zero.
About 35%-60% of the tasks finished on the date originally planned. This includes all
tasks scheduled for the final, aggregate, project deadline. It is an indicator that a very
strong mechanism for enforcement of the final deadline was in effect.

2. Apparently, it is uncommon to finish a task early. Only one project showed a task
completing early.

Potok and Vouk 11

DRAFT Potok & Vouk 11

3. In all three cases, a small group of intermediate or low priority tasks was significantly
late, from 7 to 23 weeks after the original deadline.

A brief review of previous results shows no apparent productivity difference between
object-oriented and procedural projects. This contradicts other object-oriented productivity
studies done in a non-commercial environment, leading to the question of the business
influences over object-oriented development. The data shows a very strong economy of
scale, so that as a project increases in size, the programmer and team productivity increase
as well [Potok and Vouk (1996)]. This result, although not unique, counters most previous
studies [Boehm (1981) and references within]. Further, there is no obvious explanation as
to why this result has occurred. A review of detailed project data reveals that the actual
project duration appears to be controlled by enforcement of the key milestones.
Additionally, all of the projects finished on schedule, with most tasks within the projects
finishing on schedule as well. Very few tasks finished early, and a small number of
intermediate tasks finished late, but did not cause the overall project to finish late.

Reviewing these results in light of the business model described above provides what
appears to be the only plausible explanation for the contradiction observed. The business
model used to guide these projects provides strong discouragement to finishing key
milestones late, i.e., monthly executive reviews. However, the same model does not
provide strong incentives for early completion of intermediate milestone tasks. Indeed,
examination of the significantly late tasks reveals that these tasks were not only of low
priority, but they did not in any way gate the development of their product. Releases
typically produce small amounts of code, while versions can be quite large. The size of the
programming team is relatively constant, as is the development cycle. Key deadlines are
strictly enforced, which leads to releases being comparatively overstaffed, with ample
development time, and little incentive to complete early, while releases are comparatively
understaffed, with short development time, and strong incentive to finish on-time. In simpler
terms, teams working on product releases take all the time available to them to complete the
project, often known as Parkinson’s Law. While teams working on versions are compelled
to put forth extra effort to meet key deadlines, often called the Deadline Effect. This leads to
the conjecture that the business model drives smaller releases to have low productivity, and
larger versions to have higher productivity. Furthermore, it may be possible that the
business model exerts influence over the productivity of object-oriented software
development, and this influence may offset potential gains in the methodology.

Model
To understand the business model effects on a new technology, such as object-orientation,
we have developed a process simulation framework. We represent task durations as
functions of team productivity over calendar time, and we incorporate the influence of
business-related drivers by allowing for the Parkinson's Law and the Deadline Effect.

Assumptions. The assumptions we used to build the model are the following:

1. The organization is capable of meeting given deadlines. This means that the maturity of
the organization is such that it has in place i) technological capabilities for developing
required software within the defined schedule, ii) software process and risk

Potok and Vouk 12

DRAFT Potok & Vouk 12

management structures and mechanisms that are capable of ensuring with high
probability that the deadlines are met [Paulk et al. (1993)].

2. The projects are driven by calendar schedules, and all changes in the project
requirements, personnel, or milestones can be represented as changes in effective team
productivity over a period of time.

3. When in effect, the Parkinson’s Law is assumed to affect all deadlines.

4. Project deadlines are enforced only at specified milestones. The most likely deadline to
be enforced is the final deadline, however, any set of deadlines can be enforced.

Project Iterations. The granularity of our model is at the level of project iterations
(collections of tasks that make a project iteration). Therefore, in addition to an individual
iteration, we recognize aggregate iterations. The start of an aggregate iteration is conditioned
on completion of the iterations that precede it. Representing the duration of a project
iteration as a function of team productivity requires estimation of the effective size or
complexity of a project iteration (e.g., in terms equivalent KLOC), and of the average team
productivity over the iteration in the same units (e.g., in KLOC/(calendar development
month). The duration of an iteration is then [Badiru (1995)]

 Iteration Duration =
Iteration Size

 Team Productivity (1)

The relationship between iteration duration and size is linear if and only if team productivity
is constant with size and time. Once an iteration completion time is determined, the duration
of the overall project can be computed by adding the estimated durations of the iterations on
the critical path(s) of the project, as is typically done with a PERT network. For the
remainder of this discussion, we will assume that we operate on the critical path of the
project.

Potok and Vouk 13

DRAFT Potok & Vouk 13

Planned Start

Actual Start

Planned End

Actual End
6444444744444444

6444444447444444448
Planned Duration, ti,plan

Actual Duration, ti,act

144424443

14444444444444442444444443

Minimum
Duration, ti,min

Maximum Duration, ti,max

Metrics on Individual Iterations

14444444244444443
Iteration Duration Range

8

Figure 6 The planned (shaded box) and actual (heavy line) iteration durations and the
corresponding minimum and maximum iteration durations.

One of the characteristics of the schedules we analyzed is wide variance in the average team
productivity. To incorporate this variance in the iteration duration estimates, we define the
minimum and maximum team productivity and use this range to estimate the minimum and
maximum iteration duration range (IDR). The minimum duration for an iteration can be
achieved only if the programming team is working at their maximum productivity, this will
almost certainly include code developed from overtime work. The maximum iteration
duration is theoretically infinite, but in practice is usually limited by market forces, such as a
fraction of an 18 month development cycle. Figures 6 illustrates the quantitative
characteristics of an iteration.

Figure 6 shows the metrics we define for an individual iteration. Let the duration of an
iteration be t. For each iteration i we define the actual iteration duration, which we denote
by ti,act, the planned duration ti,plan, the maximum duration ti,max, and the minimum duration
ti,min. If we assume that the size of the problem being solved in an iteration remains
essentially constant during that iteration, then the minimum and maximum durations are
functions of maximum and minimum team productivity, respectively, in that iteration. In
practice, a new project iteration will not start before the previous iteration has completed.
Hence, for each iteration we can also recognize the chain of events that lead to it, i.e., its
aggregate duration, d, that includes durations of all the sequential iterations that precede it.
The aggregate duration of iteration i is a function of the preceding sequence of iterations,
di=Σti. For example, d1=t1, d2=t1+t2, etc. As with the individual tasks and iterations, there
are four aggregate durations: actual, planned, maximum, and minimum.

The minimum and maximum duration times for an iteration define a range of possible
completion times for that iteration. We represent the duration of iteration i with the random

Potok and Vouk 14

DRAFT Potok & Vouk 14

variable Ti . Ti can assume the values between the minimum duration time ti,min, and the
maximum duration ti,max. Duration of a project with n iterations is a random variable D
defined by

 D=T1+ T2+...+Tn (2)

For example, adding the minimum iteration duration time from each iteration on the critical
path, Σti,min, gives the minimum duration time for the overall project, dn,min. Adding the
maximum task duration times, Σti,max, gives the maximum duration time for the project, dn,max.

To simulate the duration of a project whose iterations fall within the intervals [ti,min, ti,max],
i=1,...,n, we take a sample from each interval according to the distribution assigned to that
interval. This provides an estimate of the individual iteration duration times for the project.
From this estimate, the aggregate durations can be determined, as well as the overall project
duration time. We repeat this sampling until the required simulation accuracy is achieved.
Note that, while in this approach we do no account for possible inter-iteration duration
correlation, our experience is that in practice inter-iteration delay correlation is a low-order
effect.

One could argue that a triangular or beta distribution may be a good starting representation
for the iteration duration. However, there is no evidence that unconstrained iteration
durations have a specific distribution, so we have opted for the more general uniform
distribution. Note that introduction of business effects such as the Deadline and Parkinson’s
Effect will require constrained samples of these intervals, and that the resulting conditional
distributions are not uniform. We will now first quantify the Parkinson’s Law and the
deadline enforcement, then we will apply these effects to the derived iteration and project
duration distribution.

Parkinson’s Law. Cyril Parkinson published a collection of aphorisms about economics
in 1957, the most remembered is that “work expands to fill the time, ” or as originally stated,
“work expands so as to fill the time available for its completion” [Parkinson (1957)].
Gutierrez et al. have developed a stochastic model to represent the effects of Parkinson’s
Law on a project [Gutierrez et al. (1991)]. One of the fundamental concepts they propose is
that unconstrained activity modeling (such as that seen in PERT models) may be
inappropriate to represent real projects, and that completion time should be a function of the
time scheduled for a project. If we consider a project iteration as a single task, then the basis
for their model can be expressed as

 dn,act=Σti,act+w(dn,plan) (3)

where w(dn,plan) is the work expansion function, and dn,plan is the project deadline. Projects
under Parkinson’s Law will generally not have an aggregate duration of less than the
scheduled duration. That is, if d1,plan, d2,plan ,..., dn,plan are the scheduled durations for
iteration aggregates, then, iteration 1 is planned to complete by time d1,plan, iterations 1 and 2
are planned to complete by time d2,plan, and so on. We model Parkinson’s Law by delaying
the aggregate completion times that are less than the planned duration times. An aggregate
duration that would normally be shorter than the planned deadline is expanded so that it
meets the deadline, while an iteration that would normally finish after the deadline is not
modified. Tasks under Parkinson’s Law either finish, or are expanded to finish, within the

Potok and Vouk 15

DRAFT Potok & Vouk 15

interval [di,plan-ε, di,max], where ε is a small time period, typically one or two weeks. The
lower bound is defined by the planned aggregate iteration duration, while the upper bound
is the actual maximum duration for the aggregate.

Deadline Effect. Boehm defines the Deadline Effect in the phrase “the amount of energy
and effort to an activity is strongly accelerated as one approaches the deadline for
completing the activity” [Boehm (1981)]. This effect on software is widely known, but
surprisingly little studied. However, in industrial psychology this effect has been thoroughly
described and studied through goal theory [Locke and Latham (1982)]. The goal theory
supports both the Parkinson’s Law, performance is lower if goals are easy, and the Deadline
Effect, performance is higher if the deadline is challenging. The Deadline Effect depends on
enforcement of milestone (task/iteration) deadlines. We model this by discarding the cases
for which any of the hard deadline aggregate tasks in the case finish after their deadline.

The combined effect of the Parkinson’s Law and the deadline enforcement over a set of
possible iteration and project durations is described by the algorithm given below. When
simulating software development, we generate a number of case samples (j = 1, ...k, e.g.,
k=100,000) each of which represents one complete set of project iterations (i = 1, .., n).
Function HARD() returns true if the deadline is "hard", and false if it is "soft" (i.e., allows
slippage).

 For (j = 1, ..., k) do
 Acquire sample t1,act,...,tn,act for case j
 Calculate d1,act,...,dn,act
 Loop through all iterations (1, ..., n)
 If d

i,act < (di,plan -ε) then
 expand iteration duration to the deadline
 recompute current and all remaining d

i,act
 (i, ..,

n)
 EndIf
 EndLoop
 Loop through all d

i,plan (1, ..., n)
 If [HARD(d

i,plan
) and d

i,act > di,plan] then
 discard this case and exit loop
 EndIf
 EndLoop
 EndFor

This algorithm, which is equivalent to constrained discrete convolution of iteration
completion times, provides a model for how iterations complete around a given milestone.
The iteration durations are bound by upper and lower productivity ranges, and are under the
influence of both Parkinson’s Law and deadline enforcement.

Maturity. It is worth noting, that the same simulation models allows us to examine the
influence of the organizational software process maturity, and of the maturity of software
development technology, by varying the iteration (task) productivity ranges (or IDRs). For

Potok and Vouk 16

DRAFT Potok & Vouk 16

example, with reference to Figure 6, we would expect that mature software process and
technology would promote small productivity variance (i.e., smaller duration range), while
poor process control or immature technology may result in a much wider range of
productivities and consequently larger iteration (task) duration ranges. We now have the
capability to evaluate the business model influence on the productivity of a software
development methodology, such as object-orientation.

Simulation
We first used the above simulation model to explore the impact of four business models on
the productivity of two hypothetical projects. One project has a “normal” average
productivity range in each iteration. The second project differs from the first one only in that
the upper bound on its iteration productivity ranges is twice as large as the upper bound on
the “normal” ranges. Both sets of ranges have the same lower bounds. This productivity rate
gain is consistent with the gains that Lewis et al. and Melo et al. report in their non-
commercial studies, as well as the common lower bound for each methodology [Lewis et al.
(1991), Melo et al. (1995)]. The normal range set could be considered as procedural
development, and the second range set could represent a development technology that has
potential for greater average productivity, such as object-orientation. However, note that a
larger range (i.e., it has higher productivity variance), implies less control over the
development process and/or less mature methodology. We will sometimes refer to the high
average productivity project as the “object-oriented project” and to the other one as the
“procedural project”. When a business model is applied, both projects operate under the
same milestones and constraints. When Parkinson’s Law is in effect, the iteration
distribution range (IDR), see Figure 6, lower bound is no earlier than one week before the
deadline. When the deadline enforcement is active on iteration i, its IDR upper bound is the
same as the planned deadline (di,plan). These restrictions are consistent with our
empirical data.

Both simulated projects had five equally sized iterations. The planned duration for each
iteration is set to 10 weeks. This translates to planned deadlines at 10, 20, 30, 40 and 50
weeks, respectively. We also assume that an equivalent of 10 KLOC is developed during
each iteration. We further assume that the development team productivity6 for the procedural
project is from 500 LOC/week to 1250 LOC/week, while the range for the object-oriented
project team is from 500 LOC/week to 2500 LOC/week. From equation (1) it follows that
each procedural project iteration has duration range between 8 to 20 weeks, while the
object-oriented project has IDRs from 4 to 20 weeks. Iteration duration times were sampled
from these ranges assuming a uniform distribution.

6 It is also assumed that the average team size is around 10 software professionals.

Potok and Vouk 17

DRAFT Potok & Vouk 17

Comparison of Projects under Business Model A

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Duration in Weeks

C
u

m
u

la
tiv

e
F

re
q

u
en

cy

OO Project

Proc Project

500-1250 LOC/Week

500-2500 LOC/Week

Figure 7 Cumulative distributions for high and low productivity projects without milestone
constraints.

Our first case, Model A, simulates the effect of a business practice that provide incentive to
finish a project as soon as possible, with no penalty for finishing late. This represents the
situation where the process can be viewed as being free from both the Deadline and the
Parkinson’s Effects. The cumulative distributions for the duration of the projects under this
model are shown in Figure 7. The mean completion time for an object-oriented project is
59.3 weeks, with a variance of 10.0 weeks, while the mean for the procedural project is
68.0 weeks, with a variance of 7.8 weeks. Further, only about 20% of the object-oriented
samples finish at or before the week 50 milestone, and only about 1% of the procedural
samples complete in this time frame. It is obvious that, for the type of project in question, the
50 week deadline is quite aggressive and exceeds the capability of either technology to
reliably meet it. However, an object-oriented approach still has a better chance than the
procedural project of making the 50 week milestone. On the other hand, if we assume that the
final project deadline is 72 weeks, we see that the higher-productivity methodology has over
90% chance of meeting it. For comparison, the COCOMO [Boehm 1981] average for a 50
KLOC project is between 145 (organic) to 240 person-months (semidetached) with a
completion time of 17 months (or about 68-70 weeks) .

Potok and Vouk 18

DRAFT Potok & Vouk 18

Comparision of Projects under Business Model B

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93

Duration in Weeks

C
u

m
u

la
tiv

e
F

re
q

u
en

cy

OO Project

Proc Project

 Figure 8 Cumulative distributions for high and low productivity projects conducted under
Parkinson’s Law

The second case, Model B, provides no incentive for finishing early, and no penalty for
finishing late. This represents the situation where Parkinson’s effect is present for all
milestones. Figure 8 shows the resulting project completion distribution. The mean
completion time for the object-oriented project is now 61.8 weeks, two and a half weeks
longer than under Model A, but with a smaller variance of 8 weeks. On the other hand, the
procedural project results differ only slightly from the Model A case, with a mean of 68.3
weeks, and a variance of 7.5 weeks. Since under Model B assumptions there is no incentive
to finish early, we would expect that any iterations that naturally complete early would be
prolonged to complete on or near the deadline. This affects nearly 20% of object-oriented
samples but only about 1% of the procedural samples. It is obvious that this lack of incentive
to complete early, i.e., Parkinson’s effect, has greater impact in the case of the object-
oriented project. Deadlines are often set so that the product can be favorably marketed, for
example, product releases may be delayed so that they can be shipped with a new version of
an operating system. These delays can limit or negate the potential productivity gain of a
technology such as object-orientation, or any potentially high productivity technology is
subject to this delaying effect.

Under this business model, the average project duration and variance become more similar
for the two methodologies and the potential for productivity gains from object-oriented
development is less pronounced. This is illustrated further in Figure 9 which shows the
corresponding estimated probability density functions. We see that the delay in the “early”
completions translates into a relaxation spike at week 50, but we also see that this effect is
more pronounced in the case of the potentially “more productive” methodology.

Potok and Vouk 19

DRAFT Potok & Vouk 19

Comparison of Projects under Business Model B

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95

Duration in Weeks

R
el

at
iv

e
Fr

eq
ue

nc
y

OO Project

Proc Project

Figure 9 Probability density functions for high and normal productivity projects with
Parkinson’s Law applied

Our third case, business Model C, provides incentive for finishing early, and a penalty for
finishing late. This is conceptually the same as enforcing the final deadline but with no
Parkinson’s effect present. As mentioned earlier, only about 20% of the object-oriented
samples, and only 1% of “procedural” samples make the deadline. The mean duration for
object-oriented projects that naturally make the deadline is 45.1 weeks with a variance of
4.3 weeks, while the procedural projects that make the deadline naturally have average
duration of 48.4 weeks with variance of 1.7 weeks. The average team productivity computed
for these samples at each of the five milestones is shown in Figure 10. We see that
successful projects have some “slack” in the first iteration, but after that software personnel
needs to maintain an average productivity that is roughly in the middle of their productivity
range if object-oriented development is used, and is about 80% of their maximum for
procedural development. It is very likely that the latter requirement will put more strain on
the software team since 80% of maximum productivity probably implies overtime work.

Potok and Vouk 20

DRAFT Potok & Vouk 20

Average Team Productivity Under Model C

800

850

900

950

1000

1050

1100

1150

1200

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

A
ve

ra
ge

 P
ro

du
ct

iv
ity

OO Project

Proc Project

Figure 10 Average team productivity required to complete the project by week 50 deadline.

In practice, it is unlikely that either of the three model situations above will occur in pure
form. For example, it is unrealistic to assume there is no penalty for late completion, and it
is probably equally unrealistic to assume that incentives to finish early are 100% effective.
A great deal of planning and effort is required to ship a product, and changing the ship date
late in the cycle is costly whatever the reason and direction. Based on the work flows
analyzed in this study, a more realistic business situation, Model D, is one where there is
little or no incentive to finish earlier than planned, and a penalty for finishing late.
Conceptually, this is the same as adding both the Parkinson’s Law and the deadline
enforcement to a project.

Potok and Vouk 21

DRAFT Potok & Vouk 21

Average Team Productivity Under Model D

800

850

900

950

1000

1050

1100

1150

1200

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

A
ve

ra
ge

 P
ro

du
ct

iv
ity

OO Project

Proc Project

Figure 11 The team productivity per task for both projects

In Figure 11 we show the average team productivity needed around the five modeled
milestones assuming that all five operate under Parkinson’s Law and that only the final
project deadline (d5,plan) is enforced. We see that the average productivity must increase as
we approach the final deadline in order for a project to meet this deadline. It is a clear
indication that successful projects that operate under a combination of Parkinson's Law and
an aggressive schedule experience the Deadline Effect, an increase in the development effort
close to a “hard” milestone [Boehm 1981]. There is another interesting feature that we see in
Figure 11. A successful object-oriented project allows the teams more slack (lower
productivity) in the early project stages which means that they can operate in a more relaxed
fashion than procedural teams. In a schedule this is manifest in missing early deadlines,
under the expectation that the final deadline is not in jeopardy. Not surprisingly, we see that
the higher productivity project has a higher productivity gain past the second milestone.
Relating this to the observed data one could argue that the team that developed the project
shown in Figure 4 (the project with the highest productivity rate) was operating near their
capacity. A team that performed at a lower productivity would either has to further narrow
the distribution variance, or they would not be able to complete the project on schedule. On
the other hand, if the team that developed the lowest productivity project, shown in Figure 5,
had a greater productivity potential, then the variance in the delay distribution could be even
broader than the one shown.

Potok and Vouk 22

DRAFT Potok & Vouk 22

Comparison of Iteration Duration Distribution under Model D

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51

Duration in Weeks

R
el

at
iv

e
Fr

eq
ue

nc
y

OO Project

Proc Project

Figure 12 The marginal distribution of successful projects around the individual task
deadlines under both the Parkinson’s and Deadline Effects.

Another interesting view of the Model D is provided in Figure 12. It shows the iteration
duration probability density distributions around the milestones for all project samples that
meet the final deadline. The planned duration for each iteration is 10 weeks, so the deadline
for iteration 1 is 10 weeks, for iteration 2 is 20 weeks, and so on, with the planned iteration
5 finish at 50 weeks. At the start of each iteration we see the Parkinson relaxation spike. The
shape of the curves shown in Figure 12 is similar to the shapes observed empirically,
Figures 3 through 5.

While both the procedural and the object-oriented projects finish at the same time, and with
the same overall average productivity with respect to the calendar time, the business
processes appears to cause a reduction in variance around the deadlines as the projects
progress. That is, the hard deadline at the end of iteration 5 forces earlier completions in the
iterations closer to the final deadline, and, in this way, it acts as a variance reduction
mechanism. This is interesting, since, in an unconstrained development process, convolution
of iteration completion times would result in a increasing, rather than decreasing duration
variance [Elmaghraby et al. (1995)]. Furthermore, the lower productivity project (filled
circles) requires this better process control (lower variance around the intermediate
deadlines) in order to make the final one, while the higher productivity project (hollow
circles) can have a wider variance (it can slip many of the intermediate milestones) and still
make the final deadline.

Potok and Vouk 23

DRAFT Potok & Vouk 23

Maturity and Process Control. So far we have assumed that the two modeled
projects have the same lower bound on iteration productivity. This means that the worst case
scenario in both methodologies produces projects of the same duration. It could be argued
that a mature technology may have a productivity range with less variance than a new
technology, even if the new technology has the potential for higher productivity. Similarly,
an organization may have better control over projects that use a "classical" methodology,
than it may have over those that use a new technology. This may translate into a narrower
iteration duration range in situation where one deals with better controlled, mature processes
We illustrate the impact of narrower IDRs in Figure 13.

Comparison of Projects under Differing Capabilities

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Duration in Weeks

C
u

m
u

la
tiv

e
F

re
q

u
en

cy

OO Project

Proc Project

500-2500 LOC/Week

900-1250 LOC/Week

Figure 13 A comparison of duration for two projects with differing productivity
capabilities.

In Figure 13 we show the unconstrained cumulative distribution (business Model A) for
projects that have average team productivity of 1075 LOC/week (filled circles) and 1500
LOC/week (hollow circles) respectively. However, the lower average productivity project
has a productivity range between 900 LOC/week and 1250 LOC/week, while the higher
average productivity project range is between 500 LOC/week and 2500 LOC/week.
Comparison with Figure 7 shows a striking difference. With the increased control over the
process (reduced IDRs) 90% of the procedural (1075 LOC/week) projects are now capable
of making the 50 week deadline, a far higher percentage than is seen with the object-oriented
approach, even though the latter has potential for twice the productivity of the procedural
project.

Potok and Vouk 24

DRAFT Potok & Vouk 24

It is obvious that control over the software process can play an even more important role
than potential productivity gains from new technology. While business imposed incentives
and deadlines can have an important impact on the perceived team productivity and on the
probability that a project finishes on time, it may be even more important to select the
methodology and the development approach that an organization has good control over and
that yields acceptable productivity with as narrow an IDRs as possible. Doing so may
increase the probability of project completion by a given deadline, even when the deadline
is aggressively set by market forces.

Next, the model is used to simulate both the methodology and process improvement effects.
Figure 14 shows modest improvement in the software development process compared to
similar improvements in the productivity that may be seen by using the object-oriented
methodology.

Comparison of Process and Methodology Improvements

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

22 27 32 37 42 47 52 57 62 67 72 77 82 87 92

Durations in Weeks

C
u

m
u

la
ti

ve
 F

re
q

u
en

cy

10% Procedural

30% Procedural

OO Base

20% OO

Figure 14 A comparison of duration for two projects with differing process maturity, and
methodology.

Looking at the duration of projects that have roughly an 80% chance of success shows that
both the object-oriented project, and a 10% improvement in the lower bound productivity of
the procedural project, results in approximately a 67 week development cycle. In other
words, to have an 80% chance of a project successfully complete within 67 weeks, there are
two options: either double high-end productivity; or increased low-end productivity by
10%. The other distributions on the graph, “30% Procedural,” and “20% OO,” show a
similar result, with an 80% chance of project success at roughly 54 weeks. In both of these

Potok and Vouk 25

DRAFT Potok & Vouk 25

projects the low-end productivity is increased. For the object-oriented project, the low-end
productivity is increased by 20%, while the low-end for the procedural project is increased
30%. Again, this illustrates the power of improving the software development process.

It is also interesting to note the effects when combining both process improvements, and
potential gains in productivity. The base object-oriented project, solid circles, has a small
probability of finishing significantly before the procedural projects, between 23-38 weeks.
With the 20% improvement in the object-oriented project, a 47 week deadline has a 50%
chance of success, as compared with only a 10% chance with the procedural project under a
30% improvement in low-end productivity. Improvements in the development process
appear to reduce the overall project duration variance, while productivity improvements
tend to shift the project duration distribution to earlier completion times. Combining these
two effects can produce a very desirable project duration distribution that is shifted to
shorter development cycles, with relatively small variances. However, as was seen in the
simulations above, the business model influences can easily counteract the benefits that may
be seen from these results.

Conclusions
As market pressures shorten software development cycles, increasing emphasis is being
placed on improving software development productivity. Object-oriented software
development has emerged as a potential solution, i.e., as technology with great potential for
reducing product time to market. While this may be true in cases where high levels of design
and code reuse are present (which can be achieved without object-orientation as well), there
is little evidence that this occurs in the first few product generations, at least not for
commercial projects operating under a common business model.

In this paper we reported on empirical and simulation-based studies of the relationship
between common commercial business practices, and the software productivity that might be
expected in such an environment. Our data indicate that object-oriented projects suffer from
Parkinson’s Law delays, and from the Deadline Effect, in much the same way that
“procedural” projects do. Both effects tend to be the product of the applied business model.
For example, a rigorous enforcement of final project deadlines, coupled with a lack of
incentive to finish intermediate project tasks early may trigger Parkinson's Law delays and
negatively influence productivity. This effect may become especially evident when projects
are developed using potentially higher productivity methods, such as object-orientation, but
operate under business models and deadlines that are more suited for classical,
methodologies.

Using simulation, we have shown that, while a methodology which has a potential for higher
productivity may enable software development teams to operate in a less stressful mode, the
promise of high productivity alone is not enough. An organization must be able to control the
range of productivities in which its development teams operate. A wider range implies less
control over the process, and a lowered ability to guarantee timely project completion. The
decision to use a new technology should be based not on its promised maximum, or even
average, productivity but on the organizational ability to control it. If the business model
cannot adjust to new technology, by recognizing a) its limitations, b) the ability of the

Potok and Vouk 26

DRAFT Potok & Vouk 26

organization to control it, and c) by adjusting its deadlines to take advantage of the
methodology potentials, it is unlikely that an investment in the technology will result in real
productivity benefits.

Acknowledgments
We would like to thank Al Zollar, Dan Blum, and the IBM Software Solutions Laboratory -
RTP for their strong support of this research, and Paritosh Dikshit of NCSU for his
assistance with the statistical analyses. Work was supported in part by IBM Canada (CAS,
Toronto), by IBM RTP, by the IBM SUR program, and by NCSU Center for Advanced
Computing and Communications.

References
1. I. Jacobson, M. Ericsson, and A. Jacobson, The Object Advantage: Business Process

Reengineering with Object Technology, Addison-Wesley, Wokingham, England
(1994).

2. J. A. Lewis, S. M. Henry, and D. G. Kafura, “An empirical Study of the Object-
Oriented Paradigm and Software Reuse,” Proceedings of the Conference on Object-
oriented Programming Systems, Languages and Applications, 184-196 (1991).

3. W. L. Melo, L. C. Briand, and V. R. Basili, “Measuring the Impact of Reuse on
Quality and Productivity in Object-Oriented Systems,” Technical Report, University
of Maryland, Department Of Computer Science, CS-TR-3395 (January 1995).

4. B. Henderson-Sellers, "The Economics of reusing Library Classes," Journal of Object
Oriented Programming, 6, No. 4, 43-50 (1993).

5. D. Schimsky, "Software Reuse Some Realities," Vitro Technical Journal, 10, No. 1,
47-57 (1992).

6. D. A. Boehm-Davis and L. S. Ross, “Program Design Methodologies and the Software
Development Process,” International Journal of Man Machine Studies 36, No. 1, 1-
19 (1992).

7. H. Zweben, S. H. Edwards, B. W. Weide, and J. E. Hollingsworth, “The Effects of
Layering and Encapsulation on Software Development Cost and Quality,” IEEE
Transactions on Software Engineering, 21, No. 3, 200-208 (1995).

8. G. Booch, Object-Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, Inc., Redwood Ciy, CA. (1991).

9. D. deChampeaux, D. Lea, and P. Fauve, Object-oriented System Development,
Addison-Wesley Publishing Company, Reading, Mass. (1993).

10. J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen, Object-oriented
Modeling and Design, Prentice Hall International, Englewook Cliffs, NJ, (1991).

Potok and Vouk 27

DRAFT Potok & Vouk 27

11. R. Wirfs-Brock, B. Wilkerson, and L. Wiener, Designing Object-oriented Software,
Prentice-Hall International, Englewook Cliffs, NJ, (1990).

12. D. Coleman, P. Arnold, S. Bodoff, C. Dollin, H. Gilchrist, F. Hayes, and P. Jeremaes,
Object-oriented Development The fusion Method, Prentice Hall, Englewook Cliffs,
NJ, (1994).

13. F. Hayes and D. Coleman, “Coherent Models for Object-Oriented Analysis,”
Proceedings of the Conference on Object-oriented Programming Systems,
Languages and Applications, 171-183 (1991).

14. D. E. Monarchi and G. I. Puhr, “A Research Typology for Object-Oriented Analysis
and Design,” Communication of the ACM 35, No. 9, 35-47 (1992).

15. B. Henderson-Sellers and J. M. Edwards, BOOKTWO of Object-Oriented
Knowledge: The Working Object, Prentice Hall, Sydney (1994).

16. L. Berlin, “When Objects Collide: Experiences with Reusing Multiple Class
Hierarchies,” Proceedings of the Conference on Object-oriented Programming
Systems, Languages and Applications, 181-193 (1990).

17. M. F. Dunn and J. C. Knight, “Software Reuse in an Industrial Setting: A Case Study,”
Thirteenth Intenational Conference on Software Engineering, (1991).

18. E. H. Gamma, R. Johnson, and J. Vlissides, “Design Patterns: Abstraction and Reuse
of Object Oriented Design,” Proceedings of the Seventh European Conference on
Object Oriented Programming, (1993).

19. M. L. Griss, S. S. Adams, B. Howard, B. J. Cox, A. Goldberg, “The Economics of
Software Reuse (Panel),” Proceedings of the Conference on Object-oriented
Programming Systems, Languages and Applications, (1991).

20. B. Henderson-Sellers, “The Economics of Reusing Library Classes,” Journal of
Object-Oriented Programming, 6, No. 4, 43-50 (1993).

21. W. Wessale, D. Reifer, D. Weller, “Large Project Experiences With Object Oriented
Methods and Reuse,” J. Systems Software, 23, No. 2, 151-161 (November, 1993).

22. G. A. Hansen, “Simulating Software Development Processes,” IEEE Computer, 29,
No.1, 73-77 (1996).

23. T. E. Potok and M. A. Vouk, “Productivity of Object-Oriented Software
Development,” NCSU Techincal Report, (1996).

24. C. N. Parkinson, Parkinson’s Law and Other Studies in Administration, Houghton
Mifflin Company, Boston (1957).

25. G. J. Gutierrez and P. Kouvelis, “Parkinson’s Law and its Implications for Project
Management,” Management Science 37, No. 8, 990-1001 (August 1991).

26. B. W. Boehm, Software Engineering Economics, Prentice-Hall, Inc. Englewook
Cliffs, NJ (1981).

Potok and Vouk 28

DRAFT Potok & Vouk 28

27. D. S. Borger and M. A. Vouk, “Modeling the Behaviour of Large Software Projects,”
Center for Communications and Signal Processing Technical Report, TR-91/19,
NCSU (1991).

28. E. A. Locke and G. P. Latham, A Theory of Goal Setting and Task Performance,
Prentice Hall, Englewood Cliffs, NJ (1990).

29. G. P. Latham and H. A. Marshall, “The Effects of Self-set, Participatively Set and
Assigned Goals on the Performance of Government Employees,” Personnel
Psychology 35, 399-404 (1982).

30. R. E. Fairley, Software Engineering Concepts, McGraw-Hill Books Company, New
York, NY (1985).

31. T. E. Potok and M. A. Vouk, “Development Productivity for Commercial Software
Using Object-Oriented Methods,” Proceedings of CASCON’95, (1995).

32. M. A. Vouk, "On the cost of mixed language programming," ACM SIGPLAN Notices,
19 No. 12, 54-60, (1984).

33. M. C. Paulk, B. Curtis, M. B. Chrissis, and C. V. Weber, “Capability Maturity Model,
Version 1.1,” IEEE Software, 18-27 (1993)

34. A. B. Badiru and P. S. Pulat, Comprehensive Project Management: Integrating
Optimization Models, Management Principles, and Computers, Prentice-Hall, Inc.
Englewook Cliffs, NJ (1995).

Potok and Vouk 29

DRAFT Potok & Vouk 29

Tom Potok IBM Software Solution Division, Research Triangle Park, North Carolina
27709 (electronic Mail: potok@carvm3.vnet.ibm.com). Dr. Potok is an advisory
programmer at the Software Solutions Laboratory of IBM in Research Triangle Park, North
Carolina. He is currently the technical liaison between IBM and Lotus. He has successfully
led the Software Solutions RTP lab in achieving ISO 9000 certification. Prior to this, he led
a team in creating an object-oriented data model designed to work with CASE tools to
improve application development and quality. He has led, and been a member of various
other software development efforts. He has a BS in Computer Science, MS in Computer
Engineering, and Ph.D. in Computer Engineering all from North Carolina State University.
He has authored 11 publications, and has filed 2 patents.

Mladen A. Vouk Computer Science Department, North Carolina State University,
Raleigh, NC, (electronic Mail: vouk@adm.csc.ncsu.edu). Dr. Vouk received B.Sc. and
Ph.D. degrees from the University of London (UK). He has extensive experience in both
commercial software production, and academic computing environments. He is the author,
or co-author, of over 100 publications. He is currently an Associate Professor of Computer
Science at North Carolina State University. His research and development interests include:
software process and risk management, software testing and reliability, issues related to
development of large numerical and scientific software-based systems, coding theory and
computer-based education. He teaches courses in software engineering, software testing and
reliability, software process and risk management and communication networking. Dr. Vouk
is the chairman of the IFIP Working Group 2.5 on Numerical Software. He is also a senior
member of IEEE, and a member of IEEE Reliability, Communications and Computer
Societies, and of IEEE TC on Software Engineering, ACM, ASQC, and Sigma Xi. He is an
associate editor of IEEE Transactions on Reliability.

